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Université Paris VI

4 pl.Jussieu, BP 188, 75252 Paris, France ,
lecue@ccr.jussieu.fr

Abstract. We consider the problem of optimality, in a minimax sense,
and adaptivity to the margin and to regularity in binary classification.
We prove an oracle inequality, under the margin assumption (low noise
condition), satisfied by an aggregation procedure which uses exponential
weights. This oracle inequality has an optimal residual: (log M/n)κ/(2κ−1)

where κ is the margin parameter, M the number of classifiers to aggre-
gate and n the number of observations. We use this inequality first to
construct minimax classifiers under margin and regularity assumptions
and second to aggregate them to obtain a classifier which is adaptive both
to the margin and regularity. Moreover, by aggregating plug-in classifiers
(only log n), we provide an easily implementable classifier adaptive both
to the margin and to regularity.

1 Introduction

Let (X ,A) be a measurable space. We consider a random variable (X,Y ) with
values in X ×{−1, 1} and denote by π the distribution of (X,Y ). We denote by
PX the marginal of π on X and η(x) = P(Y = 1|X = x) the conditional proba-
bility function of Y = 1 given that X = x. We denote by Dn = (Xi, Yi)i=1,...,n,
n i.i.d. observations of the couple (X,Y ).

We recall some usual notions introduced for the classification framework. A
prediction rule is a measurable function f : X 7−→ {−1, 1}. The misclassification
error associated to f is

R(f) = P(Y 6= f(X)).

It is well known (see, e.g., [12]) that minf R(f) = R(f∗)
def
= R∗, where the

prediction rule f∗ is called Bayes rule and is defined by

f∗(x) = sign(2η(x) − 1).

The minimal risk R∗ is called the Bayes risk. A classifier is a function, f̂n =
f̂n(X,Dn), measurable with respect to Dn and X with values in {−1, 1}, that
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assigns to the sample Dn a prediction rule f̂n(., Dn) : X 7−→ {−1, 1}. A key

characteristic of f̂n is the value of generalization error E[R(f̂n)]. Here

R(f̂n) = P(Y 6= f̂n(X)|Dn).

The performance of a classifier f̂n is measured by the value E[R(f̂n)−R∗] called

the excess risk of f̂n. We say that the classifier f̂n learns with the convergence
rate φ(n), where (φ(n))n∈N is a decreasing sequence, if there exists an absolute

constant C > 0 such that for any integer n, E[R(f̂n) − R∗] ≤ Cφ(n). Theorem
7.2 of [12] shows that no classifier can learn with a given convergence rate for
arbitrary underlying probability distribution π.

In this paper we focus on entropy assumptions which allow us to work with
finite sieves. Hence, we first work with a finite model for f∗: it means that we
take a finite class of prediction rules F = {f1, . . . , fM}. Our aim is to construct

a classifier f̂n which mimics the best one of them w.r.t. to the excess risk and
with an optimal residual. Namely, we want to state an oracle inequality

E

[

R(f̂n) −R∗
]

≤ a0 min
f∈F

(R(f) −R∗) + Cγ(M,n), (1)

where a0 ≥ 1 and C > 0 are some absolute constants and γ(M,n) is the residual.
The classical procedure, due to Vapnik and Chervonenkis (see, e.g. [12]), is to
look for an ERM classifier,i.e., the one which minimizes the empirical risk

Rn(f) =
1

n

n
∑

i=1

1I{Yif(Xi)≤0}, (2)

over all prediction rules f in F , where 1IE denotes the indicator of the set E.
This procedure leads to optimal theoretical results (see, e.g. Chapter 12 of [12]),
but minimizing the empirical risk (2) is computationally intractable for sets
F of classifiers with large cardinality (often depending on the sample size n),
because this risk is neither convex nor continuous. Nevertheless, we might base a
tractable estimation procedure on minimization of a convex surrogate φ for the
loss ( [16], [9], [7], [8], [22] and [23]). A wide variety of classification methods in
machine learning are based on this idea, in particular, on using the convex loss
associated to support vector machines ([11], [21]),

φ(x) = max(0, 1 − x),

called the hinge-loss. The risk associated to this loss is called the hinge risk and
is defined by

A(f) = E[max(0, 1 − Y f(X))],

for all f : X 7−→ R. The optimal hinge risk is defined by

A∗ = inf
f
A(f), (3)

where the infimum is taken over all measurable functions f . The Bayes rule f∗

attains the infimum in (3) and, moreover, denoting by R(f) the misclassification



error of sign(f) for all measurable functions f with values in R, Zhang, cf. [29],
has shown that,

R(f) −R∗ ≤ A(f) −A∗, (4)

for any real valued measurable function f . Thus, minimization of the excess hinge
risk A(f) −A∗ provides a reasonable alternative for minimization of the excess
risk. In this paper we provide a procedure which does not need any minimization
step. We use a convex combination of the given prediction rules, as explained in
section 2.

