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OPTIMAL EIGENVALUES ESTIMATE FOR THE DIRAC OPERATOR

ON DOMAINS WITH BOUNDARY

SIMON RAULOT

Abstract. We give a lower bound for the eigenvalues of the Dirac operator on a compact
domain of a Riemannian spin manifold under the MIT bag boundary condition. The
limiting case is characterized by the existence of an imaginary Killing spinor.

1. Introduction

Let Ø be a compact domain in a n-dimensional Riemannian spin manifold (Nn, g) whose
boundary is denoted by ∂Ø. In [HMR02], the authors studied four elliptic boundary
conditions for the Dirac operator D of the domain Ø. More precisely, they prove a
Friedrich-type inequality [Fri80] which relates the spectrum of the Dirac operator and
the scalar curvature of the domain Ø. These boundary conditions are the following: the
Atiyah-Patodi-Singer (APS) condition based on the spectral resolution of the boundary
Dirac operator; a modified version of the APS condition, the mAPS condition; the bound-
ary condition CHI associated with a chirality operator; and a Riemannian version of the
MIT bag boundary condition. In fact, they show that, if the boundary ∂Ø of Ø has
non-negative mean curvature, then under the APS, CHI or mAPS boundary conditions,
the spectrum of the classical Dirac operator of the domain Ø is a sequence of unbounded
real numbers {λk : k ∈ Z} satisfying

λ2
k ≥

n

4(n− 1)
R0, (1)

where R0 is the infimum of the scalar curvature of the domain Ø. Moreover, equality
holds only for the CHI and the mAPS conditions and in these cases, Ø is respectively
isometric to a half-sphere or it carries a non-trivial real Killing spinor and has minimal
boundary. In the case of the MIT boundary condition, they show that the spectrum of the
Dirac operator on Ø is an unbounded discrete set of complex numbers λMIT with positive
imaginary part satisfying

|λMIT|2 >
n

4(n− 1)
R0, (2)

if the mean curvature of the boundary is non-negative. This result leads to the following
question: can one improve this inequality in order to obtain some boundary geometric
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2 SIMON RAULOT

invariants on the right hand side of (2)? We show in this paper that such a result can be
obtained. More precisely, we prove the following theorem:

Theorem 1. Let Ø be a compact domain of an n-dimensional Riemannian spin manifold
(Nn, g) whose boundary ∂Ø satisfies H > 0. Under the MIT boundary condition B

−
MIT, the

spectrum of the classical Dirac operator D on Ø is an unbounded discrete set of complex
numbers with positive imaginary part. Any eigenvalue λMIT satisfies

|λMIT|2 ≥
n

4(n− 1)
R0 + n Im(λMIT) H0, (3)

where H0 is the infimum of the mean curvature of the boundary. Moreover, equality holds
if and only if the associated eigenspinor is an imaginary Killing spinor on Ø and if the
boundary ∂Ø is a totally umbilical hypersurface with constant mean curvature.

The proof of this theorem is based on a modification of the spinorial Levi-Civita connection
which leads to a spinorial Reilly-type formula. This formula can be seen as a hyperbolic
version of the Reilly inequality used in [HMR02].
The author would like to thank the referee for helpful comments.

2. Geometric preliminaries

In this section, we give some standard facts about Riemannian spin manifolds with bound-
ary. For more details, we refer to [BBW93] or [HMR02].
On a compact domain Ø with smooth boundary ∂Ø in a n-dimensional Riemannian spin
manifold (Nn, g), denote by ΣØ the complex spinor bundle corresponding to the metric
g and by ∇ its Levi-Civita connection acting on TØ as well as its lift to ΣØ. The map
γ : Cl (Ø) −→ End(ΣØ) is the Clifford multiplication where Cl (Ø) is the Clifford bundle
over Ø. The spinor bundle is endowed with a natural Hermitian scalar product, denoted
by 〈 , 〉, compatible with ∇ and γ. The Dirac operator is then the first order elliptic
operator acting on sections of ΣØ locally given by

