
HAL Id: hal-00021456
https://hal.science/hal-00021456v1

Preprint submitted on 21 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Sparse Integer Linear Systems
Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, Gilles

Villard

To cite this version:
Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, Gilles Villard. Solving Sparse Integer
Linear Systems. 2006. �hal-00021456�

https://hal.science/hal-00021456v1
https://hal.archives-ouvertes.fr

cc
sd

-0
00

21
45

6,
 v

er
si

on
 1

 -
 2

1
M

ar
 2

00
6

Solving Sparse Integer Linear Systems

Wayne Eberly,

Department of Computer Science, University of Calgary

http://pages.cpsc.ucalgary.ca/˜eberly

Mark Giesbrecht, Pascal Giorgi∗, Arne Storjohann,

David R. Cheriton School of Computer Science, University of Waterloo

http://www.uwaterloo.ca/˜{mwg,pgiorgi,astorjoh}

Gilles Villard

CNRS, LIP, École Normale Supérieure de Lyon

http://perso.ens-lyon.fr/gilles.villard

Abstract

We propose a new algorithm to solve sparse linear systems of equa-

tions over the integers. This algorithm is based on a p-adic lifting tech-

nique combined with the use of block matrices with structured blocks. It

achieves a sub-cubic complexity in terms of machine operations subject to

a conjecture on the effectiveness of certain sparse projections. A LinBox -

based implementation of this algorithm is demonstrated, and emphasizes

the practical benefits of this new method over the previous state of the

art.

1 Introduction

A fundamental problem of linear algebra is to compute the unique solution of
a non-singular system of linear equations. Aside from its importance in and of
itself, it is key component in many recent proposed algorithms for other prob-
lems involving exact linear systems. Among those algorithms are Diophantine
system solving [10, 19, 20], Smith form computation [8, 21], and null-space and
kernel computation [3]. In its basic form, the problem we consider is then to
compute the unique rational vector A−1b ∈ Qn×1 for a given non-singular ma-
trix A ∈ Zn×n and right hand side b ∈ Zn×1. In this paper we give new and
effective techniques for when A is a sparse integer matrix, which have sub-cubic
complexity on sparse matrices.

∗Author is currently affiliated to LP2A laboratory, University of Perpignan

1

A classical and successful approach to solving this problem for dense integer
matrices A was introduced by Dixon in 1982 [5], following polynomial case
studies from [18]. His proposed technique is to compute, iteratively, a sufficiently
accurate p-adic approximation A−1b mod pk of the solution. The prime p is
chosen such that det(A) 6≡ 0 mod p (see, e.g., [22] for details on the choice of
p). Then, using radix conversion (see e.g. [9, §12]) combined with continued
fraction theory [13, §10], one can easily reconstruct the rational solution A−1b
from A−1b mod pk (see [25] for details).

The principal feature of Dixon’s technique is the pre-computation of the
matrix A−1 mod p which leads to a decreased cost of each lifting step. This
leads to an algorithm with a complexity of O (̃n3 log(‖A‖+ ‖b‖)) bit operations
[5]. Here and in the rest of this paper ‖ . . . ‖ denotes the maximum entry in
absolute value and the O˜ notation indicates some possibly omitting logarithmic
factor in the variables.

For a given non-singular matrix A ∈ Zn×n, a right hand side b ∈ Zn×1, and
a suitable integer p, Dixon’s scheme is the following:

• compute B = A−1 mod p;

• compute ℓ p-adic digits of the approximation iteratively by multiplying B
times the right hand side, which is updated according to each new digit;

• use radix conversion and rational number reconstruction to recover the
solution.

The number ℓ of lifting steps required to find the exact rational solution to
the system is O (̃n log(‖A‖ + ‖b‖)), and one can easily obtain the announced
complexity (each lifting steps requires a quadratic number of bit operations in
the dimension of A; see [5] for more details).

In this paper we study the case when A is a sparse integer matrix, for
example, when only O (̃n) entries are non-zero. The salient feature of such
a matrix A is that applying A, or its transpose, to a dense vector c ∈ Zn×1

requires only O (̃n log(‖A‖ + ‖c‖)) bit operations.
Following techniques proposed by Wiedemann in [26], one can compute a

solution of a sparse linear system over a finite field in O (̃n2) field operations,
with only O (̃n) memory. Kaltofen & Saunders [16] studied the use of Wiede-
mann’s approach, combined with p-adic approximation, for sparse integer linear
system. Nevertheless, this combination doesn’t help to improve the bit com-
plexity compared to Dixon’s algorithm: it still requires O (̃n3) operations in the
worst case. One of the main reasons is that Wiedemann’s technique requires
the computation, for each right hand side, of a new Krylov subspace, which re-
quires O(n) matrix-vector products by A mod p. This implies the requirement
of Θ(n2) operations modulo p for each lifting step, even for a sparse matrix
(and Θ(n(log ‖A‖ + ‖b‖)) such lifting steps are necessary in general). The only
advantage then of using Wiedemann’s technique is memory management: only
O(n) additional memory is necessary, as compared to the O(n2) space needed
to store matrix inverse modulo p explicitly, which may well be dense even for
sparse A.