The difficulty of classification is closely related to the behavior of the con-
ditional probability function η near 1/2 (the random variable |η(X) − 1/2| is
sometimes called the theoretical margin). Tsybakov has introduced, in [25], an
assumption on the the margin, called margin (or low noise) assumption,
(MA) Margin (or low noise) assumption. The probability distribution π
on the space X × {−1, 1} satisfies the margin assumption MA(κ) with margin
parameter 1 ≤ κ < +∞ if there exists c0 > 0 such that,

E {|f(X) − f∗(X)|} ≤ c0 (R(f) −R∗)
1/κ

, (5)

for all measurable functions f with values in {−1, 1}.
Under this assumption, the risk of an ERM classifier over some fixed class F can
converge to the minimum risk over the class with fast rates, namely faster than
n−1/2 (cf. [25]). On the other hand, with no margin assumption on the joint
distribution π (but combinatorial or complexity assumption on the class F), the
convergence rate of the excess risk is not faster than n−1/2 (cf. [12]).
In this paper we suggest an easily implementable procedure of aggregation of
classifiers and prove the following results:

1. We obtain an oracle inequality for our procedure and we use it to show
that our classifiers are adaptive both to the margin parameter (low noise
exponent) and to a complexity parameter.

2. We generalize the lower bound inequality stated in Chapter 14 of [12], by
introducing the margin assumption and deduce optimal rates of aggregation
under low noise assumption in the spirit of Tsybakov [24].

3. We obtain classifiers with minimax fast rates of convergence on a Hölder class
of conditional probability functions η and under the margin assumption.

The paper is organized as follows. In Section 2 we prove an oracle inequal-
ity for our convex aggregate, with an optimal residual, which will be used in
Section 3 to construct minimax classifiers and to obtain adaptive classifiers by
aggregation of them. Proofs are given in Section 4.

2 Oracle Inequality

We have M prediction rules f1, . . . , fM . We want to mimic the best of them
according to the excess risk under the margin assumption. Our procedure is
using exponential weights. Similar constructions in other context can be found,



e.g., in [3], [28], [13], [2], [17], [18], [27]. Consider the following aggregate which
is a convex combination with exponential weights of M classifiers,

f̃n =

M
∑

j=1

w
(n)
j fj , (6)

where

w
(n)
j =

exp (
∑n

i=1 Yifj(Xi))
∑M

k=1 exp (
∑n
i=1 Yifk(Xi))

, ∀j = 1, . . . ,M. (7)

Since f1, . . . , fM take their values in {−1, 1}, we have,

w
(n)
j =

exp (−nAn(fj))
∑M

k=1 exp (−nAn(fk))
, (8)

for all j ∈ {1, . . . ,M}, where

An(f) =
1

n

n
∑

i=1

max(0, 1 − Yif(Xi)) (9)

is the empirical analog of the hinge risk. Since An(fj) = 2Rn(fj) for all j =
1, . . . ,M , these weights can be written in terms of the empirical risks of fj ’s,

w
(n)
j =

exp (−2nRn(fj))
∑M
k=1 exp (−2nRn(fk))

, ∀j = 1, . . . ,M.

Remark that, using the definition (8) for the weights, we can aggregate functions
with values in R (like in theorem 1) and not only functions with values in {−1, 1}.

The aggregation procedure defined by (6) with weights (8), that we can called
aggregation with exponential weights (AEW), can be compared to the ERM one.
First, our AEW method does not need any minimization algorithm contrarily
to the ERM procedure. Second, the AEW is less sensitive to the over fitting
problem. Intuitively, if the classifier with smallest empirical risk is over fitted
(it means that the classifier fits too much to the observations) then the ERM
procedure will be over fitted. But, if other classifiers in F are good classifiers,
our procedure will consider their ”opinions” in the final decision procedure and
these opinions can balance with the opinion of the over fitted classifier in F
which can be false because of its over fitting property. The ERM only considers
the ”opinion” of the classifier with the smallest risk, whereas the AEW takes
into account all the opinions of the classifiers in the set F . The AEW is more
temperate contrarily to the ERM. Understanding why aggregation procedure are
often more efficient than the ERM procedure from a theoretical point of view is
a deep question, on which we are still working at this time this paper is written.
Finally, the following proposition shows that the AEW has similar theoretical
property as the ERM procedure up to the residual (logM)/n.



Proposition 1. Let M ≥ 2 be an integer, f1, . . . , fM be M real valued functions
on X . For any integers n, the aggregate defined in (6) with weights (8) f̃n satisfies

An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)

n
.

