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Abstract 

 

To analyze the compartmentation of nucleolar protein complexes, the mechanisms 

controlling targeting of nucleolar processing proteins onto rRNA transcription sites has 

been investigated. We studied the reversible disconnection of transcripts and processing 

proteins using digitonin-permeabilized cells in assays capable of promoting nucleolar 

reorganization. The assays show that the dynamics of nucleolar reformation is ATP/GTP-

dependent, sensitive to temperature, and CK2-driven. We further demonstrate the role of 

CK2 on the rRNA processing protein B23. Mutation of the major CK2 site on B23 induces 

reorganization of nucleolar components that separate from each other. This was confirmed 

in assays using extracts containing B23 mutated in the CK2 binding sites. We propose that 

phosphorylation controls the compartmentation of the rRNA processing proteins and that 

CK2 is involved in this process. 
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Introduction 

The nucleolus is a model organelle to study nuclear compartmentation (Strouboulis and 

Wolffe, 1996). In the nucleolus ribosomal RNAs (rRNAs) are synthesized, processed and 

assembled with ribosomal proteins to form the small 40S and large 60S pre-ribosome 

subunits (for a review, see (Shaw and Jordan, 1995)). The dynamic integration of these 

different processes generates a typical nucleolar organization. Three main specific 

components are observed by electron microscopy (Scheer and Hock, 1999), the fibrillar 

centers (FCs) that are light areas surrounded by a highly contrasted region, the dense 

fibrillar component (DFC), and the granular component (GC) in which the FCs and DFC 

are embedded. In the active nucleolus, the early rRNA processing proteins associated with 

transcripts during elongation are localized in the central part of the nucleolus, i. e. in the 

DFC. The processing proteins associated with late steps of rRNA processing are localized 

in the external part of the nucleolus, i. e. in the GC. 

The organization of active nucleoli illustrates the coordination that exists between 

transcription and processing mechanisms, and the recruitment of the nucleolar protein 

complexes at specific steps of ribosome biogenesis. However the mechanisms that control 

the compartmentation of nucleolar protein complexes are poorly understood. With this in 

mind, we undertook to determine whether phosphorylation drives the connection of the 

processing proteins on rRNAs. 

It has been established that nucleolar disorganization can be induced by DRB (5, 6 

dichloro-1-ß-D-ribofuranosylbenzimidazole) (Granick, 1975a, 1975b; Scheer et al., 1984; 

Haaf et al., 1991; Le Panse et al., 1999). Typically the ribosomal genes extend into the 

nucleoplasm forming the nucleolar necklace, each of the beads of the necklace 

corresponding to individual transcription sites in association with early rRNA processing 

proteins (Granick, 1975a; Haaf and Ward, 1996). More recently it was demonstrated that 

DRB also induces the formation of masses containing late rRNA processing proteins at a 

distance from the transcription sites (David-Pfeuty et al., 2001; Louvet et al., 2005). Thus, 

there results a separation between rRNA transcription sites and late rRNA processing 

proteins, illustrating the disconnection between DFC and GC. When DRB is removed, the 

nucleolar processing proteins are reconnected with the rRNA transcripts and nucleolar 

organization is restored. We propose that this experimental approach provides a 
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convenient tool to analyze the mechanism controlling compartmentation of late processing 

proteins in GC and interaction between DFC and GC. 

 

In the present study we developed an in vitro assay using digitonine-permeabilized cells 

capable of promoting nucleolar reorganization after DRB removal. By loading the 

cytoplasm of the permeabilized cells, we investigated the parameters that favor nucleolar 

formation. In addition, the role of CK2 on nucleolar compartmentation of B23 (also known 

as nucleophosmin, numatrin or No38) was examined using overexpression of B23 

mutants. B23, a phosphoprotein substrate of CK2, is a master protein in GC. It is 

preferentially associated with 28S pre-rRNA and its ribonuclease activity processes the 

internal transcribed spacer 2 of the pre-rRNA (Savkur and Olson, 1998; Itahana et al., 2003; 

Huang et al., 2005). In addition B23 has molecular chaperone activity (Hingorani et al., 

2000) regulated by CK2 phosphorylation (Szebeni et al., 2003).  

The results of these investigations indicate first that the reconnection of late processing 

proteins in GC is driven by ATP/GTP hydrolysis and is dependent on CK2, and secondly 

that CK2 phosphorylation of B23 plays an important role in nucleolar organization. 
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Materials and Methods 

Cell culture and fusion proteins 

Control HeLa cells and stable transfected HeLa cells were cultured without antibiotics in 

Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum and 

2 mM L-glutamine (Gibco BRL), in 5% CO2 at 37°C. Cells were seeded 3 times a week. 