The main contribution of this current paper is to provide a new Krylov-like

2

pre-computation for the p-adic algorithm with a sparse matrix which allows us
to improve the bit complexity of linear system solving. The main idea is to use
block-Krylov method combined with special block projections to minimize the
cost of each lifting step. The Block Wiedemann algorithm [4, 24, 14] would be
a natural candidate to achieve this. However, the Block Wiedemann method
is not obviously suited to being incorporated into a p-adic scheme. Unlike the
scalar Wiedemann algorithm, wherein the minimal polynomial can be used for
every right-hand side, the Block Wiedemann algorithm needs to use different
linear combinations for each right-hand side. In particular, this is due to the
special structure of linear combinations coming from a column of a minimal
matrix generating polynomial (see [24, 23]) and then be totally dependent on
the right hand side.

Our new scheme reduces the cost of each lifting step, on a sparse matrix as
above, to O (̃n1.5) bit operations. This means the cost of the entire solver is
O (̃n2.5(log(‖A‖ + ‖b‖)) bit operations. The algorithm makes use of the notion
of an efficient sparse projection, for which we currently only offer a construc-
tion which is conjectured to work in all cases. However, we do provide some
theoretical evidence to support its applicability, and note its effectiveness in
practice.

Most importantly, the new algorithm is shown to offer significant practical
improvement on sparse integer matrices. The algorithm is implemented in the
LinBox library [6], a generic C++ library for exact linear algebra. We com-
pare it against the best known solvers for integer linear equations, in particular
against the Dixon lifting scheme and Chinese remaindering. We show that in
practice it runs many times faster than previous schemes on matrices of size
greater than 2500 × 2500 with suffiently high sparsity. This also demonstrates
the effectiveness in practice of so-called “asymptotically fast” matrix-polynomial
techniques, which employ fast matrix/polynomial arithmetic. We provide a de-
tailed discussion of the implementation, and isolate the performance benefits
and bottlenecks. A comparison with Maple dense solver emphasizes the high
efficiency of the LinBox library and the needs of well-designed sparse solvers as
well.

2 Block projections

The basis for Krylov-type linear algebra algorithms is the notion of a projec-
tion. In Wiedemann’s algorithm, for example, we solve the ancillary problem of
finding the minimal polynomial of a matrix A ∈ F

n×n over a field F by choosing
random u ∈ F

1×n and v ∈ F
n×1 and computing the minimal polynomial of the

sequence uAiv for i = 0..2n − 1 (which is both easy to compute and with high
probability equals the minimal polynomial of A). As noted in the introduction,
our scheme will ultimately be different, a hybrid Krylov and lifting scheme, but
will still rely on the notion of a structured block projection.

For the remainder of the paper, we adopt the following notation:

• A ∈ F
n×n be a non-singular matrix,

3

• s be a divisor of n, the blocking factor, and

• m := n/s.

Ultimately F will be Q and we will have A ∈ Zn×n, but for now we work in the
context of a more general field F.

For a block v ∈ F
n×s and 0 ≤ t ≤ m, define

K(A, v) :=
[

v Av · · · Am−1v
]
∈ F

n×n.

We call a triple (R, u, v) ∈ F
n×n × F

s×n × F
n×s an efficient block projection

if and only if

1. K(AR, v) and K((AR)T , uT) are non-singular;

2. R can be applied to a vector with O (̃n) operations in F;

3. we can compute vx, uT x, yv and yuT for any x ∈ F
s×1 and y ∈ F

1×n,
with O (̃n) operations in F.

In practice we might hope that R, u and v in an efficient block projection
are extremely simple, for example R is a diagonal matrix and u and v have only
n non-zero elements.

Conjecture 2.1. For any non-singular A ∈ F
n×n and s |n, there exists an

efficient block projection (R, u, v) ∈ F
n×n×F

s×n×F
n×s, and it can be constructed

quickly.

2.1 Constructing efficient block projections

In what follows we present an efficient sparse projection which we conjecture
to be effective for all matrices. We also present some supporting evidence (if
not proof) for its theoretical effectiveness. As we shall see in Section 4, the
projection performs extremely well in practice.

We focus only on R and v, since its existence should imply the existence of
a u of similar structure.

For convenience, assume for now that all elements in v and R are alge-
braically independent indeterminates, modulo some imposed structure. This is
sufficient, since the existence of an efficient sparse projection with indeterminate
entries would imply that a specialization to an effective sparse projection over
Zp is guaranteed to work with high probability, for sufficiently large p. We also
consider some different possibilities for choosing R and v.

2.1.1 Dense Projections

The “usual” scheme for block matrix algorithms is to choose R diagonal, and v
dense. The argument to show this works has several steps. First, AR will have
distinct eigenvalues and thus will be non-derogatory (i.e., its minimal polynomial
equals its characteristic polynomial). See [2], Lemma 4.1. Second, for any
non-derogatory matrix B and dense v we have K(B, v) non-singular (see [15]).
However, a dense v is not an efficient block projection since condition (2) is not
satisfied.

4

2.1.2 Structured Projections

The following projection scheme is the one we use in practice. Its effectiveness
in implementation is demonstrated in Section 4.