D : Γ(ΣØ) −→ Γ(ΣØ)
ψ 7−→

∑n

i=1 γ(ei)∇ei
ψ,

where {e1, ..., en} is a local orthonormal frame of TØ.
Consider now the boundary ∂Ø which is an oriented hypersurface of the domain Ø with
induced orientation and Riemannian structure. Since the normal bundle of ∂Ø is trivial,
the boundary itself is a spin manifold. This spin structure on the boundary allows to
construct an intrinsic spinor bundle Σ(∂Ø) over ∂Ø naturally endowed with a Hermitian
metric, a Clifford multiplication γ∂Ø and a spinorial Levi-Civita connection ∇∂Ø. More-
over the restriction S(∂Ø) := ΣØ|∂Ø to the boundary of the spinor bundle ΣØ is a Dirac
bundle, i.e. there exist on S(∂Ø) a Hermitian metric denoted by 〈 , 〉 compatible with the
Levi-Civita connection ∇S and the Clifford multiplication γS. The Clifford multiplication
γS : Cl (∂Ø) −→ End(SS) is given by γS(X)ψ = γ(X)γ(ν)ψ for all X ∈ Γ(TØ) and
ψ ∈ Γ (SS). Similarly we can relate the Levi-Civita connection acting on ΣØ with that
acting on S(∂Ø) by the spinorial Gauss formula (see [Bär98]):

(∇Xψ)|∂Ø = ∇S

Xψ|∂Ø +
1

2
γS(AX)ψ|∂Ø,
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for all X ∈ Γ
(

T(∂Ø)
)

, ψ ∈ Γ(ΣØ) and where AX = −∇Xν is the shape operator of
the boundary ∂Ø with respect to the inner normal vector field ν. We can then define
the boundary Dirac operator acting on S(∂Ø) which is an elliptic first order differential
operator locally given by

DS =
n−1
∑

j=1

γS(ej)∇
S

ej
. (4)

Recall that there is a standard identification

S(∂Ø) ≡

{

Σ(∂Ø) if n is odd
Σ(∂Ø) ⊕ Σ(∂Ø) if n is even

Taking into account the relation between the Hermitian bundle S(∂Ø) and Σ(∂Ø), one
can see that

∇S ≡

{

∇∂Ø if n is odd
∇∂Ø ⊕∇∂Ø if n is even

and

γS ≡

{

γ∂Ø if n is odd
γ∂Ø ⊕−γ∂Ø if n is even

3. The MIT boundary condition

First, note that on a closed compact Riemannian spin manifold, the classical Dirac op-
erator has exactly one self-adjoint L2 extention, so it has real discrete spectrum. In the
setting of manifolds with boundary, a defect of self-adjointness appears. It is given by the
Green formula

∫

Ø

〈Dϕ, ψ〉dv(g) −

∫

Ø

〈ϕ,Dψ〉dv(g) = −

∫

∂Ø

〈γ(ν)ϕ, ψ〉ds(g), (5)

for all ϕ, ψ ∈ Γ(ΣØ). Furthermore, in this case, the Dirac operator has a closed range
of finite codimension, but an infinite-dimensional kernel, which varies depending on the
choice of the Sobolev space. We refer to [BBW93], [Lop53] or [HMR02] for a careful
treatment of boundary conditions for elliptic operators.
The MIT bag boundary condition has first been introduced by physicists of the Mas-
sachusetts Institute of Technology in a Lorentzian setting (see [CJJ+74], [CJJT74] or
[Joh75]). The Riemannian version of this condition has been studied in [HMR02] in order
to get Friedrich estimates and in [HMZ02] because of its conformal covariance to give a
conformal lower bound for the first eigenvalue of the intrinsic Dirac operator of hypersur-
faces bounding a compact domain in a Riemannian spin manifold. Consider the pointwise
endomorphism

iγ(ν) : Γ(SS) −→ Γ(SS)

acting on the restriction to the boundary ∂Ø of the spinor bundle over Ø and where i
is the fundamental imaginary number. This map is an involution, and so the bundle SS
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splits into two eigensubbundles V± associated with the eigenvalues ±1. We then have
two associated orthogonal projections given by

B
±
MIT :  L2(SS) −→  L2(V±)

ϕ 7−→ 1
2
(Id ± iγ(ν))ϕ.

which define local elliptic boundary conditions for the Dirac operator D on the domain
Ø. So under this boundary condition, the eigenvalue problem

{

Dϕ = λMITϕ on Ø
B
±
MITϕ = 0 along ∂Ø

(6)

has a discrete spectrum with finite dimensional eigenspaces consisting of smooth spinor
fields.

