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Wavelet Based Homogenization of a 2 Dimensional Elliptic

Problem.

Y. Capdeboscq and M.S. Vogelius∗

February 24, 2004

Abstract

In this paper we derive explicit approximate averaging formulas for the second order coefficients
of a two dimensional periodic elliptic operator using non overlapping wavelets, and we present the
algorithm used to derive such formulas. We compare the averaged operators obtained to the ones
given by the theory of homogenization, in the cases where explicit formulas are known. Finally we
present numerical experiments to document the effectiveness of this explicit homogenization approach
for coefficients that are far from periodic.

1 Introduction

The development of numerical methods designed to capture the global behavior of solutions of partial
differential equations without resolving the fine scale details has been the subject of many investi-
gations; such numerical schemes are generally referred to as numerical homogenization methods. In
this paper, we follow the theory of homogenization approach, that is, to average the coefficients of
the equation so that the solution of the problem solved with these (smoothed) coefficients is close
to the solution of the original problem on a coarse scale. An advantage of such a strategy is that
it is unrelated to the numerical scheme used to solve the homogenized (or averaged) problem. Fur-
thermore, the averaging formulas we derive are explicit and local, i.e., practically free in terms of
computational cost. Based on specific physical considerations, various heuristic algebraic averaging
formulas have been derived (see [18] for a review of such methods); to our knowledge, a systematic
and constistent method to derive averaging formulas was not available.

We should mention that numerical homogenization is not restricted to coefficient averaging strate-
gies. In the context of wavelet or multigrid based numerical homogenization [3, 8, 10, 11, 13] the
partial differential operator can be reduced to its coarse scale effect. Alternatively, adapted finite
elements can be developped to capture the small scale effects [14], or the resolution of the small scale
can be localized [4]. In both cases, the goal is to reduce the computational cost of a numerical res-
olution method for a given problem. In contrast, focusing solely on the coefficients allows to choose
numerical resolution methods independently of the treatment of the coefficients. However, we were
able to derive such formulas in a special case of periodic coefficient; the method we propose to use
such coefficients in a non periodical medium is a numerical experiment.

The use of the built-in multiscale structure of wavelet representations to homogenize (correctly
average) rough coefficients of elliptic boundary value problems was initiated by Beylkin and Brewster
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[8], and has since been the subject of several investigations. In this multiresolution context, homog-
enization consists in the sequential projection (reduction) of the elliptic operators onto coarser and
coarser, adjacent scales. This approach can be applied to any elliptic operator without particular
assumptions on the behavior of the coefficients with respect to the fine and coarse scales. How-
ever, to rigorously relate solutions obtained from this numerical procedure to analytic results from
homogenization theory it is often convenient to consider the case of periodic fine scale variations.
Comparisons with results from the theory of homogenization have been established in the one dimen-
sional case by Dorobantu and Engquist [10], and by Gilbert [12], but in two (and higher) dimensions
very little is known concerning the asymptotic effectiveness of such numerical “wavelet homogeniza-
tion procedures”. Dorobantu and Engquist have proved that, starting from a (two dimensional)
discrete operator

LJ+1 =
1

h2

“

∆x
+A(1,1)∆x

− + ∆x
+A(1,2)∆y

− + ∆y
+A(2,1)∆x

− + ∆y
+A(2,2)∆y

−

”

,

where ∆+ and ∆− are the forward and backward undivided difference operators, the coarse-scale
solutions obtained by “Haar homogenization” may (asymptotically) be viewed as solutions for a sim-
ilar operator of divergence form. However, Dorobantu and Engquist provide no specific information
about the coefficients of this “effective” operator. For higher order wavelets, similar “invariance
results” have been established by Beylkin and Coult [7] for certain classes of pseudo-differential
operators (see also Beylkin, Coifman and Rokhlin [6]).

The basic step of the multiscale reduction procedure involves the computation of a Schur com-
plement (by Gaussian elimination). The matrix corresponding to the fine scale finite difference
discretization has a band structure. In the case of Haar wavelets the above result of Dorobantu and
Engquist shows that the matrix that emerges after elimination of “wavelet” variables (reduction to
the coarser scale) is itself well approximated by a band diagonal matrix corresponding to a finite
difference approximation of a divergence form operator.

The aim of this paper is to examine the explicit (asymptotic) form of the coefficients one obtains
using specific such multiscale reduction procedures, and to compare these to recently established
exact homogenization formulas for 2 × 2 isotropic periodic arrays.

To be precise we follow the approach initiated by Dorobantu and Engquist, which essentially
relies on “maximal periodicity”of the coefficients and on the non overlapping support of the basis
functions at a fixed scale. The non overlapping support leads to fairly simple recurrence relations
for the passing between two adjacent scales that may be solved explicitly; the “maximal periodicity”
ensures that the homogenization is accomplished in one step. Starting with a discrete operator of
the form

LJ+1 =
1

h2

`

∆x
+A1∆x

− + ∆y
+A2∆y

−
´

, (1.1)

with h = 2−(J+1), we suppose that the coefficients A1(x, y) and A2(x, y) are piecewise constant,
each constant attained on a “pixel” of size h × h. The periodicity assumption is that the functions
A1(x, y) and A2(x, y) are periodic with period 2h. In other words, the function Ai(x, y) is defined
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by (infinite) periodic extension of the 2h × 2h stencil

Ai
2k,2l

Ai
2k,2l+1

Ai
2k+1,2l

Ai
2k+1,2l+1

(1.2)

In this framework we show that the reduced operator corresponding to the coarse-scale variables
(those on scale 2h) asymptotically approaches

LH =
1

(2h)2

“

∆x
+H(1,1)∆x

− + ∆x
+H(1,2)∆y

− + ∆y
+H(2,1)∆x

− + ∆y
+H(2,2)∆y

−

”

,

where the coefficient matrix H is constant . But most important for analytic comparisons, our
calculations lead to an explicit formula for H. We initially perform our calculations for Haar wavelet
representations, however, subsequently we describe the results of a similar calculation for the next
level of so called multiwavelet representations (as introduced in [2]).

When the starting operator (1.1) is isotropic, that is when A1(x, y) = A2(x, y), the effective
(continuously homogenized) operator corresponding to a four phase periodic array has recently been
determined explicitly, [9]. We compare the Haar based wavelet homogenization formula and the mul-
tiwavelet homogenization formula to this continuous homogenization formula. As one would expect,
the wavelet homogenization procedure does not always asymptotically agree with the continuous
formula – the wavelet based formulas, however, are quite interesting and do provide the basis for
very direct “averaging methods” that may be applied in cases where continuous formulas are not
known, if one desires an approach which is faster than a full multiscale reduction procedure.

Somewhat to our surprise the wavelet homogenization procedures do (asymptotically) for a locally
isotropic, periodic array lead to the “continuous” formula for the determinant of the homogenized
matrix. In the locally anisotropic case, where a “continuous” formula is not yet known, the two
multiscale reduction procedures produce identical determinants, (4.9), which may give a strong in-
dication of what the “continuous” result should be. For the trace, however, we do in general only
obtain a rough approximation.

At the very end of this paper we provide some numerical experiments to document the effectiveness
of the (explicit) wavelet homogenization formulas when applied to patterns that are far from periodic.
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2 Decomposition of the discrete, Haar based difference

operator

We briefly review the decomposition of the discrete operator LJ+1 which forms the basis for the
analysis of Dorobantu and Engquist. The starting discrete operator has the form

LJ+1 =
1

h2

`

∆x
+A1∆x

− + ∆y
+A2∆y

−
´

,

where the backward difference operators ∆y
−, and ∆x

− are defined by

∆y
− (u)n,p = (un,p − un,p−1) , and ∆x

− (u)n,p = (un,p − un−1,p) ,

respectively. Multiplication by Ai is performed componentwise, i.e.