Choose R diagonal as before. Choose

v =

∗

∗
. . .

∗

∈ kn×s (1)

with each ∗ of dimension m × 1. The intuition behind the structure of v is
twofold. First, if s = 1 then v is a dense column vector, and we know K(AR, v)
is non-singular in this case. Second, since the case s = 1 requires only n nonzero
elements in the “block”, it seems that n nonzero elements should suffice in the
case s > 1 also. Third, if E is a diagonal matrix with distinct eigenvalues then,
up to a permutation of the columns, K(E, v) is a block Vandermonde matrix,
each m×m block defined via m distinct roots, thus non-singular. In the general
case with s > 1 we ask:

Question 2.2. For R diagonal and v as in (1), is K(AR, v) necessarily non-
singular?

Our work thus far has not led to a resolution of the question. However,
by focusing on the case s = 2 we have answered the following similar question
negatively: If A is nonsingular with distinct eigenvalues and v is as in (1), is
K(A, v) necessarily nonsingular?

Lemma 2.3. If m = 2 there exists a nonsingular A with distinct eigenvalues
such that for v as in (1) the matrix K(A, v) is singular.

Proof. We give a counterexample with n = 4. Let

E =

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

and P =

1 0 0 0

0 1 1/4 0

0 1 1 0

0 0 0 1

.

Define

A = 3P−1EP =

3 0 0 0

0 5 −1 0

0 4 10 0

0 0 0 12

.

5

For the generic block

v =

a1

a2

b1

b2

the matrix K(A, v) is singular. By embedding A into a larger block diagonal
matrix we can construct a similar counterexample for any n and m = 2.

Thus, if Question 2.2 has an affirmative answer, then proving it will neces-
sitate considering the effect of the diagonal preconditioner R above and beyond
the fact that “AR has distinct eigenvalues”. For example, are the eigenvalues
of AR algebraically independent, using the fact that entries in R are? This may
already be sufficient.

2.1.3 A Positive Result for the Case s = 2

For s = 2 we can prove the effectiveness of our efficient sparse projection scheme.
Suppose that A ∈ F

n×n where n is even and A is diagonalizable with distinct
eigenvalues in an extension of F. Then A = X−1DX ∈ F

n×n for some diagonal
matrix D with distinct diagonal entries (in this extension). Note that the rows
of X can be permuted (replacing X with PX for some permutation P),

A = ((PX)−1(P−1DP)(PX)),

and P−1DP is also a diagonal matrix with distinct diagonal entries. Conse-
quently we may assume without loss of generality that the top left (n/2)×(n/2)
submatrix X1,1 of X is nonsingular. Suppose that

X =

[
X1,1 X1,2

X2,1 X2,2

]

and consider the decomposition

A = Z−1ÂZ, (2)

where

Z =

[
X−1

1,1 0

0 X−1

1,1

]
X =

[
I Z1,2

Z2,1 Z2,2

]

for n/2 × n/2 matrices Z1,2, Z2,1, and Z2,2, and where

Â =

[
X−1

1,1 0

0 X−1

1,1

]
D

[
X1,1 0

0 X1,1

]
,

so that

Â =

[
A1 0
0 A2

]
,

6

for matrices A1 and A2. The matrices A1 and A2 are each diagonalizable over
an extension of F, since A is, and the eigenvalues of these matrices are also
distinct.

Notice that, for vectors a, b with dimension n/2, and for any nonnegative
integer i,

Ai

[
a
0

]
= Z−1Âi

[
a

Z2,1a

]
and Ai

[
0
b

]
= Z−1Âi

[
Z1,2b
Z2,2b

]
.

Thus, if

x =

[
a

Z2,1a

]
and y =

[
Z1,2b
Z2,2b

]

then the matrix with columns

a, Aa, A2a, . . . , An/2−1a, b, Ab, A2b, . . . , An−2−1b

is nonsingular if and only if the matrix with columns

x, Âx, Â2x, . . . , Ân/2−1x, y, Ây, Â2y, . . . , Ân/2−1y

is nonsingular. The latter condition fails if and only if there exist polynomials f
and g, each with degree less than n/2, such that at least one of these polynomials
is nonzero and

f(Â)x + g(Â)y = 0. (3)

To proceed, we should therefore determine a condition on A ensuring that no
such polynomials f and g exist for some choice of x and y (that is, for some
choice of a and b).

A suitable condition on A is easily described: We will require that the top
right submatrix Z1,2 of Z is nonsingular.

Now suppose that the entries of the vector b are uniformly and randomly
chosen from some (sufficiently large) subset of F, and suppose that a = −Z1,2b.
Notice that at least one of f and g is nonzero if and only if at least one of f
and g − f is nonzero. Furthermore,

f(Â)(x) + g(Â)(y) = f(Â)(x + y) + (g − f)(Â)(y).

It follows by the choice of a that

x + y =

[
0

(Z2,2 − Z2,1Z1,2)b

]
.