The following theorem provides first an exact oracle inequality w.r.t. the hinge
risk satisfied by the AEW procedure and second shows its optimality among all
aggregation procedures. We deduce from it that, for a margin parameter κ ≥ 1
and a set of M functions with values in [−1, 1], F = {f1, . . . , fM},

γ(F , π, n, κ) =

√

minf∈F(A(f) −A∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1

is an optimal rate of convex aggregation of M functions with values in [−1, 1]
w.r.t. the hinge risk, in the sense of [18].

Theorem 1 (Oracle inequality and Lower bound). Let κ ≥ 1. We assume
that π satisfies MA(κ). We denote by C the convex hull of a finite set of functions
with values in [−1, 1], F = {f1, . . . , fM}. The AEW procedure, introduced in
(6) with weights (8) (remark that the form of the weights in (8) allows to take
real valued functions for the fj’s), satisfies for any integer n ≥ 1 the following
inequality

E

[

A(f̃n) − A∗
]

≤ min
f∈C

(A(f) −A∗) + C0γ(F , π, n, κ),

where C0 > 0 depends only on the constants κ and c0 appearing in MA(κ).
Moreover, there exists a set of prediction rules F = {f1, . . . , fM} such that for

any procedure f̄n with values in R, there exists a probability measure π satisfying
MA(κ) such that for any integers M,n with logM ≤ n we have

E
[

A(f̄n) − A∗
]

≥ min
f∈C

(A(f) −A∗) + C′
0γ(F , π, n, κ),

where C′
0 > 0 depends only on the constants κ and c0 appearing in MA(κ).

The hinge loss is linear on [−1, 1], thus, model selection aggregation or convex
aggregation are identical problems if we use the hinge risk and if we aggregate
function with values in [−1, 1]. Namely, minf∈F A(f) = minf∈C A(f). Moreover,
the result of Theorem 1 is obtained for the aggregation of functions with values
in [−1, 1] and not only for prediction rules. In fact, only functions with values in
[−1, 1] have to be considered when we use the hinge loss since, for any real valued
function f , we have max(0, 1− yψ(f(x))) ≤ max(0, 1− yf(x)) for all x ∈ X , y ∈
{−1, 1} where ψ is the projection on [−1, 1], thus, A(ψ(f)) − A∗ ≤ A(f) − A∗.
Remark that, under MA(κ), there exists c > 0 such that,E [|f(X) − f∗(X)|] ≤
c (A(f) −A∗)1/κfor all functions f on X with values in [−1, 1] (cf. [18]) . The
proof of Theorem 1 is not given here by the lack of space. It can be found in
[18]. Instead, we prove here the following slightly less general result that we will
be further used to construct adaptive minimax classifiers.



Theorem 2. Let κ ≥ 1 and let F = {f1, . . . , fM} be a finite set of prediction
rules with M ≥ 3. We denote by C the convex hull of F . We assume that π
satisfies MA(κ). The aggregate defined in (6) with the exponential weights (7)
(or (8)) satisfies for any integers n,M and any a > 0 the following inequality

E

[

A(f̃n) −A∗
]

≤ (1 + a)min
f∈C

(A(f) −A∗) + C

(

logM

n

)
κ

2κ−1

,

where C > 0 is a constant depending only on a.

Corollary 1. Let κ ≥ 1, M ≥ 3 and {f1, . . . , fM} be a finite set of prediction
rules. We assume that π satisfies MA(κ). The AEW procedure satisfies for any
number a > 0 and any integers n,M the following inequality, with C > 0 a
constant depending only on a,

E

[

R(f̃n) −R∗
]

≤ 2(1 + a) min
j=1,...,M

(R(fj) −R∗) + C

(

logM

n

)
κ

2κ−1

.

We denote by Pκ the set of all probability measures on X × {−1, 1} satis-
fying the margin assumption MA(κ). Combining Corollary 1 and the following
theorem, we get that the residual

(

logM

n

)
κ

2κ−1

is a near optimal rate of model selection aggregation in the sense of [18] when
the underlying probability measure π belongs to Pκ.

Theorem 3. For any integers M and n satisfying M ≤ exp(n), there exists M

prediction rules f1, . . . , fM such that for any classifier f̂n and any a > 0, we
have

sup
π∈Pκ

[

E

[

R(f̂n) −R∗
]

− 2(1 + a) min
j=1,...,M

(R(fj) −R∗)

]

≥ C1

(

logM

n

)
κ

2κ−1

,

where C1 = cκ0/(4e2
2κ(κ−1)/(2κ−1)(log 2)κ/(2κ−1)).