Ai(u)n,p =
“

Ai
n,pun,p

”

,

and the forward difference operators ∆y
+, and ∆x

+ are defined by

∆y
+ (u)n,p = (un,p+1 − un,p) , and ∆x

+ (u)n,p = (un+1,p − un,p) ,

respectively. In fact, Lj+1 is the natural 5-points discrete appromixation to the elliptic operator
∇ · (A∇ ). The arguments for these operators are two dimensional arrays (un,p)n,p∈Z . Just as in

the case of the coefficients, Ai, we also identify the arrays (un,p) with piecewise constant functions
on a rectangular grid of mesh size h = 2−J−1

u(x, y) =
X

n,m

un,mφJ+1,n(x)φJ+1,m(y) .

Here φJ+1,n = φ(2J+1x − n), and φ is the indicator function of the segment [0, 1]. In other words,
the coefficients un,m2−(J+1) are a representation of u on the scale J + 1. The initial discretization
space is

VJ+1 = V x
J+1 ⊗ V y

J+1 with V t
J = span{φJ,k(t), k ∈ It} .

The set of indices It being such that we stay within the square domain considered. For either of the
two variables (i.e., t = x or t = y) we have

V t
J+1 = V t

J ⊕ W t
J ,

where W t
J is spanned by the wavelet functions ψJ,k(t) = ψ(2J t−k), with the mother wavelet ψ given

by

ψ(t) =

8

<

:

1 if 0 ≤ t ≤ 1
2
,

−1 if 1
2
≤ t ≤ 1,

0 otherwise .

We have the following orthogonal decomposition

VJ+1 = (W x
J ⊗ W y

J ) ⊕ (W x
J ⊗ V y

J ) ⊕ (V x
J ⊗ W y

J ) ⊕ (V x
J ⊗ V y

J )

= (W x
J ⊗ W y

J ) ⊕ (W x
J ⊗ V y

J ) ⊕ (V x
J ⊗ W y

J ) ⊕ VJ .

In order to represent the operator LJ+1 in accordance with this decomposition, we must calculate
the representations for the operators ∆x

±, ∆x
±and multiplication by Ai using this orthogonal decom-

position. It can be observed that the difference operators “naturally respect” the ⊗ operation, in
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the sense that ∆x
± = ∆± ⊗ Id, and ∆y

± = Id ⊗ ∆±. Therefore the calculations become essentially
one dimensional and give, see [10],

∓4Id − ∆y
± ∓∆y

± 0 0 W ⊗ W
±∆y

± ∆y
± 0 0 W ⊗ V

1
h
∆y

± ↔ 1
2h

0 0 ∓4Id − ∆y
± ∓∆y

± V ⊗ W
0 0 ±∆y

± ∆y
± V ⊗ V

W ⊗ W W ⊗ V V ⊗ W V ⊗ V

∓4Id − ∆x
± 0 ∓∆x

± 0 W ⊗ W
0 ∓4Id − ∆x

± 0 ∓∆x
± W ⊗ V

1
h
∆x

± ↔ 1
2h

±∆x
± 0 ∆x

± 0 V ⊗ W
0 ±∆x

± 0 ∆x
± V ⊗ V

W ⊗ W W ⊗ V V ⊗ W V ⊗ V

Here we have dropped the sub- and superscripts from the spaces V and W , using the convention
that the first element in a direct products always refer to the x variable. A simple calculation also
gives that multiplication by Ai is represented by the matrix

2

6

6

4

ai
1 ai

2 ai
3 ai

4

ai
2 ai

1 ai
4 ai

3

ai
3 ai

4 ai
1 ai

2

ai
4 ai

3 ai
2 ai

1

3

7

7

5

with

ai
1(k, l) =

»

+ +
+ +

–

=
1

4

“

Ai
2k,2l + Ai

2k+1,2l + Ai
2k,2l+1 + Ai

2k+1,2l+1

”

,

ai
2(k, l) =

»

− −
+ +

–

=
1

4

“

Ai
2k,2l + Ai

2k+1,2l − Ai
2k,2l+1 − Ai

2k+1,2l+1

”

,

ai
3(k, l) =

»

+ −
+ −

–

=
1

4

“

Ai
2k,2l − Ai

2k+1,2l + Ai
2k,2l+1 − Ai

2k+1,2l+1

”

,

ai
4(k, l) =

»

− +
+ −

–

=
1

4

“

Ai
2k,2l − Ai

2k+1,2l − Ai
2k,2l+1 + Ai

2k+1,2l+1

”

,

We note that due to the periodicity of A1(x, y) and A2(x, y) the constants ai
1, a

i
2, a

i
3 and ai

4 are
independent of k and l, i.e., ai

j = ai
jId ⊗ Id, i = 1, 2, j = 1, . . . , 4. The computation of the

decomposition for the operator LJ+1 now simply consists of matrix multiplications.

3 The one dimensional case

Let us first recall what happens in the one dimensional case. The decomposed operator is

2

(2h)2

2

4

L1 −(a1 + a2)∆+∆− − 2(a1 + a2)∆−

−(a1 + a2)∆+∆− + 2(a1 + a2)∆+ (a1 + a2)∆+∆−

3

5

where
L1 = −8Ida1 − (a1 + a2)∆+∆− ,
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and where a1 = 1
2
(A2k + A2k+1) and a2 = 1

2
(A2k − A2k+1). After a one step Gaussian elimination,

we obtain
2

4

2
(2h)2

L1 − 2
(2h)2

((a1 + a2)∆+∆− + 2(a1 + a2)∆−)

0 LJ

3

5 .

The reduced (coarse scale) operator is given by

LJ =
1

(2h)2
∆+H∆− , (3.1)

with
H = 2 (a1 + a2) Id − 2(a1 + a2)

2 (∆− − 2Id) L−1
1 (∆+ + 2Id) .

In order to obtain an explicit asymptotic approximation to LJ , one observes that L−1
1 can be ex-

pressed in the form of a convergent Neumann series. To see this we write

L1 = −(6a1 − 2a2)Id − (a1 + a2) (S1 + S−1)

= −(6a1 − 2a2)

„

Id − q
(S1 + S−1)

2

«

, q = − a1 + a2

3a1 − a2
,

where (S±1(u))n = un±1 are the standard shift operators. Ellipticity implies that |a2| < |a1|, and
|q| < 1, and since ‖S1 + S−1‖∞ ≤ 2 it now follows that L−1

1 may be expressed as a convergent
Neumann series. Alternatively, we can write

L1 = −8a1

„

Id + q2
∆+∆−

4

«

, (3.2)

with 0 < q2 = a1+a2
2a1

< 1. Since ‖∆+∆−‖∞ = ‖S1 + S−1 − 2Id‖∞ ≤ 4, the decomposition (3.2) also

leads to a convergent Neumann series for L−1
1 . For convenience we shall use the latter series even

though |q| < q2 (and the former therefore is more rapidly convergent). We calculate

H = 2 (a1 + a2) Id − (a1 + a2)
2

a1
Id + R∆+∆− , (3.3)

with R =
(a1 + a2)

2

4a1

 

−1 +

∞
X

k=0

(−1)k+1 qk+1
2

4k+1
(∆+∆−)k (∆− − 2Id) (∆+ + 2Id)

!

.

The lowest order term in H thus becomes αId =
a2
1−a2

2
a1

Id =
2A2kA2k+1

A2k+A2k+1
Id, i.e., multiplication with the

harmonic average of the fine scale coefficients, as predicted by homogenization theory. Introduction
of the expression (3.3) for H into (3.1) now yields

LJ =
α

(2h)2
∆+∆− +

1

(2h)2
R (∆+∆−)2 .