DRB (Sigma) was dissolved in 95% ethanol and added for 4 h to the culture medium at a 

concentration of 60 µM. For ATP depletion, the cells were incubated with DMEM lacking 

glucose (Gibco BRL) and supplemented with 6 mM 2-deoxy-D-glucose (Acros Organics), 

and 10 mM sodium azide (Sigma). 

Cells (1X106/ml) in suspension were transfected using the cationic polymer reagent jetPEI 

(Qbiogene, Illkirch, France) or the effectene transfection reagent (Quiagen, Courtaboeuf 

France). 

Fusion proteins in which GFP was linked to the NH2 terminus of the proteins of interest 

were constructed in pEGFP-C1 (Clontech Laboratories, Inc). The GFP-fibrillarin and GFP-

Nop52 constructs have been described (Savino et al., 1999). The wild type GFP-B23 

construct was provided by S. Huang (Chicago, USA) (Chen and Huang, 2001), the 

substitution mutant B23-S125A was provided by M. Olson (Jackson, USA) (Szebeni et al., 

2003) and inserted into pEGFP-C1, and the substitution mutant GFP-B23-T199A and the 

deletion mutant GFP-B23-∆186-239 produced as described by (Okuda et al., 2000; 

Tokuyama et al., 2001) were gifts of A. Rousselet (Paris, France). Inserting B23 into 

pDsRed2-C1 (Clontech Laboratories, Inc) generated dsRed-B23. 

 

In vitro assay using permeabilized cells and cell extracts 

To produce permeabilized cells, HeLa cells grown on polylysine-coated slides for 24 h 

were treated for 4 h with 60 µM DRB. They were washed in transport buffer [(20 mM 

Hepes, 110 mM CH3COOK, 5 mM CH3COONa, 2 mM (CH3COO)2Mg, 2 mM DTT, 0.5 

mM EGTA) pH 7.2 and 1/25 of a mixture of protease inhibitors (Roche, Mannheim)] and 

permeabilized using 40 µg/ml digitonin (Sigma) for 5 min as described (Adam et al., 1990). 

The cells were incubated for 60 min at 37°C with either, 1) 1/3 of transport buffer 

supplemented with an ATP generating system [1 mM ATP (Fermentas Life Science, 

Canada), 5 mM creatine phosphate and 20 U/ml of creatine phosphokinase (Calbiochem, 
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UK) and 2/3 of extraction buffer (see below)], or 2) transport buffer plus ATP generating 

system and cell extracts (1/3, 2/3 respectively). In some assays, ATP was substituted by 1 

mM AMP-PNP, ADP (Sigma-Aldrich) or GTP (Fermentas Life Science) in transport buffer. 

The CK2 assays were performed using 500 or 1000 Units of CK2 complex (New England 

Biolabs) in 75 µl of a mixture (1/3, 2/3, respectively) of transport and extraction buffer (see 

below). Cell extracts were prepared from 50 x 106 exponentially growing HeLa cells, or 

HeLa permanently expressing GFP-fibrillarin and GFP-Nop52, or HeLa cells transfected 

with GFP-B23-S125A. The extracts were prepared 24 h after transfection using conditions 

ensuring that 60% of cells expressed GFP-B23-S125A.  The KPM extraction buffer (50 mM 

KCl, 50 mM Pipes KOH pH 7.25, 10 mM EGTA and 1.92 mM MgCl2) was used at 4°C as 

described (Suprynowicz and Gerace, 1986). The suspensions were sonicated until 

disruption of the nuclei, centrifuged (16,000 g for 15 min) and the supernatants frozen in 

liquid nitrogen. The protein concentration was as high as 9 mg/ml as determined using 

the BCA protein assay reagent (Pierce, USA). 

Quantification of nucleolar reformation in permeabilized cells was established based on 

the presence of separated (as masses) or connected rRNA processing proteins, or the 

presence of compact nucleoli. The observation of these three patterns was performed with 

both epifluorescence and phase-contrast microscopy (Leitz-DMRB). Percentage values are 

the averages of at least 100 cells from 4 independent experiments per assay and the assay 

were repeated 4 to 30 times. Standard deviations are represented as error bars. 

 

Antibodies, immunolabeling and microscopy 

The antibodies directed against nucleolar proteins were human autoimmune sera against 

fibrillarin or UBF (rDNA transcription factor), and goat polyclonal antibodies against B23 

(C19, Santa-Cruz, Biotechnology). The secondary antibodies conjugated with FITC or 

Texas red were from Jackson Immunoresearch. Cells were fixed in 2% paraformaldehyde 

for 20 min at room temperature and permeabilized with 0.5% Triton X-100 for 5 min. The 

first antibodies were incubated for 45 min at room temperature and revealed with Texas 

red- or FITC-conjugated secondary antibodies. The samples were mounted with Citifluor 

(Canterbury, UK) and observed with a Leica microscope. Acquisitions were performed 

with a Micromax CCD camera (Princeton Instruments, France). In other cases optical 
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sections were examined on a Leica SP2 AOBS confocal microscope with a 63X, 1.32NA 

PlanApo lens using an Argon laser (488 nm) or a Krypton laser (568 nm) to visualize FITC 

or Texas red fluorescence respectively. The images were assembled using Adobe 

Photoshop.  