Remark 1. Under the MIT boundary condition B
−
MIT, the spectrum of the Dirac operator

D is contained in the upper half complex plane {z ∈ C / Im(z) > 0}. Indeed, let λMIT

be an eigenvalue of D under the MIT boundary condition and ϕ ∈ Γ(ΣØ) the associated
spinor field, then taking ψ = iϕ in the Formula (5) leads to

2 Im(λMIT)

∫

Ø

|ϕ|2dv(g) =

∫

∂Ø

|ϕ|2ds(g) (7)

Two possibilities can occur: we have either Im(λMIT) > 0 or Im(λMIT) = 0. If Im(λMIT) =
0, then the spinor field ϕ should vanish along the boundary ∂Ø and by the unique con-
tinuation principle (see [BBW93]), it should be identically zero on the manifold Ø. This
is impossible because the spinor ϕ is supposed to be an eigenspinor, so a non trivial field.
The first case is the only possibility, i.e. Im(λMIT) > 0. For the boundary condition B

+
MIT,

we can show that the imaginary part of all eigenvalues of the Dirac operator is negative.

4. The hyperbolic Reilly formula

In this section, we give a spinorial Reilly formula based on a modification of the spinorial
Levi-Civita connection. Let α ∈ R, then we define the connection ∇α acting on ΣØ by

∇α
Xϕ := ∇Xϕ+ iαγ(X)ϕ, (8)

for all ϕ ∈ Γ(ΣØ) and X ∈ Γ(TØ). We can now derive an integral version of the
Schrödinger-Lichnerowicz formula using the modified connection ∇α. Indeed, we have:

Proposition 2. For all spinor fields ϕ ∈ Γ(ΣØ), we have:

〈(∇α)∗∇αϕ, ϕ〉 L2 = 〈D2ϕ, ϕ〉 L2 − 〈
R

4
ϕ, ϕ〉 L2 + nα2||ϕ||2

 L2 −

∫

∂Ø

〈∇α
νϕ, ϕ〉ds(g), (9)

where R is the scalar curvature of the domain Ø.

Proof: First note that the  L2-formal adjoint of the connection ∇α is, by definition, given
by

〈(∇α)∗∇αϕ, ϕ〉 L2 = ||∇αϕ||2
 L2 =

n
∑

j=1

∫

Ø

〈∇α
ej
ϕ,∇α

ej
ϕ〉dv(g),
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for all ϕ ∈ Γ(ΣØ) and where {e1, ..., en} is a local orthonormal frame of TØ. An easy
calculation using the compatibility properties of the Hermitian metric with the spinorial
connection and the Clifford multiplication gives

n
∑

j=1

〈∇α
ej
ϕ,∇α

ej
ϕ〉 =

n
∑

j=1

(

ej〈∇
α
ej
ϕ, ϕ〉 − 〈∇−α

ej
∇α

ej
ϕ, ϕ〉

)

,

and Stokes theorem leads to

〈(∇α)∗∇αϕ, ϕ〉 L2 = 〈−

n
∑

j=1

∇−α
ej

∇α
ej
ϕ, ϕ〉 L2 −

∫

∂Ø

〈∇α
νϕ, ϕ〉ds(g).

We can now easily compute

〈−

n
∑

j=1

∇−α
ej

∇α
ej
ϕ, ϕ〉 L2 = 〈−

n
∑

j=1

∇ej
∇ej

ϕ, ϕ〉 L2 + nα2||ϕ||2
 L2

= 〈∇∗∇ϕ, ϕ〉 L2 + nα2||ϕ||2
 L2 ,

and then the classical Schrödinger-Lichnerowicz formula (see [LM89]) leads to Iden-
tity (9). �

This formula is a first step to obtain Inequality (3). However, we have now to introduce
the Dirac operator and the twistor operator associated with the connection ∇α. The
modified Dirac operator is locally defined by

Dαϕ =

n
∑

j=1

γ(ej)∇
α
ej
ϕ, (10)

and the associated twistor operator by

Pα
Xϕ = ∇α

Xϕ+
1

n
γ(X)Dαϕ, (11)

for all X ∈ Γ(TØ) and ϕ ∈ Γ(ΣØ). Note that for α = 0, the operators D0 and P0 are
respectively the classical Dirac operator and the classical twistor operator which satisfy
the relation (see [BHMM] or [Fri00] for example)

|∇ϕ|2 = |Pϕ|2 +
1

n
|Dϕ|2

We can then check that the modified operators satisfy the same relation, i.e.