R is a bounded operator in the maximum norm, and therefore we may conclude that

‚

‚

‚

‚

LJv − α

(2h)2
∆+∆−v

‚

‚

‚

‚

∞
≤ h2C

‚

‚

‚v
(4)
‚

‚

‚

∞
. (3.4)

Using the first expansion, in terms of elementary shift operators, Dorobantu and Engquist proved
with a more sophisticated proof that the constant C can in fact be bounded by K

(log(q))2
, with K a

universal constant, independent of the A′s. In the two dimensional case, many more coefficients are

6



involved, and the complexity of their structure (presented in the appendix) makes a precise study of
the constants involved very difficult, and probably not even that useful.

It is quite relevant to point out that in order to show that the coarse scale reduced operator is
asymptotically equivalent to α

(2h)2
∆+∆− (as was done by the estimate (3.4)) it is not necessary to

insist that |q2| < 1 in the formula for L1. Suppose L1 was given by

L1 = c0Id + c1∆+∆− + h4R ,

where c0 and c1 are constants (independent of h), satisfying 0 < |c0| , |c1| < ∞, and where R stands

for any operator satisfying ‖R(v)‖∞ ≤ C
‚

‚

‚v(k)
‚

‚

‚

∞
, for some k ≥ 0 and C independent of h. We define

∆n = (S1)
n+
`

S−1
1

´n−2Id and note that ∆1 = ∆+∆−. A Taylor expansion yields ∆n = n2∆1+h4R,

(since ∆nf(x) = n2f (2)(x) + n4

4!
f (4)(ξ)) so that L1 = L∗

1 + h4R = c0(Id + c1
n2c0

∆n) + h4R. Since

‖∆n‖∞ = 4 for all n, it suffices to select n > 2
q

c1
c0

in order for the first term (L∗
1) to be invertible

in terms of a convergent Neumann series. For such n we conclude that

(L∗
1)

−1L1 = Id + h4R , (3.5)

with (L∗
1)

−1 = 1
c0

Id + h2R. The operator resulting from a one step “approximate” Gaussian elimi-

nation, using (L∗
1)

−1 in place of L−1
1 , becomes

2

4

2
(2h)2

L1 − 2
(2h)2

((a1 + a2)∆+∆− + 2(a1 + a2)∆−)

h3R LJ

3

5 ,

with

LJ =
1

(2h)2
∆+H∆− ,

H = (a1 + a2) − (a1 + a2)
2(∆− − 2Id)(L∗

1)
−1(∆+ + 2Id) = αId + h2R .

We thus have an estimate like (3.4), and for sufficiently smooth solutions this again shows that
the limiting coarse scale reduced operator amounts to α

(2h)2
∆+∆−. We shall use the “trick” just

described extensively in our two dimensional calculations; in that case we shall actually need two
terms of the approximate inverse, that is we shall need the equivalent of

(L∗
1)

−1 =
1

c0
Id − c1

n2(c0)2
∆n + h4R =

1

c0
Id − c1

(c0)2
∆+∆− + h4R . (3.6)

Indeed, in two dimensions we shall do most of our calculations modulo operators of order h4. The
identities (3.5) and (3.6) simply express the fact that modulo operators of order h4 the operator L1

has an inverse which is given by the first two terms of its formal Neumann series.
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4 Derivation of the 2d homogenized operator

The operator Lj+1 is (up to a scaling of 1
4h2 ) represented by

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−16a2
1Id − 2

`

a2
1 + a2

2

´

∆yy −2
`

a2
1 + a2

2

´

Dy −16a2
3Id − 2

`

a2
3 + a2

4

´

∆yy −2
`

a2
3 + a2

4

´

Dy

−16a1
1Id − 2

`

a1
1 + a1

3

´

∆xx −16a1
2Id − 2

`

a1
2 + a1

4

´

∆xx −2
`

a1
1 + a1

3

´

Dx −2
`

a1
2 + a1

4

´

Dx

2
`

a2
1 + a2

2

´

Dy 2
`

a2
1 + a2

2

´

∆yy 2
`

a2
4 + a2

3

´

Dy 2
`

a2
4 + a2

3

´

∆yy

−16a1
2Id − 2

`

a1
2 + a1

4

´

∆xx −16a1
1Id − 2

`

a1
1 + a1

3

´

∆xx −2
`

a1
2 + a1

4

´

Dx −2
`

a1
1 + a1

3

´

Dx

−16a2
3Id − 2

`

a2
3 + a2

4

´

∆yy −2
`

a2
3 + a2

4

´

Dy −16a2
1Id − 2

`

a2
1 + a2

2

´

∆yy −2
`

a2
1 + a2

2

´

Dy

+2
`

a1
3 + a1

1

´

Dx +2
`

a1
2 + a1

4

´

Dx +2
`

a1
3 + a1

1

´

∆xx +2
`

a1
2 + a1

4

´

∆xx

2
`

a2
4 + a2

3

´

Dy 2
`

a2
4 + a2

3

´

∆yy 2
`

a2
1 + a2

2

´

Dy 2
`

a2
1 + a2

2

´

∆yy

+2
`

a1
2 + a1

4

´

Dx +2
`

a1
3 + a1

1

´

Dx +2
`

a1
2 + a1

4

´

∆xx +2
`

a1
3 + a1

1

´

∆xx

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Here Dx and Dy denote the centered difference operators Dx = ∆x
+ + ∆x

− = Sx − S−1
x and

Dy = Sy − S−1
y . Furthermore ∆xx = ∆x

+∆x
− and ∆yy = ∆y

+∆y
−. In the sequel, we shall also use the

notation ∆xy for 1
4
DxDy(= 1

2
∆x

+∆y
− + 1

2
∆x

−∆y
+ up to fourth order).

In order to obtain the reduced coarse scale operator, we must perform 3 eliminations. Except for
the first, these eliminations are all performed modulo operators of order h4, relying on the remarks
made at the end of the previous section. The fairly extensive algebraic calculations are performed by
means of Maple; we provide a summary of the results of these calculations, but for more information
about the details we refer to “http://www.math.rutgers.edu/˜ycrc/WaveHom/”. We shall denote by

L
(n)
nn the diagonal term after the (n-1)st step. The reduced coarse scale (the wavelet homogenized)

operator is therefore asymptotically LJ = 1
(2h)2

L
(4)
44 .

First inversion, L
(1)
11 .

The top left diagonal operator is given by

L
(1)
11 = −16

`

a1
1 + a2

1

´

Id − 2
`

a1
1 + a1

3

´

∆xx − 2
`

a2
1 + a2

2

´

∆yy .

Since LJ+1 is elliptic,
˛

˛a1
2

˛

˛ ,
˛

˛a1
3

˛

˛ ,
˛

˛a1
4

˛

˛ < a1
1, and

˛

˛a2
2

˛

˛ ,
˛

˛a2
3

˛

˛ ,
˛

˛a2
4

˛

˛ < a2
1. Therefore L

(1)
11 may be written

in the form
L

(1)
11 = −16

`

a1
1 + a2

1

´

(Id + B1)

where B1 = 1
8(a1

1+a2
1)

`

(a1
1 + a1

3)∆xx +
`

a2
1 + a2

2

´

∆yy

´

is a bounded linear operator, with

‖B1‖∞ ≤ |a1
1 + a1

3|
8(a1

1 + a2
1)

‖∆xx‖∞ +
|a2

1 + a2
2|

8(a1
1 + a2

1)
‖∆yy‖∞ ≤ 1

2
+

|a1
3| + |a2

2|
2(a1

1 + a2
1)

< 1.

Consequently, the Neumann expansion for (L
(1)
11 )−1 is convergent, and we can write

(L
(1)
11 )−1 = − 1

16(a1
1 + a2

1)
Id+

1

128(a1
1 + a2

1)
2

`

(a1
1 + a1

3)∆xx +
`

a2
1 + a2

2

´

∆yy

´

− 1

16(a1
1 + a2

1)
B2

1

∞
X

k=0

(−B1)
k.

