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SUMMARY

A computational method is proposed to simulate 3D unsteady cavitating 
ows in spatial turbopump
inducers. It is based on the code FineTurbo, adapted to take into account two-phase 
ow phenomena.
The initial model is a time-marching algorithm devoted to compressible 
ow, associated with a low-
speed preconditioner to treat low Mach number 
ows. The presented work covers the 3D implementation
of a physical model developed in LEGI for several years to simulate 2D unsteady cavitating 
ows. It is
based on a barotropic state law that relates the 
uid density to the pressure variations. A modi�cation
of the preconditioner is proposed to treat e�ciently as well highly compressible two-phase 
ow areas
as weakly compressible single-phase 
ow conditions.
The numerical model is applied to time-accurate simulations of cavitating 
ow in spatial turbopump

inducers. The �rst geometry is a 2D Venturi type section designed to simulate an inducer blade suction
side. Results obtained with this simple test case, including the study of its general cavitating behaviour,
numerical tests, and precise comparisons with previous experimental measurements inside the cavity,
lead to a satisfactory validation of the model. A complete three-dimensional rotating inducer geometry
is then considered, and its quasi-static behaviour in cavitating conditions is investigated. Numerical
results are compared to experimental measurements and visualizations, and a promising agreement is
obtained. 
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0. INTRODUCTION

In rocket engine turbopumps, disturbances due to cavitation phenomena can lead to substan-
tial performance losses and=or strong unsteady forces acting on the pump components. The
understanding of the unsteady behaviour of cavitation is therefore of primary importance for
design purposes and has motivated the present development.
The cavitating 
ows observed in spatial turbopump inducers are characterized by complex,

three-dimensional, two-phase structures, which are often localized close to the blades, as for
example in the case of inducer tip cavitation. They are usually composed of a liquid=vapour
mixture, whose structure can only be described macroscopically by de�ning a void ratio.
Moreover, the cavitation process is often unsteady. Experimental results point out two main
types of cavitation instability:

• a self-oscillation behaviour of cavitation sheets, whose mechanism was studied in cavi-
tation tunnels and analysed in detail by many authors [1–4].

• a rotating cavitation pattern, showing di�erent sizes of the cavitation structures in the
di�erent blade-to-blade passages of the machine and leading to super- or sub-synchronous
instabilities [5].

The di�culty of predicting inducer cavitating behaviour is aggravated by these complex
properties of the 
ow �eld: three-dimensional, rotating, turbulent, unsteady, weakly compress-
ible in the single-phase areas, highly compressible in two-phase 
ow conditions, and charac-
terized by continuous phase changes. Previous numerical and theoretical models of cavitating

ows in pump inducers proposed for example by Kueny et al. and Von Kaenel et al. [6, 7]
are based on the numerical simulation of steady cavitation sheets, attached to the blades.
The cavities are usually considered as pure vapour, and the 
ow �eld inside of them is not
modelled. These models predict only the mean shape of sheet cavities on the blades.
Physical cavitation models proposed by Delannoy [8] and Kubota et al. [9] are more

e�ective for inducer applications, since they allow a complete 3D unsteady description of
the cavitating conditions in the machine: vapour is created in all low pressure areas. In
the �rst case local 
uid density is controlled by a barotropic state law, while in the sec-
ond case it is governed by the evolution of bubbles in the pressure gradient, on the ba-
sis of the Rayleigh–Plesset equation [10]. Three-dimensional Navier–Stokes codes based on
these physical descriptions have been developed recently by Takasugi et al. [11], Alajbegovic
et al. [12], Kunz et al. [13], Bunnel and Heister [14], and �rst applications to pump
geometries have been presented by Combes and Archer [15] and Medvitz et al. [16].
To gain further knowledge concerning cavitating 
ows in inducers, a three-dimensional

model of steady and unsteady cavitation for inviscid or viscous 
uids is developed in the
LEGI laboratory. That work is performed in co-operation with the Rocket Engine Division of
SNECMA Moteurs and the French Space Agency CNES, with the �nal objective to provide
accurate simulations of unsteady cavitating 
ows in the inducers of rocket engine turbop-
umps. The numerical model results from the integration in the 3D code FineTurbo devel-
oped by Numeca Int. [17–19] of a physical cavitation model. This one is based on previous
work performed in LEGI, concerning 2D numerical simulations of unsteady cavitating 
ows
[3, 8, 20, 21]. The two-phase aspects of cavitation are treated by introducing a barotropic state
law that strongly links the 
uid density to the pressure variations. The liquid–vapour mixture
is considered as a single 
uid in which the density varies from the liquid one to the vapour
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one, with respect to the local static pressure. The main numerical challenge of this approach
results from the di�culty to manage both an almost incompressible state in the pure vapour
or pure liquid phases, and a highly compressible state in the liquid/vapour transition zone
[22–25].
The present paper focuses on the computational method applied to treat e�ciently this two-

phase 
ow simulation. The use of the barotropic state law in association with a time-marching
algorithm is not straightforward: rapid space and time density 
uctuations deteriorate the nu-
merical stability, and the standard low-speed preconditioner is only devoted to incompressible
or low-compressible 
ow. Although the preconditioner is here necessary to treat pure liquid
and pure vapour con�gurations, its e�ciency is thus very poor in the two-phase compress-
ible regions. A complete stability analysis was performed in Reference [26] to improve the
understanding of these problems. The main results of this study are reported here, and
solutions ensuring as well stability as satisfactory convergence rate and speed are presented
in details. They imply local modi�cations of the preconditioner in the vapour=liquid mixture,
associated with a control of the density evolution at each step of the numerical resolution.
The presented computational method is validated for the prediction of the quasi-static

behaviour of turbopump inducers. Two test cases are successively considered, respectively
a two-dimensional Venturi type section, and a complete three-dimensional rotating inducer.
The �rst one was designed so that the 
ow is subjected to the same pressure �eld as in an
inducer blade-to-blade channel. It is thus representative of the cavitating conditions occurring
in a real inducer, although its geometry is considerably simpler and phenomena associated
with the machine rotation are not present. The geometry considered is characterized by a 4◦

divergence angle, leading to a rather stable behaviour that has been already studied experimen-
tally and numerically in LEGI [3, 27–29]. The second test case is a spatial turbopump inducer,
whose experimental behaviour was investigated previously in the CREMHyG laboratory.
Time accurate simulations are performed on these two geometries. The aim in the �rst case

is to test the numerical model in a simple con�guration, to check the accuracy of the results
and the in
uence of the numerical parameters. The second test case is a �rst attempt to predict
the cavitating 
ow �eld in a complete 3D geometry, and compare it to experimental results.
This validation of the code concerns presently only quasi-static two-phase 
ow conditions:
pronounced unsteady behaviour associated with cavitation is out of the scope of this study.
Current work is in progress to simulate e�ciently such con�gurations.
The main interest of the presented numerical model, compared to the previous ones, is

its capability to predict the whole cavitating structure (including for example tip cavitation)
that appear in an inducer in operating conditions, instead of only giving the extension of the
attached cavities on the blades.
The paper presents the physical approach in Section 1, and the main features of the numer-

ical method in Section 2, with emphasis on the special treatment required by the two-phase

ow model.
Section 3 is devoted to the modellization of the Venturi type section behaviour. Details of its

geometry are presented in Section 3.1. A large range of cavitation number was investigated, in
order to evaluate the model e�ciency. The in
uence of the numerical and physical parameters
was studied, and the conclusions are proposed in Section 3.2. Quantitative comparisons with
experimental measurements are also analysed in Section 3.3.
The three-dimensional rotating inducer calculation is presented in Section 4. The quasi-static

behaviour of the cavitating 
ow �eld is investigated in a large range of NPSH (net pressure
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suction head). Starting from initial non-cavitating operating conditions, the NPSH is decreased
slowly, down to highly cavitating conditions leading to the machine performance breakdown.
Head drop charts obtained by the calculation are compared to the experimental ones, and the
extension of the two-phase structures in the inducer are compared to visualizations performed
previously at the CREMHyG laboratory.