Since Â is block diagonal, the top n/2 entries of f(Â)(x+y) are nonzero as well
for every polynomial f . Consequently, failure condition (3) can only be satisfied

if the top n/2 entries of the vector (g − f)(Â)(y) are also all zero.
Recall that g − f has degree less than n/2 and that the top left submatrix

of the block diagonal matrix Â is diagonalizable with n/2 distinct eigenvalues.
Assuming, as noted above, that Z1,2 is nonsingular (and recalling that the top

7

half of the vector y is Z1,2b), the Schwartz-Zippel lemma is easily used to show
that if b is randomly chosen as described then, with high probability, the failure
condition can only be satisfied if g − f = 0. That is, it can only be satisfied if
f = g.

Observe next that, in this case,

f(Â)(x) + g(Â)(y) = f(Â)(x + y),

and recall that the bottom half of the vector x+y is the vector (Z2,2−Z2,1Z1,2)b.
The matrix Z2,2 − Z2,1Z1,2 is clearly nonsingular (it is a Schur complement
formed from Z) so, once again, the Schwartz-Zippel lemma can be used to show

that if b is randomly chosen as described above then f(Â)(x + y) = 0 if and
only if f = 0 as well.

Thus if Z1,2 is nonsingular and a and b are chosen as described above then,
with high probability, equation (3) is satisfied only if f = g = 0. There must
therefore exist a choice of a and b providing an efficient block projection — once
again, supposing that Z1,2 is nonsingular.

It remains only to describe a simple and efficient randomization of A that
achieves this condition with high probability: Let us replace A with the matrix

Ã =

[
I tI
0 I

]
−1

A

[
I tI
0 I

]
=

[
I −tI
0 I

]
A

[
I tI
0 I

]
,

where t is chosen uniformly from a sufficiently large subset of F. This has the
effect of replacing Z with the matrix

Z

[
I tI
0 I

]
=

[
I Z1,2 + tI

Z2,1 Z2,2 + tZ2,1

]

(see, again, (2)), effectively replacing Z1,2 with Z1,2 + tI. There are clearly at
most n/2 choices of t for which the latter matrix is singular.

Finally, note that if v is a vector and i ≥ 0 then

Ãiv =

[
I −tI
0 I

]
Ai

[
I tI
0 I

]
v.

It follows by this and similar observations that this randomization can be applied
without increasing the asymptotic cost of the algorithm described in this paper.

Question: Can the above randomization and proof be generalized to a similar
result for larger s?

Other sparse block projections

Other possible projections are summarized as follows.

• Iterative Choice Projection. Instead of choosing v all at once, choose
the columns of v = [v1|v2| · · · |vs] in succession. For example, suppose up
to preconditioning we can assume we are working with a B ∈ F

n×n that

8

is simple as well as has the property that the characteristic polynomial
is irreducible. Then we can choose v1 to be the first column of In to
achieve K(B, v1) ∈ F

n×m of rank m. Next choose v2 to have two nonzero
entries, locations chosen randomly until [K(B, v1)|K(B, v2)] ∈ F

n×2m has
rank 2m, etc. This gives a v with m(m + 2)/2 nonzero entries.

The point of choosing v column by column is that, while choosing all of v
sparse may have a very small probability of success, the success rate for
choosing vi when v1, v2, . . . , vi−1 are already chosen may be high enought
(e.g., maybe only expected O(log n)) choices for vi before success).

• Toeplitz projections. Choose R and/or v to have a Toeplitz structure.

• Vandermonde projections. Choose v to have a Vandermonde or a
Vandermonde-like structure.

3 Non-singular sparse solver

In this section we show how to employ a block-Krylov type method combined
with the (conjectured) efficient block projections of Section 2 to improve the
complexity of evaluating the inverse modulo p of a sparse matrix. Applying
Dixon’s p-adic scheme with such an inverse yields an algorithm with better
complexity than previous methods for sparse matrices, i.e., those with a fast
matrix-vector product. In particular, we express the cost of our algorithm in
terms of the number of applications of the input matrix to a vector, plus the
number of auxiliary operations.

More precisely, given A ∈ Zn×n and v ∈ Zn×1, let µ(n) be the number of op-
erations in Z to compute Av or vT A. Then, assuming Conjecture 2.1, our algo-
rithm requires
O (̃n1.5(log(‖A‖ + ‖b‖)) matrix-vector products w 7→ Aw on vectors w ∈ Zn×1

with ‖w‖ = O(1), plus O (̃n2.5(log(‖A‖ + ‖b‖)) additional bit operations.
Summarizing this for practical purposes, in the common case of a matrix A ∈

Zn×n with O (̃n) constant-sized non-zero entries, and b ∈ Zn×1 with constant-
sized entries, we can compute A−1b with O (̃n2.5) bit operations.

We achieve this by first introducing a structured inverse of the matrix Ap =
A mod p which links the problem to block-Hankel matrix theory. We will assume
that we have an efficient block projection (R, u, v) ∈ Zn×n

p × Zs×n
p × Zn×s

p for

Ap, and let B = AR ∈ Zn×n
p . We thus assume we can evaluate Bw and wT B,

for any w ∈ Zn×1
p , with O (̃µ(n)) operations in Zp. The proof of the following

lemma is left to the reader.

Lemma 3.1. Let B ∈ Zn×n
p be non-singular, where n = ms for m, s ∈ Z>0.