 

Run-on transcription assay and quantification 

Pol I transcription assays were performed on GFP-B23-S125A transitorily transfected cells 

using Br-UTP as described (Sirri et al., 2000). Br-UTP incorporation was detected by mouse 

anti-BrdU antibodies (Sigma); the second antibodies were Texas red conjugated. For 

quantification, acquisitions were performed in 16 bit grey level without autoscale with a 

Micromax CCD camera. Fluorescence intensities of GFP and Texas red were quantified in 

nucleoli. One nucleolus was considered as one region of interest and was chosen on the 

phase contrast image. The same region of interest was used for GFP and Texas red 

fluorescence and the signals were quantified using the ImageJ software. The mean grey 

value and standard deviation were recorded.  
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Results 

 

In intact cells, nucleolar reformation after DRB removal occurs in 60 min and is ATP 

and temperature dependent 

 

We first established the criteria allowing evaluation in situ of the process of DRB-induced 

nucleolar disorganization consisting in the separation of DFC from GC (Fig. 1 a-c‘’’). The 

separation of transcription sites (detected by UBF) from the late processing proteins was 

visible after 2 h of DRB treatment (Fig. 1 b-b’’’) and fibrillarin remained associated with 

the transcripts (Louvet et al., 2005). The separation of DFC and GC identified by specific 

markers (respectively fibrillarin, and Nop52 or B23), occurred in 84% of DRB-treated cells 

after 4 h (Fig. 1 c-c’’’). Consequently, this duration of DRB treatment was used in further 

experiments. Reformation of the nucleolus was observed 20, 40 and 60 min after DRB 

removal; it was possible to quantify the cells in which the nucleolar components were 

separated and to identify two steps during nucleolar reformation (Fig. 1 d-e’’’). The first 

step was the connection between GC proteins and fibrillarin (Fig. 1 d-d’’’) and the second 

step was compaction of the nucleolus (Fig. 1 e-e’’’). 

The distribution of the nucleolar component 60 min after DRB removal was quantified to 

evaluate the efficiency of nucleolar reformation in HeLa cells: compact nucleoli were 

observed in 83% of the cells, and nucleolar separation in none of the cells. The high 

percentage of nucleolar reformation demonstrates that the cells can overcome the DRB 

effect on nucleolar organization in 60 min. The percentage of reformation depends on the 

temperature since cells incubated at 33°C instead of 37°C exhibit only 37% of compact 

nucleoli. Interestingly, recovery was almost completely impaired by depleting the ATP 

pool (see Materials and Methods). The ATP pool was depleted during the last 30 min of 

DRB treatment and after DRB removal. After 60 min in the absence of ATP, 64% of the 

cells still exhibited a nucleolar separation indicating strong inhibition of nucleolar 

reformation. 

These results suggest that nucleolar reformation after DRB removal is at least in part, ATP 

and temperature dependent. 
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In permeabilized cells nucleolar reformation requires ATP hydrolysis 

To investigate precisely the need for ATP in nucleolar reformation, digitonine-

permeabilized cells were used. The principle of the assay is based on the permeabilization 

of the cell plasma membrane inducing cytoplasmic extraction while the nuclear envelope 

remains intact (Adam et al., 1990). The absence of nuclear diffusion was verified using 

antibodies directed against fibrillarin (not shown). We also demonstrated that 

permeabilization did not block rRNA transcription in the necklace (Fig. 2 e-e’’’). It was 

verified that permeabilization did not modify the percentage of the different nucleolar 

categories after 4 h of DRB treatment (Fig. 3 a). 

Starting with the separation of the nucleolar components, the conditions inducing 

nucleolar reformation were established by cytoplasm loading without DRB at 37°C for 60 

min (Fig. 2). Three nucleolar patterns were observed: 1) separation of the nucleolar 

component (Fig. 2 c1), 2) connection between early and late processing proteins (Fig. 2 c2, 

2 d-d’’’), and 3) compact nucleoli (Fig. 2 c3). In pattern 2, fibrillarin and protein B23 or 

Nop52 were connected (compare connection of fibrillarin and Nop52 in permeabilized 

cells in Fig. 2 d-d’’’ and connection of fibrillarin and B23 in intact cells, Fig. 1 d-d’’’). With 

only ATP-containing buffer, separation of the nucleolar components was decreased with a 

corresponding increase in connected components (84 to 47% and 9 to 43% respectively; 