1. THE PHYSICAL MODEL

Generally, two-phase 
ow models are based on the assumption that the 
uid is present in the
computational domain both as liquid and vapour. The vapour is characterized by a density
�v, and the liquid by a density �l. On each cell of the mesh, the unknowns are calculated for
each phase, by averaging them on the volume occupied, respectively, by liquid and gas [30].
Neglecting the thermal e�ects, the number of balance equations in 3D is eight because

of the two phases. These equations govern the behaviour of the two-phase structures larger
than the cells, whereas the smaller structures are modelled by closure laws, which calculate
empirically the 
uxes of mass and momentum between the two phases. The di�culty of this
kind of approach is to evaluate the transfer terms of mass and momentum in the balance
equations.
In the present work, we apply a single 
uid model based on previous numerical and phys-

ical work developed in LEGI [8, 20]. It assumes that only one 
uid is considered. This 
uid
is characterized by a density � that varies in the computational domain according to a state
law (Figure 1). When the density in a cell equals the liquid one �l, the whole cell is occu-
pied by liquid, and if it equals the vapour one �v, the cell is full of vapour. Between these
two extreme values, the cell is occupied by a water=vapour mixture that we still consider as
one single 
uid. The void fraction �=(�− �l)=(�v − �l) can be de�ned as the local ratio of
vapour contained in this mixture. If the cell is full of vapour, then �=1. If a cell is totally
occupied by liquid, �=0. In this simple model, the void ratio � is related to the state law,
the 
uxes between the phases are treated implicitly, and no supplementary assumptions are
required.
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Figure 1. Barotropic state law �(P).
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Indeed, concerning the momentum 
uxes, our model assumes that locally (in each cell),
velocities are the same for liquid and for vapour: in the mixture regions gas structures are sup-
posed to be perfectly carried along by the main 
ow (the friction forces are high, compared to
the buoyancy forces). This hypothesis is often assumed for this problem of sheet-cavity 
ows,
in which the interface is considered to be in dynamic equilibrium [13, 22]. The momentum
transfer between the phases is thus strongly linked to the mass transfer.
Mass 
uxes resulting from vapourization and condensation processes are governed by the

state law. In the present work, an empirical barotropic law �(P) that links the density to
the local static pressure is used. When the pressure is, respectively, higher or lower than
the vapour pressure, the 
uid is supposed to be purely liquid or purely vapour, according to
respectively the Tait equation [9] and to the perfect gas law. In this last case, temperature
T0 is imposed, since thermal e�ects associated with vapourization and condensation are not
considered in the present study.

�=
P

rpgT0
(perfect gas law for the pure vapour) (1)

�= �ref · n

√

P + P0
Pref + P0

(Tait law for the pure liquid) (2)

where Pref and �ref are reference pressure and density, and rpg is the constant for the per-
fect gas. For water, P0=3× 108 and n=7.
The two 
uid states are joined smoothly in the vapour-pressure neighbourhood by the

following law:

�=Ab + Bb × sin

(

1

Bb

P − Pvap
C2min

)

(3)

with Ab and Bb constants depending from the connection between the three parts of the state
law, at the points (Pl; �l), and (Pv; �v).

Ab=
�l + �v
2

and Bb=
�l − �v
2

(4)

It results in the evolution law presented in Figure 1, characterized mainly by its maximum
slope 1=C2min, where C

2
min=(@P=@�)min. Cmin can thus be interpreted as the minimum speed of

sound in the two-phase mixture.

2. THE COMPUTATIONAL METHOD

The numerical model used to simulate cavitating 
ow �elds is based on the 3D commercial
code FineTurbo developed by Numeca Int. The cavitation model presented in the previous
section was integrated into the algorithm, and some speci�c numerical treatments were applied
to make this integration fully e�cient. FineTurbo is a three-dimensional structured mesh
code that solves the time dependent Reynolds-averaged Navier–Stokes equations, and whose
a detailed description can be found in References [17–19]. We present here the main features
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of the numerical resolution, with emphasis on the modi�cations introduced in the code to treat
cavitating 
ow �elds.

2.1. Steady-state calculations

The solution strategy of steady state problems is based on a time marching algorithm [31],
with explicit Runge–Kutta time stepping. In the proposed cavitation model, thermal e�ects are
neglected in the vapourization and condensation phenomena (see Section 1), so temperature
does not appear in the state law of the 
uid. As a consequence, the energy equation is
disconnected from the others: the temperature �eld has no in
uence on the resolution of the
mass and momentum equations. Its resolution is thus of no use, and it is omitted hereafter.
So the resulting governing equations, written in an integral conservative form in a control
volume V whose surface is S, are:

∫∫∫

V

@U

@�
dV +

∫∫

S

(Finv + Fv) · n dS=
∫∫∫

V

Sce dV (5)

where

U=(�; �u; �v; �w);

Finv and Fv are the inviscid and viscous 
uxes across the frontier S of V (normal n) Sce is
the source term, and � is the numerical time-step.
Convergence is reached when the time derivative terms, which have no physical meaning,

vanish.

2.2. Unsteady calculations

The time-accurate resolution procedure uses the dual time stepping approach (see References
[31, 32]). Compared to the steady-state formulation, the physical time derivative terms are
added and the governing equations become

@

@t

∫∫∫

V

U dV +

∫∫∫

V

@U

@�
dV +

∫∫

S

(Finv + Fv) · n dS=
∫∫∫

V

Sce dV (6)

At each physical time-step, a steady state problem is solved in pseudo-time and convergence
is enhanced by a Multigrid strategy [19] coupled with local time stepping and implicit residual
smoothing [19]. The above formulation is devoted to highly compressible 
ows. In the case of
low-compressible or incompressible 
ows, its e�ciency decreases dramatically. As a matter of
fact, at low Mach number the convective speed v of the 
ow becomes small, compared with
the acoustic speed c. In other words, the eigenvalues of the system become much di�erent,
and the local time-step, which is based on the highest of these eigenvalues, is not adapted to
the lowest waves, whose speed is v. This can be seen in the expression for the eigenvalues,
expressed hereafter for a propagation direction n:

�1;2 = v · n

�3;4 = v · n ± c|n|
(7)

As a result, the time-marching algorithms converge very slowly in such con�guration.
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2.3. Low-speed preconditioner

This well-known problem has been addressed by many authors and solved by introducing a
preconditioner [33–37] in the Navier–Stokes equations. It is based on the modi�cation of the
pseudo-time derivative terms in the governing equations. Such modi�cations have no in
uence
on the converged result, since these terms are of no physical meaning, and converge to zero.
The resulting preconditioned system is controlled by pseudo-acoustic eigenvalues much closer
to the advective speed, reducing the eigenvalue sti�ness and enhancing the convergence.
The simplest development consists in adding in the continuity equation a term (1=�2p)@P=@�.

