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Abstract 
 

This paper deals with the application of the Spectral Kurtosis (SK) to bearing 
fault detection in asynchronous machines. This one-dimensional spectral measure 
allows to study the nature of the harmonic components of the stator current of an 
induction motor running at a constant rotation speed. It provides additional 
information with respect to second order quantities given by the Power Spectrum 
Density (PSD). This information can be used to discriminate between constant 
amplitude harmonics, time-varying amplitude harmonics and noise. Since the 
harmonic components for a healthy machine can be considered as constant 
amplitude harmonics, the SK can provide a measure of the distance of the analyzed 
machine from a healthy one. For example, the amplitude fluctuations of the harmonic 
components produced by a mechanical fault can be highlighted by the Spectral 
Kurtosis. 
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I. Introduction 

The higher order statistics have been an extensive field of research in the past few 
years [1,2]. These works lead to several analysis tools, complementary to classical 
second order methods. One useful tool is the fourth-order cumulant based kurtosis, 
providing a measure of the distance to gaussianity. In the frequency domain, the 
Spectral Kurtosis (SK) of a signal is defined as the kurtosis of its frequency 
components. It was initially defined and used to detect “randomly occurring signals” 
in [3,4]. In this work, the kurtosis of the real and imaginary parts of the frequency 
components of signals are estimated separately. This allows to deal with real 
variables, but leads to an incomplete definition and estimation. In [5,6], the SK 
approach is generalized by using the frequency components modulus. Unfortunately, 
the authors  give neither theoretical definition nor properties and use only a moment 
based estimator instead of the cumulant based one. Moreover, they present the SK 
only in Gaussian ambient noise context. In discrete time, the correct theoretical 
definition of SK, using cumulants of complex random variables, was finally given in a 
source separation context [7,8]. In this work, the SK is used to measure the distance 
to gaussianity of different spectral components, but a biased estimator is provided. 
Finally, its continuous time definition is given in [9] and an unbiased estimator is 
provided and studied in detail in [10]. 
In this paper we propose to study the nature of the harmonic components of random 
“mixed” processes made up of a sum of complex harmonics buried in noise (boldface 
letters represent terms with a random nature): 
 

 (1) 
 

where the following assumptions are satisfied: 
 

A1 The frequencies  are real deterministic constants, with  when . 
 

A2 The amplitudes  are complex random variables, with moduli  and 
phases  mutually independent real random variables. Moreover, the 
phases  are supposed to be uniformly distributed over . Thereby, we 
can infer that, whatever , the 's are circular [11] and  is a stationary 
random harmonic process. 

 

A3  is a stationary mixing process, i.e. its multicorrelations are absolutely 
summable [1, pp. 8]. Moreover,  is independent of the harmonic process 

. 
 

Such processes have “mixed spectra” in the sense that they consist of infinite lines 
superimposed on a bounded continuous spectrum [1, pp. 173], [12]. 
 
The next section is devoted to theoretical definition and properties of the SK. Main 
results concerning its estimation are exposed in section III. These analytical results 
are illustrated in section IV.1 by applying this tool on a synthetic example. Results on 
current stator signals are presented in the last parts of section IV. 
 
II. Definition and properties 

II.1. Spectral Kurtosis (SK) definition 

In order to study the nature of the harmonic components of the random mixed 
process defined by Eq. (1), the complex amplitudes  have to be characterized. 
These amplitudes being random, their statistical properties are given by their 
cumulants of order  defined by [13,14]: 



 

 
(2) 

 

where * denotes the complex conjugate. 
Moreover,  being circular (assumption A2), its cumulants verifying  vanish 
[11]. Then, until the 5th order, the two possibly non-null cumulants of  are the 

variance1  and the fourth order cumulant 

. Therefore, the random variable  can be completely 

characterized until the 5th order by its variance  and its kurtosis  defined as: 
 

 
(3) 

 

The main advantage of this last quantity is due to its normalization. Actually,  is 
only dependent on the stochastic nature of the random variable . 

It is well known that  can be obtained through the classical Power Spectrum 
Density (PSD). We will see in the following that  can be obtained thanks to the SK 
of , defined at each frequency  as [9]: 
 

 
(4) 

 

where  is a complex random variable given by the Fourier transform of  
observed on a finite duration : 
 

 
(5) 

 

This truncation ensures the existence of the Fourier transform of stationary random 
mixed processes. 
 
II.2. Theoretical properties 

It has been shown in [9] that for processes  given by Eq. (1), the cumulant-based 
SK defined in Eq. (4) verifies: 
 

 
(6) 

 

On the one hand, the SK gives the kurtosis  of the complex amplitude  when 
the frequency parameter  equals the frequency  of a harmonic component. On the 
other hand, when , the SK vanishes completely. Thereby, the SK is theoretically 
insensitive to any stationary mixing process, since its value is completely 
independent of the noise characteristics. 
Information accessible through the SK can be further studied by assuming that  
takes the following form: 
 

 (7) 
 

                                                 
1  denotes mathematical expectation 



where  is a deterministic real constant and  a zero mean real random variable. In 
this case, it is well known that the PSD contains only second order information, more 

precisely related to . As for the SK, it becomes [9]: 
 

 
(8) 

 

where ,  are the kurtosis, respectively, the skewness of , and  represents  
the amplitude Signal to Noise Ratio (SNR) given by: 
 

 
(9) 

 

Fig. 1 represents  as a function of , for three different random variables . 
 