B2
1 is a fourth order difference operator:

‚

‚B2
1v
‚

‚

∞ < Ch4
‚

‚

‚v(4)
‚

‚

‚

∞
, where C depends on a1

1, a
2
1, a

2
2 and

a1
3, but is independent of h. In other words

(L
(1)
11 )−1 = − 1

16(a1
1 + a2

1)
Id +

1

128(a1
1 + a2

1)
2

`

(a1
1 + a1

3)∆xx +
`

a2
1 + a2

2

´

∆yy

´

+ h4R . (4.1)

Here, and in sequel, R denotes a linear operator which is bounded independently of h (when acting
on sufficiently smooth functions).
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Second inversion, L
(2)
22 .

After one (column) elimination we obtain , using the fact that DyDy = 4∆yy + h4R ,

L
(2)
22 = −16a1

1Id − 256
`

a1
2

´2
(L

(1)
11 )−1

+2
“

a2
2 + a2

1 + 8
“

2a2
2a

2
1 +

`

a2
2

´2
+
`

a2
1

´2
”

(L
(1)
11 )−1

”

∆yy (4.2)

−2
“

a1
3 + a1

1 + 32
“

a1
2a

1
4 +

`

a1
2

´2
”

(L
(1)
11 )−1

”

∆xx + h4R .

Insertion of (4.1) into (4.2) now gives

L
(2)
22 = c0,2Id + c1,2∆xx + c2,2∆yy + +h4R , (4.3)

with

c0,2 = −16
a1
1a

2
1 +

`

a1
1

´2 −
`

a1
2

´2

a1
1 + a2

1

< 0 ,

thanks to the ellipticity of LJ+1. The coefficients c1,2 and c2,2 are given in the appendix. Supposing
A1 = A2, upper bounds for |c1,2| and |c2,2| are 6a1

1(= 6a2
1) and 4a1

1(= 4a2
1), respectively. A lower

bound for |c0,2| is 8a1
1 = 8a2

1. These bounds are not sufficient to insure convergence of the natural

Neumann series corresponding to L
(2)
22 . They lead only to a bound for the norm of

c1,2

c0,2
∆xx +

c2,2

c0,2
∆yy

of the size 6·4+4·4
8

= 5 > 1 (when a1
1 = a2

1). This is a conservative estimate: a numerically better,
but still not sufficient bound, 5

2
, can be established. A decomposition into elementary shift operators

does not seem to provide a bound lower than one either. We shall therefore proceed along the lines
outlined at the end of Section 3. Given n > 0, Let ∆n

xx be defined by ∆n
xx = Sn

x + S−n
x − 2Id.

By a Taylor expansion one obtains that ∆xx = 1
n2 ∆n

xx + h4R. Substituting 1
n2 ∆n

xx and the similar
operator 1

n2 ∆n
yy into (4.3) we obtain

L
(2)
22 = L

(2)∗
22 + h4R = c0,2 (Id + B2) + h4R ,

where
B2 =

c1,2

n2c0,2
∆n

xx +
c2,2

n2c0,2
∆n

yy

satisfies ‖B2‖∞ < 4
n2 (

|c1,2|+|c2,2|
|c0,2| ). The Neumann series for (L

(2)∗
22 )−1 is now convergent if we choose

n > 2
q

|c1,2|+|c2,2|
|c0,2| (a finite such n always exist |c0,2| > 0), and furthermore

“

L
(2)∗
22

”−1

=
1

c0,2

„

Id − c1,2

n2c0,2
∆n

xx − c2,2

n2c0,2
∆n

yy

«

+h4R =
1

c0,2

„

Id − c1,2

c0,2
∆xx − c2,2

c0,2
∆yy

«

+h4R .

(4.4)

We may use this operator in place of an exact inverse of L
(2)
22 to eliminate below diagonal elements

of the second column, modulo operators of order h4. Unlike in the one dimensional case we need

the exact form of the second term of
“

L
(2)∗
22

”−1

(the term of order h2) since the off-diagonal entries

contain elements of order 1 (and the final operator L
(4)
44 is of order h2).

Third inversion, L
(3)
33 .

After the second (column) elimination, modulo terms of order h4, we have

L
(3)
33 = c0,3Id + c1,3∆xx + c2,3∆yy + c3,3∆xy + h4R,
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with constants c1,3, c2,3 and c3,3 as given in the appendix, and

c0,3 = −16
a1
1

“

`

a2
1

´2 −
`

a2
3

´2
”

+ a2
1

“

`

a1
1

´2 −
`

a1
2

´2
”

a1
1a

2
1 + (a1

1)
2 − (a1

2)
2 < 0 .

Numerical examples show that the ratio
|c1,3|+|c2,3|+|c3,3|

|c0,3| is not uniformly bounded by 1/4 as needed

to argue for convergence of the Neumann series. In the spirit of the previous inversion, we introduce
the operator ∆n

xy, defined in terms of Sn
x , Sn

y , S−n
x and S−n

x

∆n
xy =

1

4
(Sn

x − S−n
x )(Sn

y − S−n
y ) ,

and we verify that ∆n
xy = n2∆xy + h4R. Expressed in terms of these operators

L
(3)
33 = c0,3

„

Id +
c1,3

c0,3n2
∆n

xx +
c2,3

c0,3n2
∆n

yy +
c3,3

c0,3n2
∆n

xy

«

+ h4R = L
(3)∗
33 + h4R .

Choosing n > 2
q

|c1,3|+|c2,3|+|c3,3|
|c0,3| (a finite such n exist since we established that |c0,3| > 0) we

obtain a convergent Neumann series for
“

L
(3)∗
33

”−1

, and thus

(L
(3)∗
33 )−1 = 1

c0,3

“

Id − c1,3

c0,3n2 ∆n
xx − c2,3

c0,3n2 ∆n
yy − c3,3

c0,3n2 ∆n
xy

”

+ h4R

= 1
c0,3

“

Id − c1,3

c0,3
∆xx − c2,3

c0,3
∆yy − c3,3

c0,3
∆xy

”

+ h4R . (4.5)

We then proceed to eliminate elements below the diagonal in the third column, modulo terms of
order h4.

The discrete, homogenized operator, L
(4)
44 .

After the third (column) elimination we arrive at the coarse scale reduced (homogenized) operator.

Modulo fourth order terms (and a scaling factor 1
4h2 ) it reads L

(4)
44 = H11∆xx +2H12∆xy +H22∆yy +

h4R, where the matrix H is given by

H =

"

X1 0

0 Y2

#

− 1

X2 + Y1

"

(Z1)
2 Z1Z2

Z1Z2 (Z2)
2

#

(4.6)

and where the constants Xi, Yi, Zi, i = 1, 2, are defined by

Xi =
(ai

1)
2−(ai

3)
2

ai
1

=
1

1
Ai

2k,2l
+Ai

2k,2l+1

+ 1
Ai

2k+1,2l
+Ai

2k+1,2l+1

,

Yi =
(ai

1)
2−(ai

2)
2

ai
1

=
1

1
Ai

2k,2l
+Ai

2k+1,2l

+ 1
Ai

2k,2l+1
+Ai

2k+1,2l+1

,

Zi =
ai
1ai

4−ai
2ai

3

ai
1

=
Ai

2k,2lA
i
2k+1.2l+1 − Ai

2k+1,2lA
i
2k,2l+1

Ai
2k,2l + Ai

2k+1,2l + Ai
2k,2l+1 + Ai

2k+1,2l+1

.