This solution was initially proposed by Chorin [38] to turn the system into an hyperbolic one,
so that compressible time-marching algorithms can be applied. It was more recently improved
by Choi and Merkle [33], who tuned the optimal value for �p, and by Turkel [34–36] who
proposed for a two-dimensional inviscid problem a supplementary term �pv=�

2
p@P=@� in the

momentum equation:

1

��2p

@P

@�
+

1

�c2

(

u
@P

@x
+ v

@P

@y

)

+
@u

@x
+
@v

@y
=0

�pu

��2p

@P

@�
+
@u

@�
+ u

@u

@x
+ v

@u

@y
+
1

�

@P

@x
=0

�pv

��2p

@P

@�
+
@v

@�
+ u

@v

@x
+ v

@v

@y
+
1

�

@P

@y
=0

(8)

The term (1=c2)
(

u @P
@x
+ v @P

@y

)

is derived from u @�
@x
+ v @�

@y
, considering the particular case

of perfect gases. Turkel analysed the in
uence of the two preconditioning parameters �p and
�p in this case, in order to remove the sti�ness of the system. Further investigations were
presented by Choi and Merkle [33] to extend the capability of his preconditioner to treat
viscous applications.
In the present work, the preconditioner of Hakimi [17] is applied. It is based on these two

previous studies, and it consists in multiplying the pseudo-time derivative terms by a matrix
�−1 called the preconditioning matrix. The resulting governing equations are solved in the
following conservative form:

∫∫∫

V

�−1 @Q

@�
dV +

∫∫

S

(Finv + Fv) · n dS=
∫∫∫

V

Sce dV − @

@t

∫∫∫

V

U dV (9)

where Q(Pg; u; v; w) are the new dependent variables, Pg is the gauge pressure (denoted simply
P hereafter), Finv and Fv are the same inviscid and viscous 
uxes as previously

�−1=



























1

�2p
0 0 0

�p
u

�2p
� 0 0

�p
v

�2p
0 � 0

�p
w

�2p
0 0 �


























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Accuracy is highly improved by choosing the gauge pressure as dependent variable.
Preconditioning coe�cients are, respectively, equal to �p=1 and �p=�0 · Vref where �0 is a
constant whose default value is 3 and Vref is the reference velocity. As a result of this modi�-
cation, the acoustic speed is replaced by a new one, which is of the same order of magnitude
as u. So the sti�ness of the system is removed, and the convergence rate is considerably
improved in the low speed 
ow areas [17, 35].
However, the present application of cavitating 
ows implies the simultaneous treatment of

very di�erent 
ow con�gurations: according to the barotropic state law presented in Section 1,
the 
uid is highly compressible in the two-phase 
ow areas (the Mach number can be as high
as 4 or 5) and it is almost incompressible in the pure vapour or pure liquid regions. These
two states of the 
uid have to be computed e�ciently by the same algorithm, without creat-
ing any spurious discontinuity in the 
ow �eld. So a supplementary attention was paid to the
preconditioning, which is unfavourable in compressible 
ow con�guration, while it is neces-
sary in weakly compressible or incompressible conditions. A modi�cation of the algorithm is
proposed hereafter to overcome this limitation.

2.4. Eigenvalues

The eigenvalues of the preconditioned system de�ned by Equation (9) are determined from the
Euler part and can be obtained easily if the equations are expressed in terms of the primitive
variables �Q=(P; u; v; w). Suppressing source terms and viscous terms for sake of simplicity,
a non-conservative form of Equation (9) is given by

@�

@t
+
1

�2p

@P

@�
+ u

@�

@x
+ �

@u

@x
+ v

@�

@y
+ �

@v

@y
+ w

@�

@z
+ �

@w

@z
=0

@u

@t
+

�pu

� · �2p
@P

@�
+
@u

@�
+ u

@u

@x
+ v

@u

@y
+ w

@u

@z
+
1

�

@P

@x
=0

@v

@t
+

�pv

� · �2p
@P

@�
+
@v

@�
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z
+
1

�

@P

@y
=0

@w

@t
+
�pw

� · �2p
@P

@�
+
@w

@�
+ u

@w

@x
+ v

@w

@y
+ w

@w

@z
+
1

�

@P

@z
=0

(10)

Since the density only depends on pressure, the sound celerity is de�ned as c=
√

dP=d�.
As a consequence, @�=@x, @�=@y can be replaced respectively by 1=c2 @P=@x, 1=c2 @P=@y,

and the mass equation becomes

@P

@�
+ u

�2

c2
@P

@x
+ ��2

@u

@x
+ v

�2

c2
@P

@y
+ ��2

@v

@y
+ w

�2

c2
@P

@z
+ ��2

@w

@z
=0 (11)
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The system can be turned into the following form, involving the non-conservative Jacobians
A; B; C:

@ �Q

@�
+ A

@ �Q

@x
+ B

@ �Q

@y
+ C

@ �Q

@z
=0 (12)

A=





























u
�2p

c2
� · �2p 0 0

1

�
− �pu

2

� · c2 u(1− �p) 0 0

−�p
u · v
� · c2 −�pv u 0

−�p
u · w
� · c2 −�pw 0 u





























; B=





























v
�2p

c2
0 � · �2p 0

−�p
u · v
� · c2 v −�pu 0

1

�
− �pv

2

� · c2 0 v(1− �p) 0

−�p
v · w
� · c2 0 −�pw v





























;

C=





























w
�2p

c2
0 0 � · �2p

−�p
u · w
� · c2 w 0 −�pu

−�p
v · w
� · c2 0 w −�pv

1

�
− �pw

2

� · c2 0 0 w(1− �p)





























The �nal expression for A; B; C depends on the expression for c, issued from the di�erent
parts of the barotropic state law �(P).

Pure liquid: c=

√

dP

d�
=

√

n

�ref
(Pref + P0)

(

P + P0
Pref + P0

)(n−1)=2n

(13)

Pure vapour: c=

√

dP

d�
=

√

rT0 (14)

Two-phase mixture: c=

√

dP

d�
=Cmin

[

cos

(

P − Pvap
Bb · C2min

)]

−1=2

(15)

As mentioned in the previous section, the preconditioner may be unfavourable in the com-
pressible 
ow areas, i.e. in the two-phase mixture. So we focus hereafter on this particular part
of the barotropic state law. In this con�guration, the expression for the eigenvalues associated
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with propagation direction n(nx; ny; nz) can be obtained from |Anx + Bny + Cnz − �l|=0:
�1;2= v · n (16)

�3 =
1

2



v · n
(

1− �p + �2p
M 2C2

Bbu2

)

+

√

(

v · n
(

1− �p + �2p
M 2C2

Bbu2

))2

+ 4�2p

(

n2 − (v · n)2 M
2C2

Bbu2

)





�4 =
1

2



v · n
(

1− �p + �2p
M 2C2

Bbu2

)

−

√

(

v · n
(

1− �p + �2p
M 2C2

Bbu2

))2

+ 4�2p

(

n2 − (v · n)2 M
2C2

Bbu2

)





(17)

where

C2=Bb × cos

(

P − Pvap
Bb · C2min

)

(18)

and

M =
u

Cmin
(19)

It was clearly shown in Reference [26] that the sti�ness of these four eigenvalues, which
mainly depends on the term �2pM

2C2=Bbu
2, is much increased in such a two-phase 
ow

con�guration, compared with weakly compressible 
ow conditions. Thus, a modi�cation of the
preconditioner is suitable in compressible areas, to remove locally its action. Preconditioning
parameters must be adapted progressively, to �nally reach the following values in the most
compressible 
ow parts (corresponding to �=0:5):

�p =0

�p =
u
√
Bb

M
√
C2

(20)

(i.e. �p is the physical sound celerity in highly compressible regions of the 
ow: the action
of the preconditioner is in this case locally completely removed).
To ensure a smooth evolution of parameters �p and �p, the following expressions are �nally

applied in the whole 
ow �eld:

�p =

{

1 if �=0 or �=1

|2�− 1| if 0¡�¡1

�p =min

(

u
√
Bb

M
√
C2
; �0 · Vref

)

(21)
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The expression for �p ensures for all 
ow conditions the same order of magnitude for the
three eigenvalues �1, �2, and �3. In weakly compressible or incompressible con�gurations, �p
is maintained at the constant value �0 · Vref , which limits the weight of the term 4�2p · n2 in
�2 and �3, while in highly compressible regions, �p is reduced down to the physical sound
celerity, to control the terms �2pM

2C2=Bbu
2.

This improvement is applied in all the two-dimensional calculations reported in the present
paper. Concerning the 3D calculations of rotating machines, work is in progress to enhance
the preconditioner modi�cation and avoid spurious computation divergences.