3 Adaptivity Both to the Margin and to Regularity.

In this section we give two applications of the oracle inequality stated in Corol-
lary 1. First, we construct classifiers with minimax rates of convergence and
second, we obtain adaptive classifiers by aggregating the minimax ones. Follow-
ing [1], we focus on the regularity model where η belongs to the Hölder class.

For any multi-index s = (s1, . . . , sd) ∈ N
d and any x = (x1, . . . , xd) ∈ R

d, we

define |s| =
∑d
j=1 si, s! = s1! . . . sd!, x

s = xs11 . . . xsd

d and ||x|| = (x2
1+ . . .+x2

d)
1/2.

We denote by Ds the differential operator ∂s1+...+sd

∂x
s1
1 ...∂x

sd
d

.



Let β > 0. We denote by ⌊β⌋ the maximal integer that is strictly less than
β. For any x ∈ (0, 1)d and any ⌊β⌋-times continuously differentiable real valued
function g on (0, 1)d, we denote by gx its Taylor polynomial of degree ⌊β⌋ at
point x, namely,

gx(y) =
∑

|s|≤⌊β⌋

(y − x)s

s!
Dsg(x).

For all L > 0 and β > 0. The (β, L, [0, 1]d)−Hölder class of functions, denoted
by Σ(β, L, [0, 1]d), is the set of all real valued functions g on [0, 1]d that are ⌊β⌋-
times continuously differentiable on (0, 1)d and satisfy, for any x, y ∈ (0, 1)d, the
inequality

|g(y) − gx(y)| ≤ L||x− y||β .
A control of the complexity of Hölder classes is given by Kolmogorov and

Tikhomorov (1961):

N
(

Σ(β, L, [0, 1]d), ǫ, L∞([0, 1]d)
)

≤ A(β, d)ǫ−
d
β , ∀ǫ > 0, (10)

where the LHS is the ǫ−entropy of the (β, L, [0, 1]d)−Hölder class w.r.t. to the
L∞([0, 1]d)−norm and A(β, d) is a constant depending only on β and d.

If we want to use entropy assumptions on the set which η belongs to, we
need to make a link between PX and the Lebesgue measure, since the distance
in (10) is the L∞−norm w.r.t. the Lebesgue measure. Therefore, introduce the
following assumption:
(A1)The marginal distribution PX on X of π is absolutely continuous w.r.t. the
Lebesgue measure λd on [0, 1]d, and there exists a version of its density which is
upper bounded by µmax <∞.

We consider the following class of models. For all κ ≥ 1 and β > 0, we denote
by Pκ,β, the set of all probability measures π on X × {−1, 1}, such that

1. MA(κ) is satisfied.
2. The marginal PX satisfies (A1).
3. The conditional probability function η belongs to Σ(β, L,Rd).

Now, we define the class of classifiers which attain the optimal rate of con-
vergence, in a minimax sense, over the models Pκ,β. Let κ ≥ 1 and β > 0. For
any ǫ > 0, we denote by Σǫ(β) an ǫ-net on Σ(β, L, [0, 1]d) for the L∞−norm,
such that, its cardinal satisfies log Card (Σǫ(β)) ≤ A(β, d)ǫ−d/β . We consider the
AEW procedure defined in (6), over the net Σǫ(β) :

f̃ ǫn =
∑

η∈Σǫ(β)

w(n)(fη)fη, where fη(x) = 21I(η(x)≥1/2) − 1. (11)

Theorem 4. Let κ > 1 and β > 0. Let a1 > 0 be an absolute constant and

consider ǫn = a1n
− β(κ−1)

β(2κ−1)+d(κ−1) . The aggregate (11) with ǫ = ǫn, satisfies, for
any π ∈ Pκ,β and any integer n ≥ 1, the following inequality

Eπ

[

R(f̃ ǫnn ) −R∗
]

≤ C2(κ, β, d)n
− βκ

β(2κ−1)+d(κ−1) ,



where C2(κ, β, d) = 2 max
(

4(2c0µmax)
κ/(κ−1), CA(β, d)

κ
2κ−1

)

(a1)
κ

κ−1∨(a1)
− dκ

β(κ−1)

and C is the constant appearing in Corollary 1.

Audibert and Tsybakov (cf. [1]) have shown the optimality, in a minimax sense,
of the rate obtained in theorem 4. Note that this rate is a fast rate because it
can approach 1/n when κ is close to 1 and β is large.

The construction of the classifier f̃ ǫnn needs the knowledge of κ and β which
are not available in practice. Thus, we need to construct classifiers independent
of these parameters and which learn with the optimal rate n−βκ/(β(2κ−1)+d(κ−1))

if the underlying probability measure π belongs to Pκ,β, for different values of κ

and β. We now show that using the procedure (6) to aggregate the classifiers f̃ ǫn,
for different values of ǫ in a grid, the oracle inequality of Corollary 1 provides
the result.