The coefficient Xi = hx(my(Ai)) is the harmonic average in the x-axis direction of the arithmetic
averages in the y-axis direction (of Ai). The coefficient Yi = hy(mx(Ai)) is the opposite: the
harmonic average in the y-axis direction of the arithmetic averages in the x-axis direction (of Ai).
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The coefficient Zi is the (normalized) determinant of fine grid coefficients (of Ai). The eigenvalues
of the matrix H are given by

λ1 =
X1 + Y2

2
− (Z1)

2 + (Z2)
2

2(X2 + Y1)
+

s

„

X1 − Y2

2
− (Z1)

2 − (Z2)
2

2 (X2 + Y1)

«2

+
(Z1Z2)

2

(X2 + Y1)
2 (4.7)

λ2 =
X1 + Y2

2
− (Z1)

2 + (Z2)
2

2(X2 + Y1)
−

s

„

X1 − Y2

2
− (Z1)

2 − (Z2)
2

2 (X2 + Y1)

«2

+
(Z1Z2)

2

(X2 + Y1)
2 (4.8)

The determinant of H may be expressed as

det(H) =
X1Y2

X2 + Y1
(X̃2 + Ỹ1) , (4.9)

where
X̃i = my(hx(Ai)) and Ỹi = mx(hy(Ai)) .

We note that the X̃i, Ỹi and the Xi, Yi, Zi are related by the formulas

X̃i = Xi −
(Zi)

2

Yi
and Ỹi = Yi −

(Zi)
2

Xi
.

The trace of H is

trace(H) = X1
X2 + Ỹ1

X2 + Y1
+ Y2

X̃2 + Y1

X2 + Y1
. (4.10)

Incidentally, the formulas for the determinant and the trace immediately imply that H is a positive
definite, symmetric matrix. For the locally isotropic case (A1 = A2) it is not hard to verify that H is
bounded from below by the harmonic average of the components and from above by the arithmetic
average.

5 Comparison to continuous homogenization formulas

The continuous analogue of the operator (1.1) is Lh = ∇· (A(x/h, y/h)∇ ), where the matrix valued
function A(x, y) is given by

A(x, y) =

"

A1(x, y) 0

0 A2(x, y)

#

,

and the functions Ai(x, y) are defined by infinite periodic extensions of the arrays shown in (1.2). It
is well known that there exists a symmetric positive definite matrix A = Hom(A) with associated
operator L = ∇ · (A∇ ), such that (Lh)−1 → (L)−1 as h → 0 (under appropriate boundary condi-
tions) see [5]. The operator L and the matrix A are referred to as the “continuously” homogenized
operator and homogenized matrix associated to A, respectively. For the 2×2 periodic arrays studied
here a variety of information is available concerning exact formulas for the homogenized matrix.
Starting from the diagonal matrix valued function A(x, y), it is quite easy to see that A will again
be diagonal (one may for instance rely on the fact that the operator L stays unchanged by a change
of variable (x, y) → (x,−y)). This remark immediately shows that the Haar based wavelet reduction
cannot possibly lead to the “continuously” homogenized matrix when Z1Z2 6= 0. When Z1 = Z2 = 0
(which includes layered media) it is very easy to check that the formula (4.6) does agree with the
“continuously” homogenized matrix.
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Let us now turn our attention to the case when A(x, y) is isotropic, i.e., when A1(x, y) =
A2(x, y) = a(x, y). The function a(x, y) is given by infinite periodic extension of the piecewise
constant pattern

α

γ

β

δ

In this case the exact formula for the “continuously” homogenized matrix has recently been estab-
lished (such a formula was, to the best of our knowledge, first conjectured in [16], but was only
recently fully verified, as a special case of the results in [9]). The formula is

A =

2

4

p

XX̃ 0

0
p

Y Ỹ

3

5 ,

with X = X1 = X2 = hx(my(a)), Y = Y1 = Y2 = hy(mx(a)), X̃ = X̃1 = X̃2 = my(hx(a)), and
Ỹ = Ỹ1 = Ỹ2 = mx(hy(a)). In this case we have

det(A) =
p

XX̃Y Ỹ = XY − Z2 = det(H) ,

i.e., the coarse scale reduced matrix has the same determinant as the “continuously” homogenized
matrix. We note that this determinant is independent of the location of the constants α, β, γ and δ
in the pattern above; it only depends on the values of these constants, more precisely it is given by
P3(α, β, γ, δ)/P1(α, β, γ, δ), where Pn denotes the sum of all the 4!/(4 − n)!n! products of n distinct
constants. The traces are

trace(A) =
p

XX̃ +
p

Y Ỹ , and trace(H) = X
X + Ỹ

X + Y
+ Y

X̃ + Y

X + Y
= X + Y − 2Z2

X + Y
,

respectively; these traces depend on the location of the constants and they are in general different.
The special case of a two component “checkerboard” pattern, i.e. , the case when a(x, y) is an infinite
periodic extension of the pattern

α

β

β

α

was resolved much earlier (cf. [15] and [17]) by symmetry considerations and use of the celebrated
Keller relation

Hom(kA/det(A)) = k Hom(A)/det(Hom(A))

between the homogenized matrix associated to the microstructure kA(x, y)/det(A(x, y) and that
associated to A(x, y) itself (k is any positive constant). It is quite easy to check that the wavelet based
coarse scale reduction procedure does respect the Keller relation, indeed this follows from the fact that
the coefficient transformation (α, β, γ, δ) → ( 1

α
, 1

β
, 1

γ
, 1

δ
) is associated with the X −Y transformation
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(X, X̃, Y, Ỹ ) → ( 1

Ỹ
, 1

Y
, 1

X̃
, 1

X
). The Keller relation is also satisfied in the locally anisotropic case,

i.e., when A1 6= A2. However, even here in the two component checkerboard case, the wavelet
based coarse scale reduction does not reproduce the symmetry (isotropy) that is associated with the
“continuous” homogenization procedure. Instead of A =

√
αβ Id (the “continuously” homogenized

matrix) it leads to

H =

" α+β
2

0

0 α+β
2

#

− 1

2

„

α + β

2
− 2αβ

α + β

«

"

1 1

1 1

#

=

2

4

√
2

2
−

√
2

2
√

2
2

√
2

2

3

5

" 2αβ
α+β

0

0 α+β
2

#

2

4

√
2

2

√
2

2

−
√

2
2

√
2

2

3

5 .

This is exactly the “continuously” homogenized matrix associated with a layered medium of the two
materials α and β, the layers being of equal thickness and orthogonal to the line y = x. Such a
layering is in itself not an unreasonable discrete interpretation of the checkerboard pattern, however,
it is interesting to note how this orientation is selected instead of the equally reasonable one, having
layers parallel to the line y = x. In terms of invariants we have already seen that A and H have
the same determinant, one may therefore be interested in knowing how far apart the values of the
other invariant, the trace, really are. This question has a very precise answer in the two component
checkerboard case, where

trace(A) = 2
p

X2 − Z2 , and trace(H) = 2X − Z2

X
=

2X2 − Z2

X
,

with X = α+β
2

, Z = α−β
2

. A simple calculation verifies that as a function Z, the expression 2X2−Z2

X

is the Padé approximation of numerator degree 3, denominator degree 1, P3,1(Z), of the expression
2
√

X2 − Z2.

6 Multiwavelets: construction, differentiation and mul-

tiplication

A very natural approach to generalize the “homogenization” formulas obtained by means of the Haar
basis, is to use higher order polynomials. Before proceeding along this direction we must briefly
introduce the appropriate higher order polynomial wavelet setup. For simplicity we only study the
case of piecewise linear functions, even though higher order polynomials might be relevant. Following
Alpert [2] we use a Legendre (L2-orthogonal) basis. This has the advantage that it properly extends
the Haar basis, and thus it makes direct comparisons easier and more relevant.

1. The new basis functions are :

• φ0 – the first Legendre polynomial – given by φ0 =

8

<

:

1 if 0 ≤ x < 1

0 otherwise.

• φ1 – the second Legendre polynomial – given by φ1 =

8

<

:

√
3(2x − 1) if 0 ≤ x < 1

0 otherwise.

2. The corresponding mother wavelets, i.e., the two piecewise linear polynomials, needed to recover
the scale functions at the next dyadic scale, are
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• ψ0 =

8

>

>

>

>

<

>

>

>

>

:

√
3(1 − 4x) if 0 ≤ x ≤ 1

2

√
3(4x − 3) if 1

2
< x < 1

0 otherwise.

and ψ1 =

8

>

>

>

>

<

>

>

>

>

:

6x − 1 if 0 ≤ x < 1
2

6x − 5 if 1
2
≤ x < 1

0 otherwise.