2.5. Discretization

Equation (9) is discretized in its conservative form with a �nite volume approach. The discrete
form of Equation (9) over a computational cell volume becomes

V�−1 @Q

@�
+

∑

Faces

(F · n)∗�S=V ·Sce − V @U
@t

(22)

where (F · n)∗ is the numerical 
ux at the cell interfaces. A centred approximation is applied
to the viscous 
uxes, while the inviscid ones are calculated with a central convection scheme
associated with arti�cial dissipation. The resulting expression for the numerical 
ux along the
i-direction on the right side of the cell is

(F · n)∗i+1=2; j; k =[Finv · n]i+1=2; j; k + [Fv · n]i+1=2; j; k −Darti+1=2; j; k (23)

The �rst right hand term is the centred approximation of the inviscid 
ux, and it is treated as

[Finv · n]i+1=2; j; k = 1
2
([Finv · n]i; j; k + [Finv · n]i+1; j; k) (24)

The arti�cial dissipation Dart is composed of two terms, respectively of second and fourth
order, as initially proposed by Jameson et al. [32]. The following form of Dart leads to a
central second order accurate convection scheme:

Darti+1=2; j; k =
1
2
d2i+1=2; j; k�

i
i+1=2; j; k�Qi+1=2; j; k + d

4
i; j; k�

i
i+1=2; j; k�

2Qi; j; k − d4i+1; j; k�2Qi+1; j; k (25)

�Qi+1=2; j; k =Qi+1; j; k −Qi; j; k (26)

�2Qi; j; k =Qi+1; j; k − 2Qi; j; k +Qi−1; j; k (27)

where �i is the spectral radius along the i-direction multiplied with the cell face area. d2

and d4 are coe�cients associated, respectively, to second order and fourth order arti�cial
dissipations. Their expression is given by

d2i+1=2; j; k = �
2
p max(�i−1; j; k ; �i; j; k ; �i+1; j; k ; �i+2; j; k) + �

2
� max(
i−1; j; k ; 
i; j; k ; 
i+1; j; k ; 
i+2; j; k)

d4i+1=2; j; k =max(0; �
4
p − d2i+1=2; j; k)

(28)

The variables �i and 
i are sensors to activate the second-di�erence dissipation in regions of
strong gradients, and to de-activate it elsewhere. �i (proposed initially by Jameson et al. [32])

11



applies in pressure gradients areas, such as shocks, and 
i is a supplementary sensor added
for cavitating 
ows:

�i; j; k =

∣

∣

∣

∣

Pi+1; j; k − 2Pi; j; k + Pi−1; j; k
Pi+1; j; k + 2Pi; j; k + Pi−1; j; k

∣

∣

∣

∣

and 
i; j; k =

∣

∣

∣

∣

�i+1; j; k − 2�i; j; k + �i−1; j; k
�i+1; j; k + 2�i; j; k + �i−1; j; k

∣

∣

∣

∣

(29)

The standard values for �2p and �
2
� are, respectively, 0.5 and 1. The second term has been

added to ensure the numerical stability in cavitating areas, without modifying the numerical
scheme for other 
ow con�gurations. The standard value for �4p is 0.1. The in
uence of
these numerical parameters on the result of calculations in cavitating conditions is discussed
in Section 3.
Note that all expressions above correspond to the numerical 
ux in the x direction. Similar

treatments are applied for the two other directions.
The pseudo-time integration is made by a four steps Runge–Kutta procedure [31]. The

physical time-derivative terms are discretized with a second order backward di�erence scheme
that ensures a second order accuracy in time:

[

@

@t

∫∫∫

V

U dV

]n+1

=
1:5Un+1 − 2Un + 0:5Un−1

�t
V (30)

2.6. Stability analysis of the numerical scheme

The numerical stability of the resolution has been studied in the three 
ow con�gurations
de�ned above. It is based on the Von Neumann stability analysis described by Hirsch [31],
and on the Fourier footprint representations used previously by Hakimi [17]. Details of this
investigation are presented in Reference [26], and only the main results are given here. For
sake of simplicity, the study is performed in two dimensions, and pure vapour as well as pure
liquid are considered fully incompressible. The in
uence of several physical and numerical
parameters was tested, and the e�ciency of the preconditioner was analysed in several 
ow
con�gurations. Nice convergence and stability properties are demonstrated in the incompress-
ible case (which con�rms the e�ciency of the preconditioner in such con�gurations), while
poor characteristics are obtained concerning the central part of the barotropic law.
It is also found that the maximum slope of the barotropic law (controlled by the value of

Cmin) strongly in
uences the convergence rate and the stability: the reduction of Cmin induces
a severe decrease of both convergence speed and numerical scheme stability. The other main
physical parameter, namely the orientation of 
ow velocity inside the cells, has the same kind
of impact: the con�guration v=u=1 is unfavourable for convergence and stability, compared
with con�guration v=u=0 (
ow in the direction of the mesh).
Concerning the numerical parameters, a diminution of the fourth order arti�cial dissipation

�4p induces an important convergence slow down. So does also an increase of the mesh aspect
ratio.

2.7. Under-relaxation of the density

The cavitation phenomenon is a very sharp and rapid physical process, which results in two
main numerical di�culties:

• Vapourization and condensation phenomena induce strong density gradients. The interface
between pure liquid and pure vapour can thus be very thin. It may lead to successive

12



cells with respectively pure vapour and pure liquid inside, even in the case of very �ne
meshes. To ensure the local conservation in this con�guration is complicated, and such
discontinuity is highly unfavourable for convergence rate and scheme stability.

• The two-phase structure of cavitation is fundamentally unsteady, particularly in the clo-
sure area of the cavitation sheet. The collapse of vapour structures happens so suddenly
that particles of 
uid can turn from pure vapour to pure liquid during only one time
step. A smooth description of this phenomenon would impose a physical time step about
hundred times smaller than the one used currently. Considering the frequency of typical
unsteady processes associated with cavitation. such as cavity self-oscillation, it appears
that the use of a very small time step is unreasonable, because of the total computational
time it would induce. This particularity leads to severe numerical instabilities.

For these two reasons, an e�cient control of the density time 
uctuations and space distri-
bution must be applied. Density variations are thus under-relaxed at each iteration i to prevent
too sudden changes in a single pseudo time step:

�i+1=�i + �(�(Pi+1)− �i) (31)

where the standard value of under-relaxation coe�cient � is 0.2. This value has to be lowered
down to 0.05 in the case of 3D calculations in turbopump inducers (Section 4). After such
treatment on the density, pressure Pi+1 is updated according to the barotropic relation �(P),
so that the 
uid state law is always respected.
Underrelaxing the density is the same as multiplying the local time step �� by � in the mass

equation. As a matter of fact, the convergence signi�cantly slows down when underrelaxation
is activated. Nevertheless, the computational time increases much more if a global reduction
of the pseudo time step is applied also in the momentum equations. So underrelaxing the
density was found to be a satisfactory choice to improve stability without being confronted
to prohibitive computation times.

2.8. Boundary conditions

The boundary condition setting is based on a system of dummy cells. Classical incompressible
type of boundary is applied: imposed velocities at the inlet, and an imposed static pressure
at the outlet. Numerical studies have been performed in LEGI to improve these conditions,
mainly by taking into account the test rig in
uence [39]. They are not yet applied in the
present application.

2.9. Initial transient treatment

In experiments, the classical machinery cavitation test consists in setting initially a relatively
high pressure Pref in the 
ow �eld, for which no vapour appears. Then, the pressure is
decreased until the cavitation number �=(Pref = Pvap)=�V

2
ref corresponding to operating con-

ditions is reached.
A similar numerical procedure was developed, but instead of decreasing the reference pres-

sure Pref in the 
ow �eld, this one is kept constant, and a pseudo vapour pressure Pvap is
increased. First of all, a steady step is carried out, with a pseudo vapour pressure low enough
to ensure no vapour presence in the whole computational domain. Then, this vapour pres-
sure is increased smoothly at each new time step, up to the physical value. Vapour appears
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progressively during this rising of the vapour pressure. The cavitation number is then kept
constant throughout the computation.
Another method would consist in decreasing the outlet pressure, with a constant vapour

pressure. The drawback is however that the physical parameters in the whole 
ow �eld change
because of this continuous boundary condition variation. With the �rst method, only the two-
phase areas are a�ected by the cavitation number evolution.