Fig. 3 a,b,f). This reorganization was not observed in the absence of ATP (80% separation), 

or in the presence of DRB (84% separation), and was less efficient at 30°C (68% separation) 

than at 37°C (not shown). Thus partial reconnection of the nucleolar protein complexes 

obtained in the presence of ATP at 37°C indicates that the DRB effect on endogenous 

nucleolar proteins can be reversed. To characterize the mechanism responsible for ATP-

dependent reconnection of the late processing proteins on transcription sites, 

permeabilized cells were supplemented with GTP, ADP, or the nonhydrolyzable ATP 

analogue AMP-PNP. GTP as also ATP partially restored nucleolar reconnection (Fig. 3 c) 

whereas addition of both ATP and GTP did not further enhance the reconnection (not 

shown); ADP was less efficient, and AMP-PNP had almost no effect (Fig. 3 d-f). This 

supports the hypothesis that ATP or GTP hydrolysis is necessary to overcome DRB-

induced separation of the late processing proteins from the transcription sites. 
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In permeabilized cells nucleolar reformation is enhanced by CK2 

We next addressed the question of the improvement of nucleolar reformation by 

complementation of the ATP loading buffer with cell extracts. Nuclear targeting of the 

extracts was first verified. Extracts were generated from HeLa cells permanently 

expressing GFP-fibrillarin and GFP-Nop52 (Savino et al., 2001), and GFP was used to 

follow the loaded nucleolar proteins. GFP-fibrillarin and GFP-Nop52 were imported into 

the nucleus since the GFP signal was only detected in the nucleus (Fig. 4 a’, b’). 

Translocation efficiency of GFP-tagged proteins to the nuclei and nucleolar domain 

increased with time up to 60 min. From these observations, it seems likely that other 

nucleolar proteins contained in the extracts could also be imported into the nucleus. The 

imported GFP-fibrillarin was recruited in nucleolar structures containing endogenous 

fibrillarin detected by anti-fibrillarin antibodies (Fig. 4 a’’). It is noticeable that GFP-

fibrillarin is recruited in compact nucleoli, in the connected component and in the 

disconnected component. Similarly GFP-Nop52 co-localized with the endogenous protein 

B23 in compact nucleoli and in the connected component (Fig. 4 b’’). This indicates that the 

nucleolar proteins loaded in the cytoplasm are associated with nucleolar reorganization. 

The cell extracts loaded with ATP-containing buffer increased nucleolar reformation (56% 

connection and 11% nucleoli) compared to ATP-containing buffer alone (compare Fig. 5 a 

with Fig. 3 b). A similar efficiency was found for cell extracts loaded in GTP-containing 

buffer (Fig. 5 b). This suggests that some proteins have been removed from the nucleus 

during permeabilization or that the equilibrium of shuttling proteins is enhanced by the 

extracts loaded. 

The assay makes it possible to visualize the connection of nucleolar proteins to 

transcription sites; however the percentage of nucleolar compaction is low (less than 15%). 

As CK2 kinase is a target of DRB, it seemed possible that addition of CK2 might enhance 

nucleolar reformation by competition with DRB-inactivated CK2. We first examined the 

effect of CK2 at two concentrations in ATP-containing buffer. The effect of CK2 alone on 

nucleolar reformation was not significant except for a slight increase in the number of 

compact nucleoli (compare Fig. 5 c-d with Fig. 3 b). We next examined nucleolar 

reformation after addition of CK2 to cell extracts in ATP-containing buffer. In these 

conditions, the efficiency of nucleolar reformation was enhanced and dose-dependent 
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(10% separation, 59% connection and 31% compact nucleoli for the highest concentration; 

Fig. 5 e-f, g). This indicates that the complementation of cell extracts with CK2 enhanced 

nucleolar reformation (compared Fig. 5 a, b and e, f) and suggests a role of CK2 or of 

kinases regulated by CK2 (Miyata and Nishida, 2004) on the efficient compartmentation of 

the nucleolar protein complexes in functional nucleoli. 

 

CK2 phosphorylation plays a role in B23 compartmentation 

To investigate the role of CK2 on the compartmentation of processing nucleolar proteins, 

B23 was chosen. The sites of B23 phosphorylation in vivo have been characterized and 

depend on CK2 and cyclin-dependent kinases (CDKs) (Chan et al., 1990; Peter et al., 1990; 

Okuda et al., 2000). To determine whether B23 compartmentation depends on its 

phosphorylation by CK2, B23 mutants were used (Fig. 6 A). 