 
Figure 1:  for 3 different random variables  

 
The two interesting cases are the following ones: 
 

 : The amplitude modulus of the harmonic component becomes nearly 
constant since . Eq. (8) simplifies to , which is verified in 
Fig. 1. Actually, the three curves tend toward  whatever . 

 

 : In this case , therefore the amplitude modulus of the harmonic 
component has a completely random nature. Eq. (8) reduces to 

 and the value of the SK becomes dependent on the kurtosis 
of , and hence on its probability density function. This is verified in Fig. 1 
as well. 

 

The previous properties of the SK lead to the following conclusions for random mixed 
processes: 
 

• if ,  contains a harmonic component with a constant amplitude 
modulus at this frequency,  

• if  or ,  contains a harmonic component of which the 
amplitude modulus has a random part,  

• if , the spectral content of  at frequency  is given by either a 
mixing process (see Eq. (6)), or a harmonic component with a  for which the 
relation (8) vanishes. In this last case, the discrimination between a mixing 
process and a harmonic component is made by looking at the PSD of the 
random mixed process. 

 

Thanks to these additional information, the SK can be viewed as a complementary 
tool with respect to the classical PSD. 
 



III. Estimation 

In order to estimate the SK, we firstly consider that the random mixed process 
defined by Eq. (1) is discretized, giving . Moreover, we suppose that this discrete 
random process is known over  samples, denoted . In this case of finite length 
random process, the SK defined in Eq. (4) becomes: 
 

 
(10) 

 

where  is a complex random variable given by the -points Discrete Fourier 
Transform (DFT) of . 
In the following, we suppose that the discretization was made in such a way that one 
can consider the frequency bins  approximatively equal to , where  
and  is the sampling frequency. 
Considering the complex amplitudes of harmonic components modeled by Eq. (7), 
we can define a local Signal to Noise Ratio ( ), at each frequency bin , as: 
 

 
(11) 

 

where  is the PSD of the noise part. This local signal to noise ratio depends on 
the observation length , and can be measured on the PSD of , since for finite 
length random mixed processes there are no infinite lines associated with harmonic 
components. 
At frequency bins  where harmonic components are present, it can be easily 
shown that the SK given by Eq. (10) becomes: 
 

 
(12) 

 

The first term of this equation is the same as in Eq. (8). The second one provides a 
lower bound of the SK value. Thereby, having the  information given by the 
PSD of , we can determine if the harmonic component at the frequency bin  
has a constant amplitude modulus or not (see the first example detailed in section 
IV.1). 
For all frequency bins where no harmonic components are present, i.e.  with 

,  tends toward a zero mean Gaussian circular complex random 
variable [1, pp. 94-98] as . Hence, the SK vanishes at these frequency bins 
[10]. That is, , for all bins . 
 
Let  be  realizations of the random process  known over  
samples, and  their -points DFT. These  complex quantities 

 represent  realizations of the complex random variable . 
In this case, an unbiased estimator of the SK is given by [10]: 
 

 

(13) 

 

The variance of this estimator, at each frequency bin  where only the noise part is 
involved, is [10]: 
 

 (14) 
 



IV. Applications 

IV.1. Synthetic signal 

We consider first a synthetic random process composed of: 
- two pure sine waves of frequencies 0.07 and 0.18, 
- a sine wave of frequency 0.33 with random amplitude modulus following a zero 

mean Gaussian law, 
- a white Gaussian noise filtered by a resonant system, with an important 

resonance at frequency 0.24 and a small low-pass one. 
The PSD (shown in Fig. 2) and the SK (shown in Fig. 3) has been estimated over 

 realizations of this random process, each of them known over  
samples. In this case, the PSD has been estimated by using the averaged 
periodogram method and the SK by Eq. (13). 
 

 
Figure 2: PSD of the synthetic random process 

 

 
Figure 3: SK of the synthetic random process 

 
As expected, the SK estimator is a function of the nature of the spectral components. 
The values obtained for the harmonic components of frequencies 0.07, 0.18 and 0.33 
verify Eq. (12). For example, the estimated PSD gives a  of about 6.5 dB for the 
component of frequency 0.07. This component having a constant amplitude modulus, 

 and its SK takes the theoretical value -0.66, which corresponds to the 
estimated one in Fig. 3. Hence, using the  information given by the PSD jointly 
with the SK, we infer that the sine waves of frequencies 0.07 and 0.18 has constant 
amplitude moduli, contrary to the harmonic component of frequency 0.33. At the 
other frequency bins, the SK tends to zero with a variance verifying Eq. (14), even for 
the important resonance at frequency 0.24. This property can be used to discriminate 
spectral components induced by resonances from the harmonic components 
contained in the process. 
 