We use a split of the sample for the adaptation step. Denote by D
(1)
m the

subsample containing the first m observations and D
(2)
l the one containing the

l(= n−m) last ones. Subsample D
(1)
m is used to construct the classifiers f̃ ǫm for

different values of ǫ in a finite grid. Subsample D
(2)
l is used to aggregate these

classifiers by the procedure (6). We take

l =

⌈

n

logn

⌉

and m = n− l.

Set ∆ = logn. We consider a grid of values for ǫ:

G(n) =

{

φn,k =
k

∆
: k ∈ {1, . . . , ⌊∆/2⌋}

}

.

For any φ ∈ G(n) we consider the step ǫ
(φ)
m = m−φ. The classifier that we propose

is the sign of

f̃adpn =
∑

φ∈G(n)

w[l](F̃
ǫ(φ)

m
m )F̃

ǫ(φ)
m
m ,

where F̃ ǫm(x) = sign(f̃ ǫm(x)) is the classifier associated to the aggregate f̃ ǫm for
all ǫ > 0 and the weights w[l](F ) are the ones introduced in (7) constructed with

the observations D
(2)
l for all F ∈ F(n) = {sign(f̃ ǫm) : ǫ = m−φ, φ ∈ G(n)}:

w[l](F ) =
exp

(
∑n
i=m+1 YiF (Xi)

)

∑

G∈F(n) exp
(
∑n

i=m+1 YiG(Xi)
) .

The following Theorem shows that f̃adpn is adaptive both to the low noise expo-
nent κ and to the complexity (or regularity) parameter β, provided that (κ, β)
belongs to a compact subset of (1,+∞) × (0,+∞).

Theorem 5. Let K be a compact subset of (1,+∞) × (0,+∞). There exists a
constant C3 > 0 that depends only on K and d such that for any integer n ≥ 1,
any (κ, β) ∈ K and any π ∈ Pκ,β, we have,

Eπ

[

R(f̃adpn ) −R∗
]

≤ C3n
− κβ

β(2κ−1)+d(κ−1) .



Classifiers f̃ ǫnn are not easily implementable since the cardinality of Σǫn(β) is
an exponential of n. An alternative procedure which is easily implementable is
to aggregate plug-in classifiers constructed in Audibert and Tsybakov (cf. [1]).

We introduce the class of models P ′
κ,β composed of all the underlying prob-

ability measures π such that:

1. π satisfies the margin assumption MA(κ).
2. The conditional probability function η ∈ Σ(β, L, [0, 1]d).
3. The marginal distribution of X is supported on [0, 1]d and has a Lebesgue

density lower bounded and upper bounded by two constants.

Theorem 6 (Audibert and Tsybakov (2005)). Let κ > 1, β > 0. The excess

risk of the plug-in classifier f̂
(β)
n = 21I

{η̂
(β)
n ≥1/2}

− 1 satisfies

sup
π∈P′

κ,β

E

[

R(f̂ (β)
n ) −R∗

]

≤ C4n
− βκ

(κ−1)(2β+d) ,

where η̂
(β)
n (·) is the locally polynomial estimator of η(·) of order ⌊β⌋ with band-

width h = n− 1
2β+d and C4 a positive constant.

In [1], it is shown that the rate n− βκ

(κ−1)(2β+d) is minimax over P ′
κ,β, if β ≤ d(κ−1).

Remark that the fast rate n−1 can be achieved.
We aggregate the classifiers f̂

(β)
n for different values of β lying in a finite

grid. We use a split of the sample to construct our adaptive classifier: l =
⌈n/ logn⌉ and m = n− l. The training sample D1

m = ((X1, Y1), . . . , (Xm, Ym))
is used for the construction of the class of plug-in classifiers

F =

{

f̂ (βk)
m : βk =

kd

∆− 2k
, k ∈ {1, . . . , ⌊∆/2⌋}

}

, where ∆ = logn.

The validation sample D2
l = ((Xm+1, Ym+1), . . . , (Xn, Yn)) is used for the con-

struction of weights

w[l](f) =
exp

(
∑n

i=m+1 Yif(Xi)
)

∑

f̄∈F exp
(
∑n
i=m+1 Yif̄(Xi)

) , ∀f ∈ F .

The classifier that we propose is F̃ adpn = sign(f̃adpn ), where: f̃adpn =
∑

f∈F w
[l](f)f.

Theorem 7. Let K be a compact subset of (1,+∞) × (0,+∞). There exists a
constant C5 > 0 depending only on K and d such that for any integer n ≥ 1,
any (κ, β) ∈ K, such that β < d(κ− 1), and any π ∈ P ′

κ,β, we have,

Eπ

[

R(F̃ adpn ) −R∗
]

≤ C5n
− βκ

(κ−1)(2β+d) .