Let u ∈ Zs×n
p and v ∈ Zn×s

p be efficient block projections such that V =

[v|Bv| · · · |Bm−1v] ∈ Zn×n
p and UT = [uT |BT uT | · · · |(BT)m−1uT] ∈ Zn×n

p are
non-singular. The matrix H = UBV ∈ Zn×n

p is then a block-Hankel matrix,
and the inverse for B can be written as B−1 = V H−1U .

9

In fact

H =

α1 α2 · · · αm

α2 α3 · · · αm+1

...
αm αm · · · α2m−1

 ∈ Zn×n

p , (4)

with αi = uBiv ∈ Zs×s for i = 1 . . . 2m − 1. H can thus be computed with
2m− 1 applications of B to a (block) vector plus 2m− 1 pre-multiplications by
u, for a total cost of 2nµ(n) + O (̃n2) operations in Zp. For a word-sized prime
p, we can find H with O (̃nµ(n)) bit operations (where, by “word-sized”, we
mean having a constant number of bits, typically 32 or 64, depending upon the
register size of the target machine).

We will need to apply H−1 to a number of vectors at each lifting step and
so require that this be done efficiently. We will do this by fist representing H−1

using the off-diagonal inverse formula of [17]:

H−1 =

(αm−1 ··· α0

... . .
.

α0

)(β∗

m−1
··· β∗

0

. . .
...

βm−1

)

−

βm−2 ··· β0 0

... . .
.
. .

.

β0
. .

.

0

(

α∗

m
··· α1

.. . ···

α∗

m

)

where αi, α
∗

i , βi, β
∗

i ∈ Zs×s
p .

This representation can be computed using the Sigma Basis algorithm of
Beckermann-Labahn [17]. We use the version given in [11] which ensures the
desired complexity in all cases. This requires O (̃s3m) operations in Zp (and
will only be done once during the algorithm, as pre-computation to the lifting
steps).

The Toeplitz/Hankel forms of the components in this formula allow to eval-
uate H−1w for any w ∈ Zn×1

p with O (̃s2m) or O (̃ns) operations in Zp using
an FFT-based polynomial multiplication (see [1]). An alternative to computing
the inversion formula would be to use the generalization of the Levinson-Durbin
algorithm in [14].

Corollary 3.2. Assume that we have pre-computed H−1 ∈ Zn×n
p for a word-

sized prime p. Then, for any v ∈ Zn×1
p , we can compute B−1v mod p with

2(m − 1)µ(n) + O (̃n(m + s)) operations in Zp.

Proof. By Lemma 3.1 we can express the application of B−1 to a vector by an
application of U , followed by an application of H−1 followed by an application
of V .

To apply U to a vector w ∈ Zn×1
p , we note that

(Uw)T = [(uw)T , (uBw)T , . . . , (uBm−1)T w)t]T .

We can find this iteratively, for i = 0, . . . , m−1, by computing bi = Biw = Bbi−1

(assume b0 = w) and uBiw = ubi, for i = 0..m − 1 in sequence. This requires
(m − 1)µ(n) + O (̃mn) operations in Zp.

10

To apply V to a vector y ∈ Zn×1
p , write y = [y0|y1| · · · |ym−1]

T , where yi ∈ Zs
p.

Then

V y = vy0 + Bvy1 + B2vy2 + · · · + Bm−1vym−1

= vx0 + B (vx1 + B (vx1 + · · · ((vxm−2 + Bvxm−1) · · ·)))

which can be accomplished with m− 1 applications of B and m applications of
the projection v. This requires (m − 1)µ(n) + O (̃mn) operations in Zp.

P-adic scheme

We employ the inverse computation described above in the p-adic lifting algo-
rithm of Dixon [5]. We briefly describe the method here and demonstrate its
complexity in our setting.

Input: A ∈ Zn×n non-singular, b ∈ Zn×1;

Output: A−1b ∈ Qn×1

(1) Choose a prime p such that detA 6≡ 0 mod p;

(2) Determine an efficient block projection for A:
R, u, v ∈ Zn×n × Zs×n

p × Zn×s
p ; Let B = AR;

(3) Compute αi = uBiv for i = 1 . . . 2m − 1 and define H as in (4). Recall
that B−1 = V H−1U ;

(4) Compute the inverse formula of H−1 (see above);

(5) Let ℓ := n
2
·
⌈
logp(n‖A‖2) + logp((n − 1)‖A‖2 + ‖b‖2)

⌉
);

b0 := b;

(6) For i from 0 to ℓ do

(7) xi := B−1bi mod p;

(8) bi+1 := p−1(bi − Bxi)

(9) Reconstruct x ∈ Qn×1 from xℓ using rational reconstruction.

Theorem 3.3. The above p-adic scheme solves the linear system A−1b with
O (̃n1.5(log(‖A‖ + ‖b‖)) matrix-vector products by A mod p (for a machines-
word sized prime p) plus O (̃n2.5(log(‖A‖ + ‖b‖)) additional bit-operations.