The two wavelets ψ0 and ψ1 are complementary to the scale functions φ0 and φ1 in the following
way :

1. The functions φ0 , φ1 , ψ0 , and ψ1 are mutually orthogonal ,

2. Vn = span {φ0 (2nx) , φ1 (2nx) and translates} = Vn−1 ⊕ Wn−1 , where
Wn = span {ψ0 (2nx) , ψ1 (2nx) and translates} .

This setup represents a multiresolution decomposition of L2 ([0, 1]) : the spaces Vn are nested and
the union of all Vn is dense in L2 ([0, 1]). The wavelets and scale functions satisfy interscale algebraic
relations

2

4

φ0(x)

φ1(x)

3

5 =

2

4

1 0

−
√

3
2

1
2

3

5

2

4

φ0(2x)

φ1(2x)

3

5+

2

4

1 0

√
3

2
1
2

3

5

2

4

φ0(2x − 1)

φ1(2x − 1)

3

5

and
2

4

ψ0(x)

ψ1(x)

3

5 =

2

4

0 −1

1
2

√
3

2

3

5

2

4

φ0(2x)

φ1(2x)

3

5+

2

4

0 1

− 1
2

√
3

2

3

5

2

4

φ0(2x − 1)

φ1(2x − 1)

3

5 .

From a practical point of view, knowledge of these interscale relations permits an efficient (re)computation
of the wavelet coefficients when passing between different scales.

A very natural family of difference operators have been introduced by Alpert, Beylkin, Gines
and Vozovoi [1] for use in connection with the Legendre based multiwavelets. These operators all
have the property that they are scale invariant, and that they are exact for continuous, piecewise
polynomials of the appropriate degree (here: degree ≤ 1). These operators are block tridiagonal, of
the form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

. . .
. . .

. . .
. . .

R1 R0 R−1

. . .
. . .

. . .
. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In the present (piecewise linear) case the matrices R1, R0, and R−1 are 2 × 2 and

R−1 = θ

2

4

1 −
√

3

√
3 −3

3

5 R0 =

2

4

τ − θ
√

3(2 − τ − θ)

−
√

3(τ + θ) 3(τ − θ)

3

5 R1 = τ

2

4

−1 −
√

3

√
3 3

3

5 .

The matrix R1 acts on the coefficients of [φ0(x + 1), φ1(x + 1)], R0 acts on the coefficients of
[φ0(x), φ1(x)] and R−1 acts on the coefficients of [φ0(x − 1), φ1(x − 1)]. The (i, j) entry of the matrix
Rk is basically obtained by “weak” integration of the expression

Z 1

0

d

dx
φj(x + k)φi(x) dx .
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The two parameters, θ and τ determine how a discontinuous function is averaged to obtain point
values (at the right and the left endpoint respectively). For more details we refer the reader to [1].

Using the interscale relations and the above definition of the difference operators we may now
represent the difference operators in a fashion that is consistent with the splitting Vn = Vn−1⊕Wn−1.
In doing so we interlace the variables, so that the coordinates corresponding to the four functions
φ0(x + k), φ1(x + k), ψ0(x + k), and ψ1(x + k), for a fixed value of k, are consecutive. The structure
of the difference operators stays as before, with the matrices R−1, R0, and R1 now given by

R−1 =
θ

2

2

6

6

4

1 −
√

3
√

3 −1√
3 −3 3 −

√
3√

3 −3 3 −
√

3

1 −
√

3
√

3 −1

3

7

7

5

, R1 =
τ

2

2

6

6

4

−1 −
√

3 −
√

3 −1√
3 3 3

√
3

−
√

3 −3 −3 −
√

3

1
√

3
√

3 1

3

7

7

5

,

R0 =
1

2

2

6

6

4

τ − θ
√

3 (2 − τ − θ)
√

3 (τ − θ) 6 − 5 (τ + θ)

−
√

3 (θ + τ) 3 (τ − θ) 6 − 3 (τ + θ)
√

3 (τ − θ)√
3 (τ − θ) −3 (τ + θ) 3 (τ − θ) 3

√
3 (τ + θ)

− (τ + θ)
√

3 (τ − θ) −
√

3 (2 + τ + θ) 9 (τ − θ)

3

7

7

5

.

We notice that the top left 2 × 2 sub-matrices are simply the difference operator we started from,
divided by 2. This is to be expected, and is entirely consistent with the change in scale between Vn

and Vn−1.
Let a(x) be a coarse scale periodic function which on the fine scale is simply given by a(x) =

αφ0(2x) + βφ0(2x − 1). Multiplication with this function may, consistently with the splitting Vn =
Vn−1 ⊕ Wn−1, be represented as a block diagonal matrix, where each block has the form

A0 =

2

6

6

6

4

a −
√

3
2

ã 0 1
2
ã

−
√

3
2

ã a − 1
2
ã 0

0 − 1
2
ã a −

√
3

2
ã

1
2
ã 0 −

√
3

2
ã a

3

7

7

7

5

and the coefficients a, and ã are given by a = α+β
2

and ã = α−β
2

. Here we lose one of the features of
the multiwavelet approach, in that we only multiply with functions that are piecewise constant (and
not piecewise linear).

7 Multiwavelet homogenization results

We now briefly describe the results we have obtained using the same reduction ideas as in sections 3
and 4 on the approximate second order operator assembled from the ingredients introduced above.
We restrict ourselves to difference operators that can be understood as weighted quadrature rules,
which amounts to taking τ = 1 − θ. We then have a family of difference operators depending on
a single parameter, D(θ). In one dimension we reach a discrete approximation to the second order
linear elliptic operator d

dx
(a(x) d

dx
·) by simply forming the matrix product D(θ1)A0D(θ2). We choose

θ2 = 1 − θ1, to have a symmetric operator, D(θ)A0D(1 − θ), and we rearrange the variables so that
the last element in each 4×4 block corresponds to the “flat” basis element φ0. This way our Gaussian
elimination procedure leads to a reduced matrix for the coarse scale “flat” (Haar) variables. The
operator considered in connection with the Haar basis, using a combination of a (complete) backward
and a (complete) forward differentiation operator conceptually corresponds to the choice θ = 1. It
is essential for the Gaussian elimination process that θ be different from 1

2
, otherwise pivots will

become zero; the same would be true in connection with the Haar basis if we had used a combination
of a partial backward, and a partial forward differentiation operator. In one dimension, the coarse
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scale reduction leads to the expected result: asymptotically we obtain the operator D(θ)HD(1 − θ)

with H given by H = a2−ã2

a
Id = 2αβ

α+β
Id. This result is independent of θ, and by continuity we may

thus assign (the same) formula to θ = 1
2
. The last remark is particularly relevant, since θ = 1

2
is a

quite natural choice from an approximation point of view.
In the 2 dimensional case we decompose the fine scale discretization space as follows

Vx × Vy
| {z }

⊕ Vx × Wy ⊕ Wx × Vy ⊕ Wx × Wy
| {z }

V W
.

This decomposition corresponds to the 16 basis vectors

Vx × Vy φ0(x)φ0(y), φ0(x)φ1(y), φ1(x)φ0(y), φ1(x)φ1(y)
Vx × Wy φ0(x)ψ0(y), φ0(x)ψ1(y), φ1(x)ψ0(y), φ1(x)ψ1(y)
Wx × Vy ψ0(x)φ0(y), ψ0(x)φ1(y), ψ1(x)φ0(y), ψ1(x)φ1(y)
Wx × Wy ψ0(x)ψ0(y), ψ0(x)ψ1(y), ψ1(x)ψ0(y), ψ1(x)ψ1(y).