2.10. Turbulence model

Two turbulence models are applied for the simulations presented in this paper:

• a standard Baldwin–Lomax model is applied in most of the computations. Details about
this model can be found in Reference [40]

• the numerical tests presented in Section 3 in the case of the Venturi type section include
the use of a k–� model with extended wall functions.

The Baldwin–Lomax model requires at the walls a �rst cell located at a non-dimensional
distance y+ close to 1, while in the case of the k–� model, extended wall functions enable
the use of various values of y+ at the walls. So the same grids are used for both mod-
els of turbulence. More calculations considering k–� turbulence models are in progress to
improve physical analyses. An investigation of the respective e�ciency of di�erent turbu-
lence models associated with the single 
uid modellization of cavitation is also proposed by
Coutier-Delgosha et al. in Reference [41].

3. CALCULATION IN A VENTURI TYPE SECTION

3.1. mesh

Numerical simulations are �rst performed on a two-dimensional Venturi type section, char-
acterized by small convergent=divergent angles (4:3◦=4◦) and a small contraction ratio at the
throat. The shape of the Venturi bottom downstream of the throat simulates an inducer blade
suction side with beveled leading edge geometry (see Reference [42]). According to exper-
imental observations performed previously in the LEGI laboratory [28, 29], a stable sheet of
cavitation is obtained, with only small-scale 
uctuations in its downstream part. Although the
considered geometry is much simpler than a real inducer one (3D e�ects and rotating phe-
nomena are not present), its cavitating behaviour is globally representative of sheet cavitation
phenomena observed in such a machine.
The Venturi pro�le was tested previously in LEGI [28, 29], and the experimental data are

used in the present work to validate the numerical simulations.
Three grids of di�erent size (respectively, 108×36, 160×60, and 248×88 cells) are tested

hereafter (Figure 2). A special grid contraction is applied in the areas of cavitation, i.e. after
the Venturi throat and especially near the leading edge. A supplementary contraction is also
imposed close to the foil and along the tunnel walls, to be consistent with the y+ values
required for the use of the turbulence models. It results in practice in y+ values comprised
between 0.5 and 5 at the centre of the �rst cell at the walls.
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Figure 2. Mesh of the Venturi type section (248×88).

3.2. Validation of the global cavitating behaviour

Steady-state calculations have �rst been performed, and a satisfactory convergence level was
obtained in the case of small cavities. For a lower cavitation number, some important numer-
ical di�culties appear, associated with large pressure 
uctuations in the Venturi section. As a
matter of fact, cavitation is always unsteady at some scale, and the 
uctuations observed in the
rear part of the cavity in experiments are very prejudicial to the convergence of steady-state
computations. Time-accurate computations have thus been carried out, and a much better
convergence rate was obtained for a large range of cavitation numbers. Comparisons with
previous steady-state results showed a close agreement, so far the convergence levels were
identical. Consequently, all the results presented hereafter were obtained with time-accurate
computations.
The stable cavitating behaviour is correctly simulated by the model: in all the analysed

cases, we obtain, after a transient 
uctuation of the cavity length, a quasi-steady behaviour of
the cavitation sheet, which globally stabilizes.
Figure 3 presents the shape of the converged cavity in the reference simulation. It corre-

sponds to a cavitation number �=0:4. The inlet velocity equals 10:8m=s. We obtain in this
case a stabilized cavity whose length is about 40mm (that is to say Lcav=Lref =0:16). 18 s
of simulation were performed, that is to say 600Tref , where Tref is a reference time, corre-
sponding to the time necessary for the 
ow �eld to cover the length Lref of the pro�le, with
a speed Vref . The outlet pressure is set arbitrarily to 85 000 Pa, which leads to the pressure
distribution drawn in Figure 3.
The transient evolution observed during this unsteady calculation is shown in Figure 4.

In Figure 4(a), the colours represent the density values: white for the highest ones (pure
liquid) and darker (red and then black) as the void ratio increases. The time evolution is
represented in abscissa, and the position in the tunnel of cavitation is graduated in ordinate.
So an horizontal line corresponds to the time evolution of the density in the corresponding
section of the cavitation tunnel. Figure 4(a) illustrates at a given time and for each section
the value of the minimal density present in the section. In this stable con�guration the main
information provided by this �gure is the time evolution of the cavity length, associated with
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Figure 3. Pressure and density �elds◦-stable cavity for �=0:4− Vref =10:8m=s.

the maximum void ratio in each section. We also analysed the evolution of the vapour volume
(Figure 4(b)) and the inlet pressure 
uctuation (Figure 4(c)).
The length of the cavitation sheet (40mm) is a little under estimated, since the experimental

value for this cavitation number is 55mm. Nevertheless, it can be observed in Figure 5, that
a general good agreement is obtained with experiments concerning the cavity extension. Two
experimental results are drawn: they are related to two values of the reference velocity Vref
(9m=s and 14:4m=s) close to the value Vref =10:8m=s applied for the calculation.
The length of the cavitation sheet is correctly predicted, down to �=0:4. As the cavitation

number continues to decrease, the numerical model leads to a cavity length smaller than
the values reported by the experiments. But we must keep in mind that the experimental
estimation of the cavity extension cannot be precise in this case, because of the 
uctuating
rear part of the liquid=vapour structures.

3.3. Numerical tests

The in
uence of numerical and physical parameters of the model is tested in the previous 
ow
con�guration. The objective is to determine the e�ect of their variation on the convergence
rate and on the result. Table I presents the investigated parameters, with the corresponding
range, and the standard value applied for the simulations. In
uence of numerical parameters
indicates the accuracy level of the numerical scheme, while in
uence of the physical ones
gives an evaluation of the code robustness in a cavitating con�guration.
Results of the tests are reported in Table II. As the �nal cavity obtained is almost stable,

it can be characterized by its �nal volume, and the vapour volume contained inside. So for
each case, these two results are indicated. The �nal volume of the cavity is calculated by
considering the volume of the cells where �¿4%.

3.3.1. In
uence of numerical parameters. The in
uence of the numerical parameters, such
as �t; �2�; �

4
P; �, CFL, and the mesh size is globally satisfactory:

• A too high time-step �t generates some little oscillations of the cavity. For lower values
of �t, its in
uence is acceptable: for �t=10−4 s, the cavity volume is by 7% smaller
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Figure 4. Time evolution of the cavity given by numerical calculation: (a) Colors represent the density
value: white for the pure liquid, and from yellow to dark red for the two-phase mixture. It illustrates
the temporal evolution (in abscissa) of the cavity length (graduated in ordinate); (b) Time evolution of

the volume of vapour in the 
ow �eld; and (c) Time evolution of the inlet pressure.

than for �t=3×10−4 s. The standard value of the time-step has been chosen so that
�t=Tref =100.

• �2� and � have no noticeable in
uence on the result: nevertheless, a too small value of
�(¡0:1) leads to an underestimation of the cavity development. The simulation should
be still continued to �nally lead to a standard converged cavity size. On the contrary, a
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Table I. Tested parameters.