IV.2. Real signal – artificial bearing fault 

Bearing faults are the most frequent faults in induction machine according to the 
IEEE motor reliability study [15]. In the case of large motors, this kind of fault are 
usually detected by analyzing vibration signals, but this technique is not economically 
realistic in the case of small motors. A solution to this problem can be the use of 
quantities that are already measured in a drive system, e.g. the machine’s stator 
currents. Recently, Blödt et al. have proposed a new model for bearing fault detection 
using stator currents, which shows that such faults produce very small amplitude and 
frequency modulations of the stator current harmonics [16]. In this case, stator 
currents can be viewed as a sum of several harmonics with time-varying complex 
amplitudes, buried in noise. In section II.2, the SK has been shown to be dependant 
on the nature of the complex amplitudes of the analyzed harmonics. Therefore, it can 
be used to detect the modulations induced in the stator currents by the bearing faults. 
This second example deals with the stator currents of a small induction machine 
(1.1 kW) running at a constant rotation speed. Two cases are considered here: in the 
first case, the motor was healthy, and in the second case, the front bearing was 
replaced with a bearing having an artificial inner raceway defect (a hole). 
The stator current signals were sampled during 75 seconds, with a sampling 
frequency of 16 kHz. Choosing N = 1500 samples, M = 800 unoverlapped blocks was 
obtained. The value of N was chosen small in order to include all information into the 
alimentation harmonics, and to obtain a small variance of the SK estimates. Only one 
stator current signal for each case is considered here.  
 

 
Figure 4: PSD of a healthy machine respectively a machine with an inner raceway defect  

 

 
Figure 5: SK of a healthy machine respectively a machine with an inner raceway defect 

 



The Power Spectral Densities (Fig. 4) were estimated using the Welch’s modified 
periodogram. For the sake of simplicity, the studied frequency range is limited below 
1000 Hz. No important differences between the two considered cases appear in 
these PSD. 
In the case of the SK, the M unoverlapped blocks are considered as M realizations of 
a finite length discrete random mixed process , as defined in section III. 
Following this idea, the two SK (Fig. 5) were estimated with the same parameters as 
for the PSD. The variance of these estimates is 5*10-3 (see Eq. (14)). These SK show 
significant differences, especially at the 7th, 13th and 19th harmonics of the 
alimentation (350 Hz, 650 Hz, respectively 950 Hz). These differences are not due to 
the weakening of the . For example, at 350 Hz, a difference of 2 dB can be 
observed in the PSD (Fig. 4), which means a variation of about 5*10-3 for the SK 
supposing that the amplitude of this harmonic is constant (see Eq. (12)). At 950 Hz, 
the difference of 4 dB in the PSD means a variation of about 0.12 for the SK. As we 
can see in Fig. 5, the differences between the two SK are greater than those caused 
by the  variation. Hence, the SK is capable of highlighting the amplitude 
fluctuations of these harmonic components induced by the bearing fault. 
 
IV.2. Real signal – realistic bearing fault 

In the third example, a healthy motor was compared to a motor for which the front 
bearing was replaced by industrially used bearings. As in the previous example, only 
one stator current is analyzed thanks to its PSD and its SK. The results obtained with 
the same parameters as in section IV.1 are shown in Fig. 6 and 7. 
 

 
Figure 6: PSD of a healthy machine respectively a machine with a realistic bearing fault 

 

 
Figure 7: SK of a healthy machine respectively a machine with a realistic bearing fault 



 
 
The results are quite similar to the previous ones. Indeed, the PSD of the healthy and 
the faulty motor show only small differences. On the contrary, the SK shows 
significant differences at the 7th, 13th and 19th harmonics of the stator current 
fundamental frequency, and easily highlights the small modulations caused by the 
bearing fault in this signal. 
 
V. Conclusion 

This paper was devoted to the use of the Spectral Kurtosis (SK) with the aim of 
detecting bearing faults in small induction motors. 
 
Its theoretical definition and properties have been explained, as well as the bias and 
variance of its estimator in the case of random mixed processes. Thanks to its 
normalization, this fourth order spectral tool takes bounded and meaningful values, 
and its estimation variance is independent of the analyzed signal power. Moreover, 
this one dimensional spectral measure provides additional informations with respect 
to second order classical quantities. Applied on mixed processes, these informations 
can be used to discriminate between constant or non-constant amplitude harmonics, 
and mixing noise. 
 
As shown in section IV, these different properties make the SK a useful tool in order 
to detect small modulations produced by bearing faults in the stator currents of small 
induction machines. 
 
The results obtained for this application are encouraging, but some improvements 
are still to be done. Indeed, the variance of the SK estimator could be used to 
elaborate an optimal detector. Moreover, when bearing faults occur, they cause 
modulations in stator currents which become nonstationary. Therefore, the SK 
performance could be compared to other more classical methods (time-frequency 
representations, cyclostationary analysis), or with less classical approachs such as a 
nonstationary version of the Spectral Kurtosis recently proposed in [17]. 
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