In the B23 sequence, serine 125 is the main site of CK2 phosphorylation (Szebeni et al., 

2003). The GFP-tagged B23 protein containing the amino acid substitution S125 to alanine 

(GFP-B23-S125A) is recruited into the nucleolus (Fig. 6 B a-a’’). Disruption of the nucleolus 

was not observed whatever the level of expression of B23-S125A. This was expected since 

expression of B23 deficient in CK2 phosphorylation site cannot reproduce the effect of 

DRB on a large number of proteins (Meggio and Pinna, 2003). We investigated the 

organization of nucleoli as a function of the level of expression of B23 deficient in CK2 

phosphorylation site. In cells expressing GFP-B23-S125A to high levels, the nucleolar 

organization visible in phase contrast was reticulated (Fig. 6 B a, a’). This reorganization is 

due to the mutated protein (Fig. 7 a-a’’, c-c’’) and not to its level of expression since similar 

levels of GFP-B23-WT did not form reticulated nucleoli (Fig. 7 b-b’’, d-d’’). The nucleolar 

components in reticulated nucleoli were not intermingled. UBF localized in space devoid 

of B23 most likely in the FC (Fig. 7 a-a’’), fibrillarin surrounded the FC (Fig. 7 c, c’’) and 

GFP-B23-S125A was excluded from the FC (Fig. 7 c, c’’). Therefore, reorganization of the 

nucleolus is induced by B23-S125A. This nucleolar reorganization is also illustrated by the 

decrease of rRNA transcription observed in cells expressing GFP-B23-S125A (Fig. 8 a-a’’), 

and this decrease is correlated with the level of expression of the mutant protein (Fig. 8 b).  

We then compared the effect of mutated phosphorylation sites in B23 by either CK2 or 

CDK. The effect of the amino acid substitution of the Cdk1/cyclin B and Cdk2/cyclin E 
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phosphorylation site (T199A) (Okuda et al., 2000; Tokuyama et al., 2001) on the localization 

of B23 was examined. GFP-B23-T199A was recruited in the nucleolus whatever its level of 

expression and without reorganization of the nucleoli (Fig. 9 a, a’’). Finally, deletion of a 

sequence containing cell cycle regulated sites (CDK sites comprised within amino acids 

186-239), directed GFP-B23-Δ186-239 both to the nucleolus and to the nucleoplasm (not 

shown). The sequences of RNA binding and those involved in RNase activity were not 

deleted from the construct as shown in Fig. 6 A. However the deletion covered the domain 

of hetero-dimerization implicated in interaction of B23 with several nucleolar proteins 

(Fankhauser et al., 1991; Valdez et al., 1994; Li et al., 1996; Korgaonkar et al., 2005). This 

distribution of B23-Δ186-239 did not allow testing the effect of the truncated B23 on 

nucleolar organization. 

The role of the CK2 site on B23 compartmentation was also analyzed during nucleolar 

reformation after DRB removal. Permeabilized cells were loaded with extracts containing 

GFP-B23-S125A in the conditions providing 30% of compact nucleoli as defined Fig. 5 f. 

GFP-B23-S125A was imported into the nuclei after 60 min of incubation (Fig. 10 a-b’). In 

these cells, the 3 patterns of nucleolar reformation (see Fig. 2; separated or connected 

machineries and compact nucleoli) were observed. The mutated B23 was localized in the 3 

nucleolar patterns. The main differences observed using extracts containing mutated B23 

compared to control B23 concerned machinery connection that was more heterogeneous in 

the former extracts. In addition to connected masses containing B23, weak labeling 

forming threads or large areas were visible. These areas appeared diffuse in phase contrast 

microscopy (Fig. 10 a’, b’). The traffic of the mutated protein is probably modified 

compared to the control protein and this could explain the heterogeneous organization of 

the connected machinery. Quantification of compact nucleoli versus connected machinery 

indicated a less efficient nucleolar compaction compared to control B23 (compared Fig. 10 

c with Fig. 5 f). The absence of CK2 in the buffer seemed without effect on the percentage 

of connected machinery and nucleolar compaction (Fig. 10 d-e). This suggests that the 

association of machineries during nucleolar reformation is mainly driven by the role of 

CK2 on B23 and not on other nucleolar proteins.  
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Discussion 

 

Following DRB removal, the late rRNA processing proteins are recruited on transcription 

sites, and an active nucleolus is reassembled in 1 h. The question therefore remains as to 

how translocation of the processing protein is controlled. Using digitonine-permeabilized 

cells (Wagner et al., 2004), we demonstrate that ATP hydrolysis is necessary to reconnect 

the nucleolar components after DRB removal. This suggests that phosphorylation could 

play a role in reconnection of the processing proteins and explains why this process is 

temperature-dependent. In addition to ATP or GTP, nucleolar reconnection was improved 

by the inclusion of cell extracts, the loaded nucleolar proteins participating in nucleolar 

reformation. It thus appears that certain proteins have been depleted from the nucleus 

during permeabilization or that the equilibrium of shuttling nucleolar proteins is 

enhanced by the extracts added. Consequently the next step was to enhance nucleolar 

reformation by adding a kinase that could reverse the DRB effect. As a possible candidate, 

protein kinase CK2, a serine/threonine kinase requiring ATP or GTP was chosen for the 

following reasons. The DRB effect can be partially reversed by an excess of CK2 

(Zandomeni et al., 1986), CK2 subunits are imported into the nucleus (Filhol et al., 2003), 

CK2 is constitutively active, and several nucleolar proteins are substrates of CK2 (Meggio 

and Pinna, 2003). The CK2-enriched extracts were highly efficient in facilitating the 

connection of processing proteins with rRNA transcripts (about 60%). We propose that 

CK2 activity is important for the connection of GC processing proteins with DFC (Fig 11). 