|∇αϕ|2 = |Pαϕ|2 +
1

n
|Dαϕ|2. (12)
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Indeed, if {e1, ..., en} is a local orthonormal frame of TØ, we have

|Pαϕ|2 =

n
∑

j=1

〈∇α
ej
ϕ+

1

n
γ(ej)D

αϕ,∇α
ej
ϕ+

1

n
γ(ej)D

αϕ〉

= |∇αϕ|2 −
2

n
|Dαϕ|2 +

1

n
|Dαϕ|2

= |∇αϕ|2 −
1

n
|Dαϕ|2,

and so Identity (12) follows directly. We are now ready to establish the hyperbolic version
of the spinorial Reilly formula given in [HMR02]. This formula can be seen as an analogous
of the one used in [HMR03] to give a lower bound of the first eigenvalue of the intrinsic
Dirac operator for hypersurfaces bounding a compact domain of a manifold with negative
scalar curvature. More precisely, we prove:

Proposition 3. For all ϕ ∈ Γ(ΣØ), we have:

||Pαϕ||2
 L2 =

n− 1

n
||Dαϕ|| L2 − 〈

R

4
ϕ, ϕ〉 L2 − n(n− 1)α2||ϕ||2

 L2

+

∫

∂Ø

〈DSϕ+
n− 1

2
(2α iγ(ν)ϕ− Hϕ), ϕ〉ds(g), (13)

where H is the mean curvature of the boundary ∂Ø of Ø.

Proof: Observe first that the modified Dirac operator Dα is not formally self-adjoint.
Indeed an easy calculation using (5) gives

∫

Ø

〈Dαϕ, ψ〉dv(g) =

∫

Ø

〈ϕ,D−αψ〉dv(g) −

∫

∂Ø

〈γ(ν)ϕ, ψ〉ds(g), (14)

for all ϕ, ψ ∈ Γ(ΣØ). However, we have:

D2ϕ = D−αDαϕ− n2α2ϕ,

and so substituting in Formula (9) gives

〈(∇α)∗∇αϕ, ϕ〉 L2 = 〈D−αDαϕ, ϕ〉 L2 − 〈
R

4
ϕ, ϕ〉 L2 − n(n− 1)α2||ϕ||2

 L2 −

∫

∂Ø

〈∇α
νϕ, ϕ〉ds(g).

The integration by parts formula (14) leads to

〈(∇α)∗∇αϕ, ϕ〉 L2 = ||Dαϕ||2
 L2 − 〈

R

4
ϕ, ϕ〉 L2 − n(n− 1)α2||ϕ||2

 L2

−

∫

∂Ø

〈γ(ν)Dαϕ+ ∇α
νϕ, ϕ〉ds(g).

With the help of Identity (12), we have

||Pαϕ||2
 L2 =

n− 1

n
||Dαϕ|| L2 − 〈

R

4
ϕ, ϕ〉 L2 − n(n− 1)α2||ϕ||2

 L2

−

∫

∂Ø

〈γ(ν)Dαϕ+ ∇α
νϕ, ϕ〉ds(g).
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However the boundary term can be written

−γ(ν)Dαϕ−∇α
νϕ = −γ(ν)Dϕ−∇νϕ+ (n− 1)α iγ(ν)ϕ,

and using the identity

−γ(ν)Dϕ−∇νϕ = DSϕ−
n− 1

2
Hϕ,

Formula (13) follows directly. �

We are now ready to prove Theorem 1.

5. The estimate

Proof of Theorem 1: Consider now a compact domain Ø of a Riemannian spin manifold
such that the mean curvature H of the boundary satisfies H ≥ 2α, for α > 0. By ellipticity
of the MIT boundary condition B

−
MIT, consider a smooth spinor field ϕ ∈ Γ(ΣØ) solution

of the eigenvalue boundary problem (6), i.e. ϕ satisfies
{

Dϕ = λMITϕ on Ø
B
−
MITϕ = 0 along ∂Ø

(15)

with Im(λMIT) > 0 by Remark 1. We now apply the hyperbolic Reilly formula (13) to the
spinor field ϕ to get

||Pαϕ||2
 L2 =

(

n− 1

n
|λMIT − nαi|2 − n(n− 1)α2

)

||ϕ|| L2 − 〈
R

4
ϕ, ϕ〉 L2

+

∫

∂Ø

〈DSϕ+
n− 1

2
(2α iγ(ν)ϕ− Hϕ), ϕ〉ds(g).