Parameter Tested range Standard value

Numerical parameters
Mesh size (three dimensions were tested) 108×36− 160×60− 248×88 160×60

Physical time step �t (s) 10−4
→ 6× 10−4 3× 10−4

Under-relaxation coe�cient � 0:05→ 0:8 0.2

Fourth order arti�cial viscosity coe�. �4P 0:02→ 1 0.1

Second order arti�cial viscosity coe�. �2� 0:5→ 3 1
CFL 0:1→ 5 3

Physical parameters
Cavitation number � 0.22 (blockage) → 0.46 (little cavity) 0.38
Minimum sound celerity Cmin 1:5m=s → 4m=s 2.25
Ratio �v=�l 0:001→ 0:1 0.001
Turbulence model Baldwin–Lomax/k–� k–�

too high value (¿0:4) results in the computation divergence. If �2� is smaller than 0.5,
numerical instabilities also increase up to the calculation divergence.

• �4P has only a little in
uence on the �nal shape of the cavity: the mean vapour volume
remains almost constant for all the values of this parameter.

• The CFL number has no in
uence on the result, so far it is small enough to ensure the
stability of the numerical scheme.

• The mesh size has almost no in
uence on the result, so far it is �ne enough: the di�er-
ence between the vapour volumes obtained with the two coarsest meshes (108×38 and
160×60) is signi�cant, but it becomes very weak if we compare the intermediate mesh
with the �nest one (248×88). The same behaviour is observed concerning the �nal cav-
ity volume. Thus, the intermediate mesh is found to be �ne enough to avoid any mesh
e�ect in the computed 
ow �eld.

18



3.3.2. In
uence of the physical parameters. An increase of Cmin or �v=�l leads to an aug-
mentation of the cavity thickness. As a matter of fact, these two parameters control the shape
of the barotropic law. The more they increase, the more the maximum slope is reduced, result-
ing in a smoothing of the density variations. The general trend associated with this evolution
is an increase of the di�usive e�ects in the two-phase 
ow areas. In the case of �v=�l this
in
uence is small. On the contrary, the value of Cmin directly in
uences the cavity shape. The
calibration of this parameter is performed on the basis of 2D previous studies performed in
LEGI [10]. Its reference value is chosen so that the thickness of the cavity is consistent with
experimental results, for several di�erent cavity lengths. The optimal value was found to be
independent of both Lref and Vref , and is about 2m=s.

• The turbulence model has only a little in
uence on the result, in this rather stable
cavitation con�guration.

• Numerical stability is ensured down to very low values of the cavitation number �. For
example, in the con�guration �=0:33, the sheet of cavitation is so large, that the block-
age of the Venturi type section is almost reached (cf. Figure 6). Nevertheless, the com-
putation goes on satisfactorily, in spite of important pressure 
uctuations in the channel.
This behaviour, although it is associated with a noticeable drop of the convergence rate,
indicates that the numerical model is properly robust in highly cavitating conditions.
It suggests that the computation of inducer performance breakdown, as blade-to-blade
channels are almost blocked by the volume of vapour, is a realistic objective.

These tests validate the choice of the reference values for all the numerical parameters used
here after.

3.4. Comparison with measurements inside the cavity

Comparisons are investigated with experimental data obtained by double optical probes. This
technique and the results are presented in detail in References [27, 28]. This is an intrusive
captor, which allows measurements of the local void ratio and the velocities of the two-phase
structures inside the sheet of cavitation. Five data pro�les are available: their position is
indicated in Figure 7. The mean values of the void ratio are presented for these �ve pro�les
in Figure 8. The dotted line corresponds to the experimental external shape of the cavity,
obtained from image processing.
A good agreement is obtained between experiments and the calculation concerning the void

ratio distribution along the x-direction: the low density measured in the upstream part of the
cavity, and its smooth increase in the rear part, are correctly predicted. Nevertheless, the
cavity thickness calculated by the numerical model is clearly over-estimated, mainly along
Sections 2–4. That discrepancy is related to the fact that the standard value for the parameter
Cmin is slightly higher than the one obtained in previous calibration of the physical model
(2:25m=s in the present case, 1:5–2m=s reported in References [3, 20, 41]).

4. CALCULATION ON A FOUR-BLADE INDUCER

Simultaneously with the previous 2D studies on �xed geometries, we performed some �rst 

computations on a rotating four-blade inducer designed at the SNECMA Moteurs Rocket 
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Figure 6. Mixture density �eld: blockage due to the volume of vapour for �=0:33.

Figure 7. Experimental data sections.
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Figure 8. Time-averaged void ratio: num. (–) and exp. (◦). Comparison between numerical results (lines)
and optical probes measurements (points): Vref =10:8m=s-Baldwin–Lomax model-Cmin=2:25m=s.
Stable cavity: Lcav=80mm (cavity external shape in dotted line from image processing) Ratio 3

between vertical and horizontal scales.
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Figure 9. Inducer geometry.

Engine Division (Figure 9). This machine was tested experimentally, and the visualizations
show a pronounced unsteady behaviour: depending on the value of the cavitation num-
ber, we can observe alternating blade cavitation or super-synchronous regimes. Moreover,
the two-phase structures are strongly 
uctuating, particularly in the cavitating vortex of the
tip area.
In the present study, only the quasi-static behaviour of the runner is simulated. As for

the previous 2D Venturi type section, a non-cavitating steady computation is �rst performed.
Then, the unsteady calculation is started, and the NPSH is slowly decreased at each physical
time step, as in the experiments. Vapour structures spontaneously appear and grow during
this process, in the regions of low static pressure. In the presented computations, the NPSH
is decreased until the inducer head drop, due to highly cavitating conditions, is reached. The
physical time-step is high enough to only simulate the quasic-static e�ects of the NPSH de-
crease. So the unsteady e�ects are not modelled in the computations presented hereafter. For
a given pseudo-vapour pressure value, the inlet pressure does not 
uctuate so far the con-
vergence is reached, and it is directly used to compute the NPSH values reported on the
charts.

4.1. Mesh

Only one blade-to-blade channel is considered, and periodicity conditions are applied to its
frontiers in azimutal directions to simulate the presence of the contiguous blades. It implies
that the four channels are supposed to have the same behaviour, which is not penalizing so
far only quasi-static e�ects of cavitation are investigated. The mesh is composed of �ve 3D
blocks (Figure 10): the upstream part of the bulb, the blade to blade channel, the tip gap,
and two blocks, respectively, upstream from the blade leading edge and downstream from its
trailing edge. The whole mesh is composed of 420 000 cells.
The main di�culty to mesh an inducer, compared with a typical centrifugal impeller, is

related to the low �b angles in the inlet and in the outlet. This kind of geometry can lead
to a much distorted mesh, with triangular cells in the vicinity of the leading edge. Indeed,
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Figure 10. Mesh structure: meridional and blade-to-blade representations.

the computational domain inlet and outlet are at constant coordinate z (cf. Figure 10), so the
mesh is highly rounded in the blade-to-blade representation: a �rst time around the leading
edge and, a second time in the other direction around the trailing edge. This distortion implies
non-matching cells along the frontiers connected by periodicity conditions, which complicates
the boundary conditions and induces some supplementary numerical errors due to the variable
interpolations.
Blocks 4 and 5 are used presently to treat correctly the sharp leading and trailing edges.

On the basis of the automatic mesh generation, special attention was then paid to the grid
in the cavitating areas: an axial stretching is applied on the blade suction side, near the
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Figure 11. Details of the grid: (a) Blade-to-blade representation, near the hub; (b) Blade-to-blade
representation, near the shroud; (c) 3D view of the mesh on the hub and on the blade tip.

leading edge, and the aspect of the mesh just upstream from the blade is improved to re-
duce the aspect ratio of the cells. Despite these e�orts, the poor description of the blade
tip could not be completely removed. The grid in the tip gap is composed of eight cells
in the radial and azimuthal directions, so that the 
ow from the pressure side to the suc-
tion side is correctly modelized. A contraction of the mesh is systematically applied close
to the walls, to be consistent with the requirements of the Baldwin–Lomax turbulence
model.
Figure 11 presents some details of the mesh: two zooms around the leading edge, respec-

tively near the hub and close to the shroud, and a 3D view of the grid on the hub and on
the blade tip.
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Figure 12. Boundary conditions.