Proof. The total cost of the algorithm is O (̃nµ(n)+n2 +n log(‖A‖+‖b‖)(mµ+
n(m + s)). For the optimal choice of s =

√
n and m = n/s, this is easily seen

to equal the stated cost. The rational reconstruction in the last step is easily
accomplished using radix conversion (see, e.g., [9]) combined with continued
fraction theory, in a cost which is dominated by the other operations (see [25]
for details).

11

4 Efficient implementation

An implementation of our algorithm has been done in the LinBox library [6].
This is a generic C++ library which offers both high performance and the
flexibility to use highly tuned libraries for critical components. The use of
hybrid dense linear algebra routines [7], based on fast numerical routine such
as BLAS, is one of the successes of the library. Introducing blocks to solve
integer sparse linear systems is then an advantage since it allows us to use such
fast dense routines. One can see in Section 4.2 that this becomes necessary to
achieve high performance, even for sparse matrices.

4.1 Optimizations

In order to achieve the announced complexity we need to use asymptotically fast
algorithms, in particular to deal with polynomial arithmetic. One of the main
concerns is then the computation of the inverse of the block-Hankel matrix and
the matrix-vector products with the block-Hankel/Toeplitz matrix.

Consider the block-Hankel matrix H ∈ Zn×n
p defined by 2m − 1 blocks of

dimension s denoted αi in equation (4). Let us denote the matrix power series

H(z) = α1 + α2z + . . . + α2m−1z
2m−2.

One can compute the off-diagonal inverse formula of H using [17, theorem 3.1]
with the computation of

• two left sigma bases of [H(z)t | I]T of degrees 2m − 2 and 2m, and

• two right sigma bases of [H(z) | I] of degrees 2m − 2 and 2m.

This computation can be done with O (̃s3m) field operation with the fast
algorithm PM-Basis of [11]. However, the use of a slower algorithm such as
M-Basis of [11] will give a complexity of O(s3m2) or O(n2s) field operations. In
theory, the latter is not a problem since the optimal s is equal to

√
n, and thus

gives a complexity of O(n2.5) field operations, which still yields the announced
complexity.

In practice, we developed implementations for both algorithms (M-Basis
and PM-Basis), using the efficient dense linear algebra of [7] and an FFT-based
polynomial matrix multiplication. Nevertheless, due to the special structure
of the series to approximate, the use of a third implementation based on a
modified version of M-Basis, where only half of the first columns (or rows) of
the basis are computed, allows us to achieve the best performance. Note that
the approximation degrees remain small (less than 1 000).

Another important point in our algorithm is the application of the off di-
agonal inverse to a vector x ∈ Zn×1

p . This computation reduces to polynomial
matrix-vector product; x is cut into chunks of size s. Contrary to the block-
Hankel matrix inverse computation, we really need to use fast polynomial arith-
metic to achieve our complexity. However, we can avoid the use of FFT-based
arithmetic since the evaluation of H−1, which is the dominant cost, can be done

12

only once at the beginning of the lifting. Let t = O(m) be the number of evalu-
ation points. One can evaluate H−1 at t points using Horner’s rules with O(n2)
field operations.

Hence, applying H−1 in each lifting step reduces to the evaluation of a vector
y ∈ Zp[x]s×1 of degree m at t points, to computing t matrix-vector product of
dimension s, and to interpolating the result. The cost for each application of
H−1 is then O(m2s + ms2) field operations, giving O(n1.5) field operations for
the optimal choice of s = m =

√
n. This cost is deduced easily from Horner’s

evaluation and Lagrange’s interpolation.
To achieve better performances in practice, we use a Vandermonde matrix

and its inverse to perform the evaluation/interpolation steps. This allows us to
maintain the announced complexity, and to benefit from the fast dense linear
algebra routine of LinBox library.

4.2 Timings

We now compare the performance of our new algorithm against the best known
solvers. As noted earlier, the previously best known complexity for algorithms
solving integer linear systems is O (̃n3 log(||A||+ ||b||)) bit operations, indepen-
dent of their sparsity. This can be achieved with several algorithms: Wiede-
mann’s technique combined with the Chinese remainder algorithm [26], Wiede-
mann’s technique combined with p-adic lifting [16], or Dixon’s algorithm [5]. All
of these algorithms are implemented within the LinBox library and we ensure
they benefits from the optimized code and libraries to the greatest extent possi-
ble. In our comparison, we refer to these algorithms by respectively: CRA-Wied,
P-adic-Wied and Dixon. In order to give a timing reference, we also compare
against the dense Maple solver. Note that algorithm used by Maple 10 has a
quartic complexity in matrix dimension.

In the following, matrices are chosen randomly sparse, with fixed or variable
sparsity, and some non-zero diagonal elements are added in order to ensure the
non-singularity.