Note that since iγ(ν)ϕ = ϕ along the boundary, we can compute

〈DSϕ, ϕ〉 = 〈DSϕ, iγ(ν)ϕ〉 = 〈iγ(ν)DSϕ, ϕ〉 = −〈DS (iγ(ν)ϕ) , ϕ〉 = −〈DSϕ, ϕ〉,

and so the preceding formula gives

||Pαϕ||2
 L2 +

n− 1

2

∫

∂Ø

(H − 2α)|ϕ|2ds(g) = (16)

n− 1

n

(

|λMIT|2 − 2nα Im(λMIT)
)

||ϕ|| L2 − 〈
R

4
ϕ, ϕ〉 L2

The assumption on the mean curvature gives:

|λMIT|2 − 2nα Im(λMIT) ≥
n

4(n− 1)
R0.

For α0 = 1
2

H0, where H0 = inf∂Ø(H), we get Inequality (16). Suppose now that equality
is achieved, thus

||Pα0ϕ||2
 L2 = 0 and

n− 1

2

∫

∂Ø

(H − 2α0)|ϕ|
2ds(g) = 0.

Moreover the spinor field ϕ is a solution of (15), so it satisfies the Killing equation

∇Xϕ = −
λMIT

n
γ(X)ϕ, for all X ∈ Γ(TØ).
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Since such a spinor field has no zeroes (see [Fri00]), the mean curvature of the boundary
is constant with H = 2α0. Furthermore, it is a well-known result [BFGK90] that, in
this case, the eigenvalue λMIT has to be either real or purely imaginary. Here we have
Im(λMIT) > 0, then λMIT ∈ iR+

∗ . The domain Ø is in particular an Einstein manifold.
We now show that the boundary has to be totally umbilical. Indeed, note that we have
for all X ∈ Γ(T(∂Ø)):

∇X(iγ(ν)ϕ) = iγ(∇Xν)ϕ + iγ(ν)∇Xϕ

= iγ(∇Xν)ϕ + α0γ(ν)γ(X)ϕ

= iγ(∇Xν)ϕ− α0γ(X)γ(ν)ϕ

= iγ(∇Xν)ϕ + iα0γ(X)ϕ.

However along the boundary we have iγ(ν)ϕ = ϕ, so we obtain

γ(∇Xν)ϕ = −2α0γ(X)ϕ.

Since the spinor field ϕ has no zeros, we have A(X) = −∇Xν = 2αX and the boundary is
totally umbilical.We can again show that in the equality case, we have Im(λMIT) = nα0.
In fact, just note that the boundary term can be rewritten as
∫

∂Ø

〈DSϕ−
n− 1

2
Hϕ + (n− 1)α0ϕ, ϕ〉ds(g) = −

∫

∂Ø

〈∇νϕ+ γ(ν)Dϕ− (n− 1)α0ϕ, ϕ〉ds(g).

This term is zero since we have equality in (16). Now using that the spinor field ϕ is an
imaginary Killing spinor satisfying (6) gives

∇νϕ+ γ(ν)Dϕ =
n− 1

n
Im(λMIT)ϕ.

Substituting in the preceding identity gives

(n− 1)

∫

∂Ø

(α0 −
Im(λMIT)

n
)|ϕ|2ds(g) = 0,

and since ϕ has no zeroes, Im(λMIT) = nα0 = nH0

2
. �

Remark 2.

(1) The orthogonal projection B
+
MIT defines a local elliptic boundary condition for the

Dirac operator D of Ø. We can easily check that in this case, the imaginary part
of an eigenvalue λMIT of D satisfies Im(λMIT) < 0. Inequality (3) is then given by

|λMIT|2 ≥
n

4(n− 1)
R0 − n Im(λMIT) H0.