The coarse scale reduction is performed by generalization of the one dimensional procedure (in
a fashion similar to what we did in section 4). The coefficient multiplication operator (and the
homogenized matrix) is again conveniently expressed in terms of the “Haar” constants a1, a2, a3,
and a4. Below we list the formulas for these constants (next to a picture of the corresponding period
cell)

α

γ

β

δ

a1 =
1

4
(α + β + γ + δ) .

a2 =
1

4
(α + β − γ − δ) .

a3 =
1

4
(α + γ − β − δ) .

a4 =
1

4
(α + δ − β − γ) .

The formula for the homogenized (coarse scale reduced) matrix now depends on the choice of θ;
this is contrary to the two dimensional Haar case, where we could also introduce partial backward and
forward difference operators without affecting the formula for the coarse scale reduced matrix. For
general θ the formula for the multiwavelet homogenized matrix is more complicated that previous
formulas, and therefore difficult analytically to compare to these. One notable exception is the
extremely natural choice θ = 1

2
where the result, as previously, may be expressed in terms of the

three variables

X =
a2
1 − a2

3

a1
= hx(my) harmonic average in x of the average in y

Y =
a2
1 − a2

3

a1
= hy(mx) harmonic average in y of the average in x

Z =
a4a1 − a2a3

a1
=

αδ − βγ

α + β + γ + δ
the normalized determinant.

In the case of the Haar basis

HHaar =

2

4

X 0

0 Y

3

5− Z2

X + Y

2

4

1 1

1 1

3

5 .
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For HLegendre,1/2 = limθ→1/2 HLegendre,θ we obtain the formula

HLegendre,1/2 =

2

6

4

X − Z2

X+Y
0

0 Y − Z2

X+Y

3

7

5
− Z4

(X + Y )3
1

1 − 2 Z2

(X+Y )2

2

4

1 1

1 1

3

5 .

The limiting formula is well defined, in spite of the fact that Gaussian elimination encounters zero
pivots if attempted for θ = 1/2. The result of “continuous” homogenization is

H =

2

6

4

p

XX̃ 0

0
p

Y Ỹ

3

7

5

with X̃ = my(hx) = X−Z2

Y
, the average in y of the harmonic average in x, and Ỹ = mx(hy) = Y −Z2

X
,

the average in x of the harmonic average in y. If we define the following map F of symmetric positive
definite matrices to themselves

F

0

@

2

4

U W

W V

3

5

1

A =

2

4

U 0

0 V

3

5− W 2

U + V

2

4

1 1

1 1

3

5 ,

then it is interesting to note that

HHaar = F

0

@

2

4

X Z

Z Y

3

5

1

A while HLegendre,1/2 = F (HHaar) = F 2

0

@

2

4

X Z

Z Y

3

5

1

A .

Since det(F (H)) = det(H) we immediately conclude that det(HLegendre,1/2) = det(HHaar) = det(A)
(the determinant of the “continuously”homogenized matrix). The formula HLegendre,1/2 = F (HHaar)
holds even in the case when the original operator is anisotropic (but still diagonal). One may take
that as an indication that the common expression det(HLegendre,1/2) = det(HHaar) is a good guess
for the determinant of the “continuously” homogenized matrix. To compare the respective traces we
introduce the variables

u =
Z

2(X + Y )
∈] − 1, 1[ and v =

X − Y

X + Y
∈] − 1, 1[ ,

in terms of which we may now obtain the formulas

(tr (HHaar))
2 − (tr (A))2 =

„

X + Y

2

«2 »

u4 +
4u2v2

1 − v2

–

,

and
`

tr
`

HLegendre,1/2

´´2 − (tr (A))2 =

„

X + Y

2

«2 »
u8

4(2 − u2)2
+

4u2v2

1 − v2

–

.

We immediately conclude that the traces of HHaar and HLegendre,1/2 are both greater than the trace
of the “continuously” homogenized matrix (thus the quadratic forms are both greater). The trace of
HLegendre,1/2 is the closer approximation to the trace of A. We now turn our attention to the two
component checkerboard case

α

β

β

α
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when X = Y = α+β
2

and Z = α−β
2

. We calculate

tr(HLegendre,1/2) = 2X − Z2

X
− 1

2

Z4

X2
“

2X − Z2

X

” =
1

2

8X4 − 8X2Z2 + Z4

2X3 − XZ2
,

which (as a function of Z) is easily seen to be the Padé approximant, P5,3(z), of numerator degree
5 and denominator degree 3 to the “continuously” homogenized trace 2

√
X2 − Z2 (this compares to

the Padé approximant of numerator degree 3, denominator degree 1, for HHaar). In this special case
we furthermore calculate that

lim
n→∞

F n

2

4

X Z

Z X

3

5 =

2

4

√
αβ 0

0
√

αβ

3

5 ,

the right hand side being the “continuously” homogenized matrix. A similar formula does not seem
to hold in general.

8 Computational results

The (coarse scale reduction) averaging formulas presented in sections 4 and 5 were derived under
the assumption of periodicity of the coefficients. For simplicity we also restricted our discussion of
these formulas to the case where the eigenvectors of the individual components were aligned with
the coordinate axes. Numerically, however, we have carried out investigations in many cases where
both of these assumptions are violated. As an example, consider the following elliptic operator

L =
∂

∂x
Axx(x, y)

∂

∂x
+

∂

∂y
Ayy(x, y)

∂

∂y
+

∂

∂x
Axy(x, y)

∂

∂y
+

∂

∂y
Axy(x, y)

∂

∂x
on [0, 1]2

where the coefficients Axx, Ayy and Axy are constant on each one of 6400 (80 × 80) “pixels”, as
displayed in Figure 8.1.

Due to the lack of periodicity there is not (even locally) a single representative 2 × 2 stencil on
which our averaging formulas can be used. Each “pixel” (n, p) , to which corresponds 3 diffusion
coefficients Axx(n, p), Ayy(n, p) and Axy(n, p), belongs to four natural stencils, as shown in the
picture below.

S(n-1,p-1)

S(n,p)

S(n-1,p)

S(n,p-1)

A(n-1,p-1)

A(n+1,p)

A(n,p-1) A(n+1,p-1)

A(n-1,p+1) A(n,p+1) A(n+1,p+1)

A(n-1,p) A(n,p)

18



0.03

0.09

0.12

0.35

0.7 

0.9 

1   

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

0.03

0.09

0.12

0.29

0.55

0.65

0.7 

1   

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−0.4

−0.3

−0.2

−0.1

0   

0.1 

0.2 

0.3 

0.4 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Figure 8.1: The diffusion coefficients Axx, Ayy and Axy.

The left image represents the Axx coefficient, which takes 7 different values: 1 (307 times),
0.9 (1584), 0.7 (1272), 0.35 (1232), 0.12 (1576), 0.09 (160), 0.03 (269). Its mean is m = 0.51 and
its standard deviation is σ = 0.34.
The center image represents the Ayy coefficient, which takes 8 different values: 1 (322 times),
0.7 (29), 0.65 (124), 0.55 (2498), 0.29 (1662), 0.12 (1528), 0.09 (120), 0.03 (117). For Ayy, m =
0.39 and σ = 0.24.
The right image displays the Axy coefficient which, to ensure ellipticity, was constructed by
the formula

Axy(n, p) = ω(n, p)
√

Axx(n, p)Ayy(n, p) − 10−4 ,

where ω(n, p) is a random number in [−1, 1]. For Axy, m = −0.0018 and σ = 0.11.