400 900 1600 2500 3600

Maple 64.7s 849s 11098s − −
CRA-Wied 14.8s 168s 1017s 3857s 11452s

P-adic-Wied 10.2s 113s 693s 2629s 8034s

Dixon 0.9s 10s 42s 178s 429s

Our algo. 2.4s 15s 61s 175s 426s

Table 1: Solving sparse integer linear system (10 non-zero elts per row) on a
Itanium2, 1.3GHz

First, one can see from Table 1 that even if most of the algorithms have

13

the same complexity, their performance varies widely. The P-adic-Wied imple-
mentation is a bit faster than CRA-Wied since the matrix reduction modulo
a prime number and the minimal polynomial computation is done only once,
contrary to the O (̃n) times needed by CRA. Another important feature of this
table is to show the efficiency of dense LinBox ’s routines compared to sparse
routines. One can notice the improvement by a factor 10 to 20 with Dixon. An
important point to note is that O(n) sparse matrix-vector products is not as fast
in practice as one dense matrix-vector product. Our new algorithm completely
benefits from this remark and allows it to achieve similar performances to Dixon
on smaller matrices, and to outperform it for larger matrices.

In order to emphasize the asymptotic benefit of our new algorithm, we now
compare it on larger matrices with different levels of sparsity. In Figure 1, we
study the behaviour of our algorithm compared to that of Dixon with fixed
sparsity (10 and 30 non-zero elements per rows). The goal is to conserve a fixed
exponent in the complexity of our algorithm.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 6000 8000 10000 12000 14000

T
im

in
g

in
 s

ec
on

ds

Matrix dimension

Timings comparison Dixon Vs Our algo. for integer linear system solving

Our algo. − 10 non−zero elts/row
Dixon − 10 non−zero elts/row

Our algo. − 30 non−zero elts/row
Dixon − 30 non−zero elts/row

Figure 1: Comparing our algo. with Dixon’s algorithm (fixed sparsity) on a
Itanium2, 1.3GHz

With 10 non-zero element per row, our algorithm is always faster than
Dixon’s and the gain tends to increase with matrix dimension. Its not exactly
the same behaviour when matrices have 30 non-zero element per row. For small
matrices, Dixon still outperforms our algorithm. The crossover appears only
after dimension 10 000. This phenomenon is explained by the fact that sparse
matrix operations remain too costly compared to dense ones until matrix di-
mensions become sufficiently large that the overall asymptotic complexity plays
a more important role.

14

This explanation is verified in Figure 2 where different sparsity percentages
are used. The sparser the matrices are, the earlier the crossover appears. For
instance, with a sparsity of 0.07%, our algorithm becomes more efficient than
Dixon’s for matrices dimension greater than 1600, while this is only true for
dimension greater than 2500 with a sparsity of 1%. Another phenomenon when
examining matrices of a fixed percentage density is emphasized by the Figure
2. This is because Dixon’s algorithm again becomes the most efficient, in this
case, when the matrices become large. This is explained by the variable sparsity
which leads to a variable complexity. For a given sparsity, the larger the matrix
dimensions the more non-zero entries per row, and the more costly our algorithm
is. As an example, with 1% of non zero element, the complexity is doubled from
matrix dimension n = 3 000 to n = 6 000. As a consequence, the performances
of our algorithm drop with matrix dimension in this particular case.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1000 2000 3000 4000 5000 6000

R
at

io
s

Matrix dimension

Timings ratio of our algo./Dixon for integer linear system solving

sparsity=0.07%
sparsity=0.30%
sparsity=1.00%

crossover line

Figure 2: Gain of our algo. from Dixon’s algorithm (variable sparsity) on a
Itanium2, 1.3GHz

4.3 The practical effect of different blocking factors

In order to achieve even better performance, one can try to use different block
dimensions rather than the theoretical optimal

√
n. The Table 2 studies exper-

imental blocking factors for matrices of dimension n = 10 000 and n = 20 000
with a fixed sparsity of 10 non-zero elements per rows.

One notices that the best experimental blocking factors are far from the
optimal theoretical ones (e.g., the best blocking factor is 400 when n = 10 000
whereas theoretically it is 100). This behaviour is not surprising since the larger

15

n= 10 000

block size 80 125 200 400 500
timing 7213s 5264s 4059s 3833s 4332s

n= 20 000

block size 125 160 200 500 800
timing 44720s 35967s 30854s 28502s 37318s

Table 2: Blocking factor impact (sparsity= 10 elts per row) on a Itanium2,
1.3GHz

the blocking factor is, the fewer sparse matrix operations and the more dense
matrix operations are performed. As we already noted earlier, operations are
performed more efficiently when they are dense rather than sparse (the cache
effect is of great importance in practice). However, as shown in Table 2, if the
block dimensions become too large, the overall complexity of the algorithm in-
creases and then becomes too important compared to Dixon’s. A function which
should give a good approximation of the best practical blocking factor would
be based on the practical efficiency of sparse matrix-vector product and dense
matrix operations. Minimizing the complexity according to this efficiency would
lead to a good candidate blocking factor. This could be done automatically at
the beginning of the lifting by checking efficiency of sparse matrix-vector and
dense operation for the given matrix.

Concluding remarks

We give a new approach to solving sparse linear algebra problems over the inte-
gers by using sparse or structured block projections. The algorithm we exhibit
works well in practice. We demonstrate it on a collection of very large ma-
trices and compare it against other state-of-the art algorithms. Its theoretical
complexity is sub-cubic in terms of bit complexity, though it rests still on a
conjecture which is not proven in the general case. We offer a rigorous treat-
ment for a small blocking factor (2) and provide some support for the general
construction.