Adaptive classifiers are obtained in Theorem (5) and (7) by aggregation of only
logn classifiers. Other construction of adaptive classifiers can be found in [17].
In particular, adaptive SVM classifiers.



4 Proofs

Proof of Proposition 1. Using the convexity of the hinge loss, we haveAn(f̃n) ≤
∑M

j=1 wjAn(fj). Denote by î = arg mini=1,...,M An(fi), we haveAn(fi) = An(fî)+
1
n (log(wî) − log(wi)) for all i = 1, . . . ,M and by averaging over the wi we get :

An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)

n
, (12)

where we used that
∑M
j=1 wj log

(

wj

1/M

)

= K(w|u) ≥ 0 whereK(w|u) denotes the

Kullback-Leiber divergence between the weights w = (wj)j=1,...,M and uniform
weights u = (1/M)j=1,...,M .

Proof of Theorem 2. Let a > 0. Using Proposition 1, we have for any
f ∈ F and for the Bayes rule f∗:

A(f̃n)−A∗ = (1+a)(An(f̃n)−An(f∗))+A(f̃n)−A∗− (1+a)(An(f̃n)−An(f∗))

≤ (1+a)(An(f)−An(f∗))+(1+a)
logM

n
+A(f̃n)−A∗−(1+a)(An(f̃n)−An(f∗)).

Taking the expectations, we get

E

[

A(f̃n) −A∗
]

≤ (1 + a)min
f∈F

(A(f) −A∗) + (1 + a)(logM)/n

+E

[

A(f̃n) −A∗ − (1 + a)(An(f̃n) −An(f
∗))
]

.

The following inequality follows from the linearity of the hinge loss on [−1, 1]:

A(f̃n)−A∗−(1+a)(An(f̃n)−An(f∗)) ≤ max
f∈F

[A(f) −A∗ − (1 + a)(An(f) −An(f∗))] .

Thus, using Bernstein’s inequality, we have for all 0 < δ < 4 + 2a :

P

[

A(f̃n) −A∗ − (1 + a)(An(f̃n) −An(f
∗)) ≥ δ

]

≤
∑

f∈F

P

[

A(f) −A∗ − (An(f) −An(f
∗)) ≥ δ + a(A(f) −A∗)

1 + a

]

≤
∑

f∈F

exp

(

− n(δ + a(A(f) −A∗))2

2(1 + a)2(A(f) −A∗)1/κ + 2/3(1 + a)(δ + a(A(f) −A∗))

)

.

There exists a constant c1 > 0 depending only on a such that for all 0 < δ < 4+2a
and all f ∈ F , we have

(δ + a(A(f) −A∗))2

2(1 + a)2(A(f) −A∗)1/κ + 2/3(1 + a)(δ + a(A(f) −A∗))
≥ c1δ

2−1/κ.

Thus, P

[

A(f̃n) −A∗ − (1 + a)(An(f̃n) −An(f∗)) ≥ δ
]

≤M exp(−nc1δ2−1/κ).



Observe that an integration by parts leads to
∫ +∞

a
exp (−btα) dt ≤ exp(−baα)

αbaα−1 ,
for any α ≥ 1 and a, b > 0, so for all u > 0, we get

E

[

A(f̃n) −A∗ − (1 + a)(An(f̃n) −An(f∗))
]

≤ 2u+M
exp(−nc1u2−1/κ)

nc1u1−1/κ
.

If we denote by µ(M) the unique solution ofX = M exp(−X), we have logM/2 ≤
µ(M) ≤ logM . For u such that nc1u

2−1/κ = µ(M), we obtain the result.
Proof of Corollary 1. We deduce Corollary 1 from Theorem 2, using that

for any prediction rule f we have A(f) − A∗ = 2(R(f) − R∗) and applying
Zhang’s inequality A(g) −A∗ ≥ (R(g) −R∗) fulfilled by all g from X to R.

Proof of Theorem 3. For all prediction rules f1, . . . , fM , we have

sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(

E

[

R(f̂n) −R∗
]

− 2(1 + a) min
j=1,...,M

(R(fj) −R∗)

)

≥ inf
f̂n

sup
π∈Pκ:f∗∈{f1,...,fM}

(

E

[

R(f̂n) −R∗
])

.

Thus, we look for a set of cardinality not greater than M , of the worst proba-
bility measures π ∈ Pκ from our classification problem point of view and choose
f1, . . . , fM as the corresponding Bayes rules.