The fact that CK2 alone in ATP buffer did not enhance nucleolar reformation indicates that 

during permeabilization some proteins have been removed from the nucleus and the 

extracts restore the equilibrium between cytoplasm and nucleus. The possible role of CK2 

for the connection of GC with DFC is in accordance with the hypothesis that CK2 has a 

transversal role controlling a network of interactions (Meggio and Pinna, 2003). 

 

Among the nucleolar proteins known to be phosphorylated in vivo by CK2, the possibility 

was raised that phosphorylation of B23 might play a role on compartmentation of the 

protein. This hypothesis is based on the fact that depending on the means used to destroy 

nucleolar compartmentation, the behavior of B23 varies. Indeed B23 is homogeneously 
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distributed throughout the nucleoplasm by blocking rDNA transcription using 

actinomycin D (Yung et al., 1990; Zatsepina et al., 1997), by competition for rRNAs with 

FRGY proteins (Gonda et al., 2003), and by several anticancer drugs that interfere with 

nucleolar activity (Chan et al., 1996). On the contrary when nucleolar disorganization is 

induced by kinase inhibitors (DRB or roscovitine), B23 remains in granular masses 

disconnected of DFC (David-Pfeuty et al., 2001; Sirri et al., 2002; Louvet et al., 2005). This 

suggests at least a partial role of kinases on DFC and GC connection. It was demonstrated 

that GTP is required to bring B23 into the nucleolus whereas ATP is necessary for 

translocation to the nucleoplasm (Finch et al., 1993; Finch and Chan, 1996). As B23 is not a 

GTP-binding protein this indicates that nucleolar targeting of B23 is controlled by a GTP-

dependent mechanism. This mechanism could be related to CK2 since its kinase activity 

needs ATP or GTP. In the present study we observed reorganization of the nucleolus by 

overexpression of GFP-B23-S125A, a substitution that impairs CK2 phosphorylation of B23 

(Szebeni et al., 2003). At interphase, phosphorylation of B23 is regulated by CK2 (Chan et 

al., 1990). The modifications induced by B23-S125A, could be part of the process leading to 

disconnection of the processing nucleolar proteins from transcription since the nucleolar 

components are no longer intermingled. This nucleolar reorganization could result from 

defects in the dissociation of B23-subtrate complexes since phosphorylation of B23 by CK2 

promotes this dissociation (Szebeni et al., 2003). Similarly the perturbations of the 

nucleolar reformation induced by B23 mutated in its CK2 phosphorylation site in 

permeabilized cells could be of the same origin by modifying the B23 traffic. 

 

The B23 mutated CK2 site induced reorganization of the nucleolar component but not 

disruption of the nucleolus, as did DRB. Based on the present observations we propose 

that the B23 mutant participates in reorganization of the nucleolar component, part of the 

process leading to nucleolar disruption. However the B23 mutant had no effect on rDNA 

compaction as opposed to DRB that triggers an event necessary for nucleolar disruption. It 

is well established that DRB induces rDNA extension in the nucleoplasm forming the 

nucleolar necklace (Scheer and Rose, 1984; Haaf et al., 1991). In permeabilized cells, 31% of 

compact nucleoli were formed with CK2-enriched extracts indicating a role for these 

enriched extracts on rDNA compaction (Fig 11). This output value is significant in 
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permeabilized cell assays. However, it does not necessarily exclude that in addition to 

CK2, other partners are necessary to overcome rDNA decompaction. 

 

During interphase, modifications or blockage of ribosome production induce 

reorganization or dispersion of the nucleolar components. Nucleolar segregation is the 

most typical reorganization phenomenon resulting from blockage of rDNA transcription 

(Hadjiolov, 1985; Puvion-Dutilleul et al., 1992; Scheer et al., 1993; Dousset et al., 2000; 

Gébrane-Younès et al., 2005). In this case most of the nucleolar protein complexes remain 

closely linked, regrouped by category of functions, i.e. transcription, early processing or 

late processing. Nucleolar segregation suggests that transcription is necessary to recruit 

and maintain the sequential order of protein association necessary to build the primary 

90S pre-ribosomal complexes and then process the 40S and 60S ribosome subunits 

(Harnpicharnchai et al., 2001; Fatica and Tollervey, 2002; Fromont-Racine et al., 2003; 

Saveanu et al., 2003). 