For “pixels” with stencils that fall outside of the domain, the associated values are generated
by periodic extension. To each “pixel” (n, p) we thus have four triplets of averaged coefficients,
H (S(n − 1, p − 1)), H (S(n − 1, p)), H (S(n, p − 1)), and H (S(n, p)). We now use these four (triplets
of) coefficients

H(S(n − 1, p)) H(S(n, p))

H(S(n − 1, p − 1)) H(S(n, p − 1))

as the new input 2 × 2 stencil for our averaging formulas. The corresponding averaged coefficients
are associated to the “pixel” (n, p). What has been described so far represents one step of averaging.
We may iterate this procedure any number of times, for instance until the relative variation in the
coefficients between two consecutive steps becomes smaller than 5% (which, in the present example,
is true for all the averaging formulas after 9 steps). This iterated averaging method can be viewed
as an analog of classic discrete diffusion schemes. In the case of a 2 × 2 periodic pattern the result
(after one step) is a constant. In the case of periodic laminates parallel to one of the axes (but of
arbitrary period) the iterated averaging asymptotically agrees with “continuous” homogenization.
In such a situation, the conductivity matrices are diagonal at each step, and iterating the procedure
corresponds to iteratively average arithmetically in one direction, and harmonically in the other. For
the example we consider here we need averaging formulas that apply to conductivity matrices, that are
not necessarily diagonal. Even if we had started out with an operator in diagonal form, this structure
might not be preserved after one step of averaging, and so to perform any additional steps we would
need such non-diagonal formulas. In the case of the Haar basis, the non-diagonal formulas may again
be calculated explicitly (and our numerical results are based on these explicit formulas). Figure 8.2
shows the effect on the coefficient Axx, of 9 explicit, Haar based averaging steps. For multiwavelets,
however, the situation is slightly different. While it is in principle possible to derive explicit formulas
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Figure 8.2: The original (left) and averaged (right) Axx coefficient. The shown averaged coefficient is
obtained using the explicit non-diagonal Haar formulas.

corresponding to the completely general non-diagonal case, the derivation of these appears to be
beyond the scope of any of the standard symbolic algebra software packages, such as Maple or
Fermat (a computational algebra program specialized in rational function manipulation). In place of
an explicit formula we substitute an explicit procedure which arrives at the averaged coefficients by
numerically performing a 16×16 Gaussian elimination independently at each of the 80×80 “pixels”.
These Gaussian eliminations (that replace explicit formulas) were performed using Matlab routines.
We note that this (local) approach is still far less costly than a full multiscale reduction procedure. We
also note that it readily parallelizes. For further details about the programs used in the computations
presented in this section we refer the reader to http://www.math.rutgers.edu/˜ycrc/WaveHom/.

In order to evaluate the effectiveness of our averaging procedures (as far as solutions to the
corresponding boundary value problems are concerned) we compute the eigenvalues in the range
[0, 106] for the problem

8

<

:

L(u) = λu in Ω = [0, 1]2

u = 0 on ∂Ω .
(8.1)

Using P1 Finite Elements and the original (highly heterogeneous) coefficients, we calculate the ap-
proximate solution based on 5-6 different grids, starting with the same 80× 80 rectangular grid used
to define the coefficients, and successively refining it till we reach a 400×400 or 560×560 rectangular
grid. The FE triangulations are obtained by subdividing each rectangle along its Northeast diagonal.
Let us emphasize that the usage of a P1 finite element method to compute the solutions, for both the
highly heterogenous coefficients and their average counterpart was decided for simplicity, the only
refinement parameter being in this case the grid size. One could certainly choose different resolution
methods for both problems, the averaging procedure of the coefficients being completely indepen-
dent of the resolution scheme adopted to compute solutions. In Figure 8.3 we compare eigenvalues
computed in this fashion with the eigenvalues obtained from six different averaged coefficients (and
use of the 80 × 80 discretization grid).

We make similar comparisons for certain average strains associated with the boundary value
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problem
8

>

>

<

>

>

:

L(u) = 0 in Ω = [0, 1]2

u(x, 0) = sin (πx)
u(x, 1) = u(0, y) = u(1, y) = 0

(8.2)

Here, we compute the average values of the gradient,
R

Ωi

∂u
∂x

(s, t)dsdt, on 16 sectors (or sub-domains)

of size 1
16

: [0, 1
4
] × [0, 1

4
] . . . [ 3

4
, 1] × [ 3

4
, 1]. The comparisons arising from these computations are

presented in Figure .8.4.
These computations clearly show that the wavelet based averaging formulas are effective, even in

situations for which they were not designed – much more effective than the simplest combination of
averages and harmonic averages. The wavelet based averaging formulas on the 80 × 80 grid give at
least the same accuracy as a “brute force approach” based on 9 times as many degrees of freedom (the
240 × 240 grid). Iterated averaging produces a smoother coefficient, and fairly accurate numerical
solutions may thus be obtained with relatively coarse grids (even coarser than the 80 × 80 used
here). However, due to the additional smoothness of the coefficients, iterated averaging may, in
cases without any apparent (periodic) structure, lead to solutions that are further from the “true”
solutions than those obtained using a single step averaging. It is interesting to note that, for the
eigenvalue computations, the additional numerical error one should encounter when using the single
step averaging formulas has no negative effect as far as comparisons to the “true” (reference) values
are concerned. The Haar based and the multiwavelet based averaging formulas appear equivalent for
the eigenvalue computations. For the average strain computations we notice small differences – for
instance if we consider the four “internal subdomains” numbered 6, 7, 10 and 11 (where boundary
layer phenomena are minimal) then the multiwavelet based averaging gives slightly superior results
at 7 and 10, and slightly inferior results at 6 and 11. There is no reason the multiwavelet based
averaging formulas should lead to better results than the Haar based formulas, since, after all, we
are using the same 80 × 80 grid for our finite element computations.
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Figure 8.3: Finite element computation of the (first ≈ 17) eigenvalues of problem (8.1):

This figure displays the relative eigenvalue differences λ − λref/λref (the “relative errors”) where, as
λref , we use the eigenvalues corresponding to a 400 × 400 rectangular grid, and the original, highly
heterogeneous coefficients.

The “relative errors” in red correspond to eigenvalues obtained using the original coefficients, starting
with the 80 × 80 discretization grid (solid) and going through successive refinements (dashed).

The “relative errors” in blue (resp. green) correspond to eigenvalues for the averaged coefficients
obtained using the Haar basis (resp. the multiwavelet basis) and the 80 × 80 discretization grid.

The “relative errors” in yellow correspond to the eigenvalues where our averaging “formulas” have
been replaced by plain arithmetic averages.

The “relative errors” in purple correspond to the eigenvalues where our averaging “formulas” have
been replaced by harmonic averages as far as the diagonal entries are concerned, plain averages as far
as the off diagonal entries are concerned.

Solid lines correspond to eigenvalues obtained using the coefficients coming from a single averaging step,

whereas the dashed lines correspond to eigenvalues using the coefficients obtained after 9 averaging

steps.
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Figure 8.4: Finite element computation of 16 average gradients for the solution of problem (8.2):

This figure displays the “relative errors” in the 16 average gradients, where, as a reference we use the
solution correponding to the original, highly heterogeneous coefficients, and a 560× 560 discretization
grid. The abscissa represents the sector number, the ordering being from left to right and bottom to
top

The “relative errors” in red correspond to the values obtained using the original coefficients, starting
with the 80 × 80 grid (solid) and going through successive refinments (dashed).

The “relative errors” in blue (resp. green) correspond to computations performed with the averaged

coefficients obtained using the Haar basis (resp. the multiwavelet basis) on the 80 × 80 discretization

grid. Solid lines correspond to values obtained using the coefficients resulting from a single averaging

step, whereas dashed lines correspond to values obtained using the coefficients based on 9 averaging

steps.
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Appendix

In this appendix, we provide the exact formulas for the coefficients appearing during the Gaussian
elimination in section 4. As in section 4, the constants c0,i, c1,i, c2,i, and c3,i denote the coefficients
of the decomposition

L
(i)
ii = co,iId + c1,i∆xx + c2,i∆yy + c3,i∆xy + h4R .

We also introduce the auxiliary constants α1 = (a2
1 + a1

1), and α2 = a2
1a
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c0,1 = −16α1 < 0
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`
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´
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`
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