Let N be an integer such that 2N−1 ≤ M . Let x1, . . . , xN be N distinct
points of X . Let 0 < w < 1/N . Denote by PX the probability measure on X
such that PX({xj}) = w for j = 1, . . . , N − 1 and PX({xN}) = 1 − (N − 1)w.
We consider the set of binary sequences Ω = {−1, 1}N−1. Let 0 < h < 1. For all
σ ∈ Ω we consider

ησ(x) =

{

(1 + σjh)/2 if x = x1, . . . , xN−1,
1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X ×{−1, 1} with the
marginal PX on X and with the conditional probability function ησ of Y = 1
knowing X .

Assume that κ > 1. We have P (|2ησ(X) − 1| ≤ t) = (N − 1)w1I{h≤t}, ∀0 ≤
t < 1. Thus, if we assume that (N − 1)w ≤ h1/(κ−1) then P (|2ησ(X) − 1| ≤ t) ≤
t1/(κ−1), for all t ≥ 0, and according to [25], πσ belongs to MA(κ).

We denote by ρ the Hamming distance on Ω (cf. [26] p.88). Let σ, σ′ be such
that ρ(σ, σ′) = 1. We have

H2
(

π⊗n
σ , π⊗n

σ′

)

= 2
(

1 − (1 − w(1 −
√

1 − h2))n
)

.

We take w and h such that w(1 −
√

1 − h2) ≤ 1/n, thus, H2
(

π⊗n
σ , π⊗n

σ′

)

≤ β =
2(1 − e−1) < 2 for any integer n.

Let f̂n be a classifier and σ ∈ Ω. Using MA(κ), we have

Eπσ

[

R(f̂n) −R∗
]

≥ (c0w)κEπσ

[(

N−1
∑

i=1

|f̂n(xi) − σi|
)κ]

.



By Jensen’s Lemma and Assouad’s Lemma (cf. [26]) we obtain:

inf
f̂n

sup
π∈Pκ:f∗∈{fσ :σ∈Ω}

(

Eπσ

[

R(f̂n) −R∗
])

≥ (c0w)κ
(

N − 1

4
(1 − β/2)2

)κ

.

We obtain the result by taking w = (nh2)−1, N = ⌈logM/ log 2⌉ and h =
(

n−1⌈logM/ log 2⌉
)(κ−1)/(2κ−1)

.
For κ = 1, we take h = 1/2, thus |2ησ(X) − 1| ≥ 1/2 a.s. so πσ ∈MA(1)

(cf.[25]). Putting w = 4/n and N = ⌈logM/ log 2⌉ we obtain the result.
Proof of Theorem 4. According to Theorem 1, where we set a = 1, we

have, for any ǫ > 0:

Eπ

[

R(f̃ ǫn) −R∗
]

≤ 4 min
η̄∈Σǫ(β)

(R(fη̄) −R∗) + C

(

log CardΣǫ(β)

n

)
κ

2κ−1

.

Let η̄ be a function with values in [0, 1] and denote by f̄ = 1Iη̄≥1/2 the plug-in
classifier associated. We have |2η − 1|1If̄ 6=f∗ ≤ 2|η̄ − η|, thus:

R(f̄) −R∗ = E
[

|2η(X) − 1|1If̄ 6=f∗

]

= E
[

|2η(X) − 1|1If̄ 6=f∗1If̄ 6=f∗

]

≤
∣

∣

∣

∣|2η − 1|1If̄ 6=f∗

∣

∣

∣

∣

L∞(PX)
E
[

1If̄ 6=f∗

]

≤
∣

∣

∣

∣|2η − 1|1If̄ 6=f∗

∣

∣

∣

∣

L∞(PX )
c0
(

R(f̄) −R∗
)

1
κ ,

and assumption (A1) lead to

R(fη̄) −R∗ ≤ (2c0µmax)
κ

κ−1 ||η̄ − η||
κ

κ−1

L∞([0,1]d)
.

Hence, for any ǫ > 0, we have

Eπ

[

R(f̃ ǫn) −R∗
]

≤ D

(

ǫ
κ

κ−1 +

(

ǫ−d/β

n

)

κ
2κ−1

)

,

where D = max
(

4(2c0µmax)
κ/(κ−1), CA(β, d)

κ
2κ−1

)

. For the value

ǫn = a1n
− β(κ−1)

β(2κ−1)+d(κ−1) ,

we have
Eπ

[

R(f̃ ǫnn ) −R∗
]

≤ C1n
− βκ

β(2κ−1)+d(κ−1) ,

where C1 = 2D(a1)
κ

κ−1 ∨ (a1)
− dκ

β(κ−1)

Proof of Theorem 5. We consider the following function on (1,+∞) ×
(0,+∞) with values in (0, 1/2):

φ(κ, β) =
β(κ− 1)

β(2κ− 1) + d(κ− 1)
.

For any n greater than n1 = n1(K), we have ∆−1 ≤ φ(κ, β) ≤ ⌊∆/2⌋∆−1 for
all (κ, β) ∈ K.