In addition other interactions control the compartmentation of nucleolar proteins in the 

absence of ribosome biogenesis since nucleolar components are maintained and 

reorganized (Hadjiolov, 1985; Chan et al., 1996; Rubbi and Milner, 2003; Gébrane-Younès et 

al., 2005). In the case of the separation of transcription and processing masses, the 

reorganization indicates that the presence of rRNAs is not sufficient to attract processing 

proteins and that processing proteins can form nuclear structures independently of the 

transcripts. The disconnection of the rRNA processing proteins from rRNA transcripts is 

induced by kinase inhibitors suggesting that kinase(s) is (are) involved in the connection 

of the nucleolar component in active nucleoli. Here, we demonstrate the role of CK2 on the 

compartmentation of the nucleolar processing proteins. Components of CK2 have already 

been identified in several complexes containing pre-ribosomal proteins in yeast (Gavin et 

al., 2002; Ho et al., 2002; De Marchis et al., 2005) and the regulation of ribosome biogenesis 

by CK2 is well documented (for a review (Meggio and Pinna, 2003)). The nucleolar CK2 

substrates, B23, nucleolin, Nop140, UBF and pol I are localized in different nucleolar 

components, and CK2 phosphorylation could have a global role on nucleolar activity. 
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Figure legends 

 

Figure 1  

Nucleolar reformation occurs in two steps after DRB removal. a-a’’’) Control HeLa cell 

showing fibrillarin localized in the central part of the nucleolus (a’), surrounded by Nop52 

(a”), merge a’’’. b-b’’’) Separation of UBF (rDNA transcription factor) and B23 after 2 h of 

DRB treatment. c-c’’’) Separation of fibrillarin and Nop52 after 4 h of DRB treatment; in the 

merge image c’’’ green and red signals reflect the separation. d-d’’’) Connection between 

fibrillarin and B23, 20 min after DRB removal. e-e’’’) Compaction of the nucleolus 60 min 

after DRB removal. Antibodies detect Fibrillarin (αFib) or UBF; the GC proteins (Nop52 

and B23) are revealed by a GFP-tag. a, b, c, d, e: phase contrast images showing the 

nucleolar structures. Bar: 5 µm 

 

Figure 2 

Nucleolar reformation occurs in digitonine-permeabilized cells. DRB-treated HeLa cells 

were permeabilized, the cytoplasm loaded with ATP generating buffer without DRB and 

nucleolar reformation examined. a) Permeabilized control HeLa cells. b) Permeabilized 

DRB-treated cells; instead of compact nucleoli a nucleolar necklace is visible. c) Nucleolar 

reformation at 37°C, 1 h after DRB removal; c1-c3 ordered nucleolar patterns: c1 

separation, c2 connection, and c3 compact nucleolus. d-d’’’) The connection pattern 

appearing as a loosely organized nucleolus is illustrated using antibodies against 

fibrillarin (αFib) or GFP-Nop52. e-e’’’) In permeabilized cells after 4 h of DRB treatment 

rDNA transcription is detected (e’), the Nop52 protein tagged with GFP  is in masses (e’’) 

at a distance from the transcription signal (e’’’); e phase contrast. Bars: 10 µm. 

 

Figure 3 

ATP/GTP hydrolysis is needed to connect nucleolar components. Quantitative 

evaluation of nucleolar reformation in permeabilized cells in the presence of different 

nucleotides. a) After 4 h of DRB treatment, 84% of the cells exhibit separation of the 

nucleolar component, 9% exhibit loosely organized connected component, and 7% exhibit 

compact nucleoli; grey, hatched and black columns, respectively. b) After one h having 
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removed DRB, the percentage of the three patterns was estimated using loading buffer 

containing ATP; c) GTP; d) ADP; e) AMP-PNP. ATP and GTP induced about 45% 

reconnection of the processing proteins whereas ADP was less efficient with only 30% 

connection. The non hydrolysable ATP analogue AMP-PNP had almost no effect 

compared to DRB treated cells. Significant nucleolar reformation (compact) was not 

observed. f) The table corresponds columns 1-3 to the percentage of nucleolar organization 

in each condition from 4 different samples of one representative assay. Column 4: total 

number of cells observed in the 4 samples. Column 5: total number of assays performed. 

 

Figure 4 

Tagged proteins present in cell extracts are properly targeted. DRB-treated HeLa cells 

were permeabilized and loaded with cell extracts containing GFP-tagged nucleolar 

proteins for 1 h at 37° C. Note the colocalization in the same nucleolar component of 

exogenous (GFP-tagged proteins) and endogenous proteins detected with antibodies, a-a” 

fibrillarin; b-b” GFP-Nop52 and B23 detected with the corresponding antibodies. Bar: 10 

µm. 