4.2. Boundary conditions

The calculations are performed with water 
ow conditions. The rotating velocity is 6000 rpm,
and the Reynolds number based on the shroud diameter, the inlet tangential tip velocity, and
the water viscosity, equals 107. A standard Baldwin–Lomax turbulence model is applied. The
boundary conditions are the following (Figure 12):

• An axial velocity is imposed at the inlet, on the basis of the nominal inducer 
ow rate.
• A radial equilibrium is �xed at the outlet for the static pressure.
• The hub and the blades are rotating, the shroud is immobile. The gap between the blade
tip and the shroud is taken into account.

4.3. Numerical parameters

�l=1000 kg=m
3
and �v=�l=0:01 (standard value),

CFL number: 1.5,
�=0:05,
�t=10−4 s (about 1=100e of the inducer rotation period, to only simulate the quasi-static
e�ects),
The �p preconditioning coe�cient is based on the tangential inlet tip velocity,
All other parameters are set to their default value indicated in Section 3.3.

4.4. Results: performance charts

Cavitation conditions in the inducer and its performance are usually characterized by the
following non-dimensional numbers:

�′i =
�i
�0

with �i=
Pinletlot − Pvap
�l · V 2ref

and �0 a reference value of�i (cavitation parameter)

	 =
Poutlet − Pinlet
�l · V 2ref

(static pressure elevation coe�cient)

Vref is in this con�guration the tangential tip velocity, and P
inlet
lot , P

inlet, and Poutlet are, re-
spectively, the total pressure upstream from the inducer, and the static pressure upstream and
downstream from the inducer.
A decrease of the cavitation parameter �′i was performed from a non-cavitating con�guration

to the inducer performance drop. The resulting evolution of the static pressure elevation of the
inducer is compared in Figure 13, to experimental measurements performed in the CREMHyG
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Figure 13. Experimental and numerical performance charts. Green squares indicate the
operating conditions illustrated in Figure 14.

laboratory. The static pressure elevation is obtained in experiments with pressure sensors
located on the shroud, from inlet to outlet. Pressure values issued from the calculations are
taken at the same points, so that the comparison presented in Figure 13, is relevant.
The static pressure elevation obtained by the computation is in excellent agreement with

the experimental results. Concerning the head drop location, the cavitation parameter �′i cor-
responding to the performance breakdown is over-predicted by the model: the gap between
experimental and numerical results equals ��′i =1.
This discrepancy must be considered circumspectly. In the case of centrifugal pumps [43],

the order of magnitude of �′i is notably higher, so that the same absolute error results in a
much lower relative error (less than 5% in most of the simulations [44]). Since an inducer
has much better suction capacities (�′i at the performance breakdown is about 1), the order of
magnitude of �′i is in the present case the same as the one of ��

′

i .
So, the over-estimation of �′i at the breakdown is consistent with the absolute discrepan-

cies observed in the calculation of centrifugal pumps. As a matter of fact, it is much more
penalizing in the case of an inducer, and the simulation does not allow at the present time a
correct prediction of the performance for such an axial runner.
It can be also noticed that pressure 
uctuations observed in experiments before the perfor-

mance drop are not obtained in the calculation. This discrepancy is mainly due to the fact
that a high time step is applied in the present computation, so that only the quasi-static ef-
fects associated with cavitation are modelized. As a matter of fact, these oscillations are often
correlated with unsteady cavitation behaviour, such as rotating cavitation e�ects. This kind of
phenomenon is not treated here, since only one blade-to-blade channel is computed.
The general good agreement obtained between the experimental and the numerical per-

formance charts (also it is not e�cient enough to predict the inducer head drop location) is
promising. It allows to study more closely the development of vapour inside the blade-to-blade
channels, and to compare it to experimental visualizations.

27



Figure 14. Evolution of the cavitating areas in the inducer as �′i , decreases (the hub is coloured in grey,

the blades in red, and the iso-surfaces �=950 kg=m3 are represented in yellow).
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Figure 15. Cavitation in the inducer at two operating points: Comparaison between
the experimental and numerieal results.

4.5. Visualizations of the cavitating areas

The evolution of the two-phase structures during the �′i decrease is presented in Figure 14.
The hub is represented in grey, the blades in dark red, and the surfaces corresponding to
a 5% void ratio are coloured in yellow. The operating points related to the nine visualiza-
tions are indicated in Figure 13, by the green squares. Two cavitating structures appear: a
cavitation sheet attached to the blade suction side, and a tip cavitating vortex. This one is
�rst con�ned on the blade suction side, close to the shroud (view 2). Then, it rapidly �lls
the gap, and it progressively joins the pressure side of the adjacent blade (view 5). This tip
cavitation continues after that to grow downstream, while the suction side cavity is almost
stable (view 6–8).
Two comparisons between experimental visualizations and numerical results are presented

in Figure 15. They correspond to two operating points located at the beginning of the
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performance breakdown. Since the experimental and numerical head drop are slightly dif-
ferent, the cavitating structures in the inducer are not compared at the same value of �′i , but
at the same performance drop (respectively, 0.5 and 1.3%).
A reliable qualitative agreement between experiments and calculation can be observed on

these two examples: both the attached cavity and the tip cavitating structure are correctly
obtained in the two cases. The shape of the cavitation sheet predicted by the numerical model
in the vicinity of the hub is particularly close to the one observed in experiments. The tip
cavitation, which seems to be characterized experimentaly by a rather low void ratio, is also
qualitatively well simulated by the model. It is not signi�cant that its precise shape is not the
same in experiment and in the calculation, since this structure is highly 
uctuating in time and
in space. Nevertheless, some discrepancies can be seen at mid-height of the channel, where
the cavity predicted by the computation is notably shorter than in experiments.
So, the experiments and the calculation appear to be consistent for these two operat-

ing conditions. It suggests that the 3D numerical model applied is e�cient to predict the
main features of the quasi-static development of cavitation in a spatial turbopump inducer.
The remaining discrepancies may explain the overestimation of �′ at the performance drop.
Nevertheless, this �rst attempt to predict the cavitating behaviour (including attached cavity
and detached structures) of such a complex geometry is very promising. A continuing work is
pursued to improve the simulations. An improvement of the mesh aspect ratio in the cavitating
areas (blade tip, leading edge) is an important way of investigation.

5. CONCLUSION

A 3D model for unsteady cavitation was presented in this paper. It is composed of a
time-marching algorithm associated with a barotropic state law that governs the 
uid
density evolution in the cavittaing regions. Particularities of this computational method, such
as a modi�cation of the low speed preconditioner and a necessary density 
uctuations control,
were detailed. The accuracy and robustness of the numerical model have been tested �rst with
a 2D Venturi type section representing an inducer blade-to-blade channel. The global shape
of the cavitation sheet is correctly predicted for rather small cavities, and the model seems to
slightly under-estimate the vapour/liquid structures extension for smaller cavitation numbers.
Further investigations are performed to improve the modellization. A complete investigation
of the in
uence of physical and numerical parameters was also presented, and reference val-
ues were de�ned for further calculations. The structure of the cavity was �nally compared to
experimental results, and a satisfactory agreement was found concerning the external shape
of the cavity and the void ratio distribution inside. A �rst attempt of a 3D simulation con-
cerning a four-blade turbopump inducer was also presented. The quasi-static results show a
promising agreement with expeimental measurements and visualizations. Work is continuing to
improve the prediction of inducer performance breakdown, and simulate pronounced unsteady
phenomena associated with cavitation, such as cavity self-oscillation and rotating cavitation.