The use of a block-Krylov-like algorithm allows us to link the problem of
solving sparse integer linear systems to polynomial linear algebra, where we can
benefit from both theoretical advances in this field and from the efficiency of
dense linear algebra libraries. In particular, our experiments point out a general
efficiency issue of sparse linear algebra: in practice, are (many) sparse operations
as fast as (correspondingly fewer) dense operations? We have tried to show
in this paper a negative answer to this question. Therefore, our approach to
providing efficient implementations for sparse linear algebra problems has been
to reduce most of the operations to dense linear algebra on a smaller scale. This

16

work demonstrates an initial success for this approach (for integer matrices),
and it certainly emphasizes the importance of well-designed (both theoretically
and practically) sparse, symbolic linear algebra algorithms.

Acknowledgment

We would like to thank George Labahn for his comments and assistance on the
Hankel matrix inversion algorithms.

References

[1] D. Cantor and E. Kaltofen. Fast multiplication of polynomials over arbi-
trary algebras. Acta Informatica, 28:693–701, 1991.

[2] L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Vil-
lard. Efficient matrix preconditioners for black box linear algebra. Linear
Algebra and its Applications, 343–344:119–146, 2002.

[3] Z. Chen and A. Storjohann. A blas based c library for exact linear algebra
on integer matrices. In ISSAC ’05: Proceedings of the 2005 international
symposium on Symbolic and algebraic computation, pages 92–99, New York,
NY, USA, 2005. ACM Press.

[4] D. Coppersmith. Solving homogeneous linear equations over GF[2] via
block Wiedemann algorithm. Mathematics of Computation, 62(205):333–
350, Jan. 1994.

[5] J. D. Dixon. Exact solution of linear equations using p-adic expansions.
Numerische Mathematik, 40:137–141, 1982.

[6] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen,
E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A
generic library for exact linear algebra. In A. M. Cohen, X.-S. Gao, and
N. Takayama, editors, Proceedings of the 2002 International Congress of
Mathematical Software, Beijing, China, pages 40–50. World Scientific, Aug.
2002.

[7] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite field linear algebra
package. In Gutierrez [12], pages 63–74.

[8] W. Eberly, M. Giesbrecht, and G. Villard. On computing the determinant
and Smith form of an integer matrix. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, page 675. IEEE Com-
puter Society, 2000.

[9] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, New York, USA, 1999.

17

[10] M. Giesbrecht. Efficient parallel solution of sparse systems of linear dio-
phantine equations. In Parallel Symbolic Computation (PASCO’97), pages
1–10, Maui, Hawaii, July 1997.

[11] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of poly-
nomial matrix computations. In R. Sendra, editor, Proceedings of the
2003 International Symposium on Symbolic and Algebraic Computation,
Philadelphia, Pennsylvania, USA, pages 135–142. ACM Press, New York,
Aug. 2003.

[12] J. Gutierrez, editor. ISSAC’2004. Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation, Santander, Spain.
ACM Press, New York, July 2004.

[13] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, fifth edition, 1979.

[14] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for
the parallel solution of sparse linear systems. Mathematics of Computation,
64(210):777–806, Apr. 1995.

[15] E. Kaltofen. Analysis of Coppersmith’s block Wiedemann algorithm for
the parallel solution of sparse linear systems. Mathematics of Computation,
64(210):777–806, 1995.

[16] E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving
sparse linear systems. In Applied Algebra, Algebraic Algorithms and Error–
Correcting Codes (AAECC ’91), volume 539 of LNCS, pages 29–38, Oct.
1991.

[17] G. Labahn, D. K. Chio, and S. Cabay. The inverses of block hankel and
block toeplitz matrices. SIAM J. Comput., 19(1):98–123, 1990.

[18] R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact
solutions to systems of linear equations. In Proc. EUROSAM’79, volume
72 of Lecture Notes in Computer Science, pages 65–72, Berlin-Heidelberg-
New York, 1979. Springer-Verlag.

[19] T. Mulders and A. Storjohann. Diophantine linear system solving. In
International Symposium on Symbolic and Algebraic Computation (ISSAC
99), pages 181–188, Vancouver, BC, Canada, July 1999.

[20] T. Mulders and A. Storjohann. Certified dense linear system solving. Jour-
nal of Symbolic Computation, 37(4):485–510, 2004.

[21] B. D. Saunders and Z. Wan. Smith normal form of dense integer matrices,
fast algorithms into practice. In Gutierrez [12].

[22] A. Storjohann. The shifted number system for fast linear algebra on integer
matrices. Journal of Complexity, 21(4):609–650, 2005.

18

[23] W. J. Turner. Black Box Linear Algebra with Linbox Library. PhD thesis,
North Carolina State University, May 2002.

[24] G. Villard. A study of Coppersmith’s block Wiedemann algorithm using
matrix polynomials. Technical Report 975–IM, LMC/IMAG, Apr. 1997.

[25] P. S. Wang. A p-adic algorithm for univariate partial fractions. In Proceed-
ings of the fourth ACM symposium on Symbolic and algebraic computation,
pages 212–217. ACM Press, 1981.

[26] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE
Transactions on Information Theory, 32(1):54–62, Jan. 1986.

19