 

Figure 5 

Cell extracts and CK2 are needed for nucleolar reformation. a, b) ATP-containing buffer 

was complemented with whole-cell protein extracts. This induced the connection of the 

nucleolar component in more than 50% of the cells. c, d) ATP-containing buffer 

complemented with CK2 respectively 500 or 1000 U. e, f) ATP-containing buffer 

complemented with whole-cell extracts and CK2 was the most efficient leading to more 

than 30 % compact nucleoli. Separated and connected nucleolar components and compact 

nucleoli, grey, hatched and black columns respectively. g) The table corresponds in 

columns 1-3 to the percentage of nucleolar organization in each condition from 4 different 

samples of one representative assay one h after having removed DRB. Column 4: total 

number of cells observed in the 4 samples. Column 5: total number of assays performed. 

 

Figure 6 
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Mutation of CK2 phosphorylation site of B23 induces reticulated nucleoli. A) Constructs 

of B23: wild type (WT); ∆186-239 corresponds to the deletion mutation of the CDK sites 

(Okuwaki et al., 2002); S125A corresponds to the substitution mutation S125 by alanine in 

the region of the sequence containing the CK2 binding site (Szebeni et al., 2003); T199A 

corresponds to the substitution mutation T199 by alanine (Tokuyama et al., 2001). Arrows 

point to the major phosphorylation sites in B23 domains: black box corresponds to the 

acidic region, the grey box to RNase activity, and the striped box to RNA binding activity 

(Hingorani et al., 2000).  

B) Overexpression of GFP-B23-S125A in HeLa cells. a-a’’) Note the reticulated 

organization of the nucleoli visible by phase contrast (a’) only in cells expressing the GFP-

B23 mutant (a); a” antibodies against B23. Bar: 10 µm. 

 

Figure 7 

Expression of B23-S125A induces redistribution of UBF and fibrillarin in nucleoli. a-a”) 

In the reticulated nucleoli overexpressing GFP-B23-S125A, UBF localized in the B23 

depleted zone; see enlarged nucleoli in a’’. b, b”) In the nucleolus expressing GFP-B23-WT, 

the distribution of B23 is homogeneous relative to UBF. c- c”) In nucleoli overexpressing 

GFP-B23-S125A, fibrillarin distributed around the B23 depleted zone; see enlarged 

nucleoli in c’’. d-d”) In the nucleolus expressing GFP-B23-WT, the distribution of B23 is 

homogeneous relative to fibrillarin. Confocal optical sections. Bars: 1 µm. 

 

Figure 8 

Expression of GFP-B23-S125A decreases rRNA transcription. a-a”) Cells expressing or 

not expressing GFP-B23-S125A. The two transfected cells (a’) exhibit a reticulated 

nucleolus (a). Pol l transcription revealed by Br-UTP incorporation shows a decrease of the 

signal in the transfected cells (a”). b) Graph representing the transcription level as a 

function of GFP level in 30 nucleoli in untransfected cells (background; white triangles) 

and 35 nucleoli in transfected cells (grey circles); arbitrary units. Bar: 10 µm.  

 

Figure 9 
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Expression of GFP-B23-T199A has not effect on nucleolar organization. In control cells 

the mutant B23 protein localizes in the nucleoli as does endogenous B23 detected by 

antibodies, and reticulated nucleoli are not observed. a) GFP-B23-T199A; a’) phase 

contrast; a’’) B23 antibodies. Bar: 10 µm. 

 

Figure 10 

Cell extracts containing a mutated site in B23 for CK2 phosphorylation, impaired 

nucleolar reformation. DRB-treated cells were permeabilized, the cytoplasm loaded with 

ATP generating buffer without DRB, and the cell extracts containing GFP-B23-S125-A, and 

CK2 and nucleolar reformation was examined. a, b) Masses and structures containing 

mutated GFP-B23 at different stages of nucleolar machinery connection. a’, b’) Same cells 

in phase contrast showing diffuse organization of nucleolar machineries. Bar: 4 µm. 

c , d) ATP-containing buffer complemented with extracts prepared from cells transfected 

with GFP-B23-S125A. This induced the connection of nucleolar machineries in more than 

60% of the cells. ATP-containing buffer complemented (c) or not (d) with CK2 1000 U. 

Separated and connected nucleolar components and compact nucleoli, grey, hatched and 

black columns respectively. f) The table corresponds in columns 1-3 to the percentage of 

nucleolar organization in each condition from 4 different samples of one representative 

assay. Column 4: total number of cells observed in the 4 samples. Column 5: total number 

of assays performed. 

 

Figure 11 

Nucleolar reformation after DRB removal requires ATP hydrolysis and is driven by 

CK2. DRB induced the separation of nucleolar transcription (circle) from late processing 

proteins (square). After DRB removal the nucleolar components first reconnect before 

being compacted into a nucleolus. The efficiency of ATP, GTP and CK2 on connection of 

nucleolar components is high (black bent arrow), whereas the efficiency of CK2 alone on 

nucleolar compaction is moderate (grey bent arrow). 
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