Let (κ0, β0) ∈ K. For any n ≥ n1, there exists k0 ∈ {1, . . . , ⌊∆/2⌋ − 1} such
that

φk0 = k0∆
−1 ≤ φ(κ0, β0) < (k0 + 1)∆−1.

We denote by fκ0(·) the increasing function φ(κ0, ·) from (0,+∞) to (0, 1/2).
We set

β0,n = (fκ0)
−1

(φk0 ).

There exists m = m(K) such that m|β0 − β0,n| ≤ |fκ0(β0) − fκ0(β0,n)| ≤ ∆−1.
Let π ∈ Pκ0,β0 . According to the oracle inequality of Corollary 1, we have,

conditionally to the first subsample D1
m:

Eπ

[

R(f̃adpn ) −R∗|D1
m

]

≤ 4 min
φ∈G(n)

(

R(f̃
ǫ(φ)

m
m ) −R∗

)

+C

(

log Card(G(n))

l

)

κ0
2κ0−1

.

Using the definition of l and the fact that Card(G(n)) ≤ logn we get that there
exists C̃ > 0 independent of n such that

Eπ

[

R(f̃adpn ) −R∗
]

≤ C̃



Eπ

[

R(f̃ ǫ
(φk0

)

m
m ) −R∗

]

+

(

log2 n

n

)

κ0
2κ0−1





Moreover β0,n ≤ β0, hence, Pκ0,β0 ⊆ Pκ0,β0,n
. Thus, according to Theorem

4, we have

Eπ

[

R(f̃ ǫ
(φk0

)

m
m ) −R∗

]

≤ C1(K, d)m
−ψ(κ0,β0,n),

where C1(K, d) = max (C1(κ, β, d) : (κ, β) ∈ K) and ψ(κ, β) = βκ
β(2κ−1)+d(κ−1) .

By construction, there exists A2 = A2(K, d) > 0 such that |ψ(κ0, β0,n) −
ψ(κ0, β0)| ≤ A2∆

−1. Moreover for any integer n we have nA2/ logn = exp(A2),
which is a constant. We conclude that

Eπ

[

R(f̃adpn ) −R∗
]

≤ C2(K, d)



n−ψ(κ0,β0) +

(

log2 n

n

)

κ0
2κ0−1



 ,

where C2(K, d) > 0 is independent of n. We achieve the proof by observing that
ψ(κ0, β0) <

κ0

2κ0−1 .
Proof of Theorem 7. We consider the following function on (1,+∞) ×

(0,+∞) with values in (0, 1/2):

Θ(κ, β) =
βκ

(κ− 1)(2β + d)
.

For any n greater than n1 = n1(K), we have ∆−1 ≤ Θ(κ, β) ≤ ⌊∆/2⌋∆−1, for
all (κ, β) ∈ K.

Let (κ0, β0) ∈ K be such that β0 < (κ0 − 1)d. For any n ≥ n1, there exists
k0 ∈ {1, . . . , ⌊∆/2⌋ − 1} such that k0∆

−1 ≤ Θ(κ0, β0) < (k0 + 1)∆−1.



Let π ∈ Pκ0,β0 . According to the oracle inequality of Corollary 1, we have,
conditionally to the first subsample D1

m:

Eπ

[

R(F̃ adpn ) −R∗|D1
m

]

≤ 4 min
f∈F

(R(f) −R∗) + C

(

log Card(F)

l

)

κ0
2κ0−1

.

Using the proof of Theorem 5 we get that there exists C̃ > 0 independent of n
such that

Eπ

[

R(f̃adpn ) −R∗
]

≤ C̃



Eπ

[

R(f̂
(βk0

)
m ) −R∗

]

+

(

log2 n

n

)

κ0
2κ0−1





Moreover βk0 ≤ β0, hence, Pκ0,β0 ⊆ Pκ0,βk0
. Thus, according to Theorem 6,

we have
Eπ

[

R(f̂
(βk0

)
m ) −R∗

]

≤ C4(K, d)m
−Θ(κ0,βk0

),

where C4(K, d) = max (C4(κ, β, d) : (κ, β) ∈ K). We have |Θ(κ0, βk0)−Θ(κ0, β0)| ≤
∆−1 by construction. Moreover n1/ logn = e for any integer n. We conclude that

Eπ

[

R(F̃ adpn ) −R∗
]

≤ C̃4(K, d)



n−Θ(κ0,β0) +

(

log2 n

n

)

κ0
2κ0−1



 ,

where C̃4(K, d) > 0 is independent of n. We achieve the proof by observing that
Θ(κ0, β0) <

κ0

2κ0−1 , if β0 < (κ0 − 1)d.
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