(2) For H0 = 0, we obtain Inequality (2). In fact, if we suppose that equality is
achieved, Theorem 1 implies Im(λMIT) = nH0

2
= 0 which is impossible by Remark 1.

(3) Note that the Riemannian spin manifolds with an imaginary Killing spinor with
Killing number iα have been classified by H. Baum in [Bau89a] and [Bau89b].
Such manifolds are called pseudo-hyperbolic and they are given by

(R ×exp M0, g) = (R × M0, dt
2 ⊕ e−4αtgM0

),
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where (M0, gM0
) is a complete Riemannian spin manifold carrying a non-trivial

parallel spinor. After suitable rescaling of the metric, we can assume that the
Killing number is either i/2 or −i/2, i.e. we have

∇Xφ = ±
i

2
γ(X)φ.

Moreover, constant mean curvature hypersurfaces in pseudo-hyperbolic manifolds
are classified by the Hyperbolic Alexandrov Theorem proved in [Mon99] (see also
[HMR03] for a proof using spinors). Indeed, such a hypersurface is either a round
geodesic hypersphere (and, in this case, M0 is flat and H > 1) or a slice {s} × M0

(and, in this case, M0 is compact and H = 1).

We can then prove the following corollary:

Corollary 4. If the boundary of the compact domain Ø is connected, there is no manifold
satisfying the equality case in Inequality (3).

Proof: If Ø is a compact domain whith connected boundary achieving equality in (3), then
there exists an imaginary Killing spinor on Ø and the boundary ∂Ø is a totally umbilical
constant mean curvature hypersurface with H = 2α. However, using Remark (2).3, Ø is
a domain in a pseudo-hyperbolic space whose connected boundary is a slice {s}×M0 and
then Ø is non-compact. �

Remark 3. With a slight modification of the boundary condition, we give a domain Ø
whose boundary has two connected components carrying an imaginary Killing spinor field
ϕ ∈ Γ(ΣØ) which satisfy

iγ(ν1)ϕ|∂Ø1
= ϕ|∂Ø1

and iγ(ν2)ϕ|∂Ø2
= −ϕ|∂Ø2

, (17)

where ν1 (resp. ν2) is an inner unit vector field normal to ∂Ø1 (resp. ∂Ø2). First recall
that one distinguishes two types of imaginary Killing spinors (see [Bau89a] and [Bau89b]).
Indeed, if ϕ ∈ Γ(ΣØ) is an imaginary Killing spinor, denote by f its length function, then
the function

qϕ(x) := f(x)2 −
1

4α2
||∇f ||2

satisfies qϕ is constant and qϕ ≥ 0. If qϕ = 0, ϕ is a Killing spinor of type I whereas if
qϕ > 0, ϕ is a Killing spinor of type II. If (Nn, g) is a complete connected Riemannian
spin manifold with an imaginary Killing spinor of type II associated with the Killing
number iα, then (Nn, g) is isometric to the hyperbolic space Hn

−4α2 . If (Nn, g) admits
an imaginary Killing spinor of type I, then (Nn, g) is isometric to the warped product
(R × M0, dt

2 ⊕ e−4αtgM0
), where M0 is a complete Riemannian spin manifold with a non-

trivial parallel spinor field. Moreover, qϕ = 0 if and only if there exists a unit vector
field ξ on N such that γ(ξ)ϕ = iϕ. In fact, we can easily prove that the vector field ξ is
the normal field of {t} × M0 for all t ∈ R. So consider the domain given by the warped
product Ø := ([a, b] × M0, dt

2 ⊕ e−4αtgM0
), where M0 is a compact spin manifold carrying

a non-trivial parallel spinor field and with −∞ < a < b < +∞. The domain Ø carries an
imaginary Killing spinor ϕ of type I, so there exists ξ normal to {t}× M0 for all t ∈ [a, b]
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such that γ(ξ)ϕ = iϕ. The boundary of Ø has two connected components which are
slices {a} × M0 and {b} × M0 of Ø and with mean curvature Ha = Hb = 2α, where Ht is
the mean curvature of a slice {t} × M0. The spinor field ϕ clearly satisfies the boundary
conditions (17).
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[Lop53] Ya.B. Lopatinskĭı, On a method for reducing boundary problems for a system of differential

equations of elliptic type to regular integral equations, Ukrain. Math. Ž. 5 (1953), 123–151,
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