NOMENCLATURE

Cmin mininum speed of sound in the mixture (m=s)
c local sound celerity (m=s)
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Lref length of the Venturi type section (m)
NPSH net pressure suction head (m)
P local static pressure (Pa)
Pl; Pv limit pressures of pure liquid and pure vapour in the barotropic law (Pa)
Pref reference pressure= inlet pressure (Pa)
Ptot total pressure (Pa)
Pg gauge pressure (Pa)
Pvap vapour pressure (Pa)
Tref Lref =Vref = time reference (s)
v(u; v; w) local 
ow velocity (m=s)
V control volume (m3)
Vref reference velocity (m=s)
x; y; z cartesian co-ordinates (m)
z; r axial and radial co-ordinates in a rotaing machinery (m)
� local void fraction (dimensionless)
�p preconditioning parameter (dimensionless)
�p preconditioning parameter = pseudo-sound celerity (m=s)
�0 constant parameter used to calculate �p (dimensionless)
�b geometrical blade angle in a (z=r; �) frame (rad)
�4p fourth order arti�cial dissipation coe�cient (dimensionless)

�2P; �
2
� second order arti�cial dissipation coe�cients (dimensionless)

� under-relaxation coe�cient for density (dimensionless)
�; � dynamic, cinematic viscosity (Pa s;m2=s)
�v vapour density corresponding to pressure Pv (kg=m3)
�l liquid density corresponding to pressure Pl (kg=m

3)
� ��v + (1− �)�l local density of the mixture (kg=m3)
� revolution angle in a rotaing machinery (rad)
� (Pref − Pvap)=�V 2ref cavitation number (dimensionless)
� pseudo time-step (s)
�i (Pinlettot − Pvap)=�l · V 2ref cavitation parameter used for an inducer (dimensionless)
�i0 reference cavitation parameter (dimensionless)
�′i �i=�i0 (dimensionless)

(Poutlet − Pinlet)=� · V 2ref static pressure elevation coe�cient (dimensionless)

ACKNOWLEDGEMENTS

This research was supported by a doctoral grant from the Education French Ministry MERT and by
SNECMA Moteurs DMF. The authors wish also to express their gratitude to CNES (Centre National
d’Etudes Spatiales, France) for the continuous support.

REFERENCES

1. Kubota A, Kato H, Yamaguchi H, Maeda H. Unsteady structure measurement of cloud cavitation on a foil
section using conditional sampling technique. Journal of Fluids Engineering 1989; 111:204–210.

2. Le Q, Franc JP, Michel JM. Partial cavities: global behaviour and mean pressure distribution. Journal of Fluids
Engineering 1993; 115:243–248.

3. Reboud JL, Stutz B, Coutier O. Two phase 
ow structure of cavitation: experiment and modelling of unsteady
e�ects. Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 1998.

31



4. Reboud JL, Fortes-Patella R, Hofmann M, Lohrberg H, Ludwig G, Sto�el B. Numerical and experimental
investigations on the self-oscillating behaviour of cloud cavitation. Proceedings of the 3rd ASME/JSME Joint
Fluids Engineering Conference, San Francisco, 1999.

5. de Bernardi J. Experimental analysis of instabilities related to cavitation in a turbopump inducer. Proceedings
of the 1st International Symposium on Pump Noise and Vibrations, Paris, France, 1993.

6. Kueny JL, Schultz JL, Desclaux J. Numerical prediction of partial cavitation in pumps and inducers. Proceedings
of IAHR Symposium, Trondheim, 1988.

7. Von Kaenel, Maitre T, Rebattet C, Kueny JL, Morel P. Three dimensional partial cavitating 
ow in a rocket
turbopump inducer: numerical predictions compared with laser velocimetry measurements. Proceedings of
Cav‘95 International Symposium, Deauville, France, 1995.

8. Delannoy Y. Mod�elisation d’�ecoulements instationnaires et cavitants. Ph.D. Thesis, INPG, Grenoble, 1989.
9. Knapp RT, Daily JT, Hammit FG. Cavitation. McGraw Hill: New York, 1970.
10. Plesset MS, Chapman RS. Collapse of initially spherical vapour cavity in the neighbourhood of a solid boundary.

Journal of Fluid Mechanics 1971; 47:283–290.
11. Takasugi N, Kato H, Yamagushi H. Study on cavitating 
ow around a �nite span hydrofoil. Proceedings of

the Cavitation and Multiphase Flow Forum, ASME-FED, vol. 153. 1993; 177–182.
12. Alajbevoic A, Grogger H, Philipp H. Calculation of transient cavitation in nozzle using the two-
uid model.

Proceedings of the 12th Annual Conference on Liquid Atomization and Spray Systems, Indianapolis, 1999.
13. Kunz R, Boger D, Chyczewski T, Stinebring D, Gibeling H. Multi-phase CFD analysis of natural and ventilated

cavitation about submerged bodies. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference,
San Francisco, 1999.

14. Bunnell RA, Heister SD. Three-dimensional unsteady simulation of cavitating 
ows in injector passages. Journal
of Fluids Engineering 2000; 122:791–797.

15. Combes JF, Archer A. Etude de la cavitation dans la pompe SHF. Proceedings of the Colloque Machines
Hydrauliques: instationnarit�es et e�ets associ�es, Soci�et�e Hydrotechnique de France, Chatou, France, 2000.

16. Medvitz RB, Kunz RF, Boger DA, Lindau JW, Yocum AM, Pauley LL. Performance analysis of cavitating

ow in centrifugal pumps using multiphase CFD. Proceedings of ASME FEDSM 2001, New Orleans, U.S.A.,
2001.

17. Hakimi N. Preconditioning methods for time dependent Navier–Stokes equations. Ph.D. Thesis, Vrije Universiteit
Brussels, Belgium, 1997.

18. Numeca International. User guide of FineTurbo, 2002.
19. Zhu ZW. Multigrid operation and analysis for complex aerodynamics. Ph.D. Thesis, Vrije Universiteit Brussel,

Belgium, 1996.
20. Coutier-Delgosha O, Reboud JL, Delannoy Y. Numerical simulation of unsteady cavitating 
ow. International

Journal for Numerical Methods in Fluids 2003; 42(5):527–548.
21. Delannoy Y, Kueny J-L. Two phase 
ow approach in unsteady cavitation modelling. Proceedings of the 1990

ASME Cavitation and Multiphase Flow Forum 1990; 98:153–158.
22. Merkle CL, Feng J, Buelow PEO. Computational modelling of the dynamics of sheet cavitation. Proceedings

of the 3rd International Symposium on Cavitation, Grenoble, France, 1998.
23. Song C, He J. Numerical simulation of cavitating 
ows by single-phase 
ow approach. In Proceedings of

the 3rd International Symposium on Cavitation, Michel J-M, Kato H (eds), vol. 2, Grenoble, France, 1998;
295–300.

24. van der Heul DR, Vuik C, Wesseling P. E�cient computation of 
ow with cavitation by compressible pressure
correction. In Proceedings of the European Congress on Computational Methods in Applied Science and
Engineering, ECCOMAS 2000, Onate E, Bugeda G, Suarez B (eds), Barcelona, Spain, 2000.

25. Ventikos Y, Tzabiras G. A numerical method for the simulation of steady and unsteady cavitating 
ows.
Computers and Fluids 2000; 29:63–88.

26. Coutier-Delgosha O, Fortes-Patella R, Reboud JL, Hakimi N, Hirsch C. Stability of preconditioned
Navier–Stokes equations associated with a cavitation model. Computers and Fluids, 2004, to be published.

27. Stutz B. Analyse de la structure diphasique et instationnaire des poches de cavitation. Ph.D. Thesis, Institut
National Polytechnique de Grenoble, France, 1996.

28. Stutz B, Reboud JL. Experiments on unsteady cavitation. Experiments in Fluids 1997; 23:191–198.
29. Stutz B, Reboud JL. Two-phase 
ow structure of sheet cavitation. Physics of Fluids 1997; 9(12):3678–3686.
30. Bestion D. The physical closure laws in the CATHARE code. Nuclear Engineering and Design, vol. 124. North

Holland: Amsterdam, 1990.
31. Hirsch C. Numerical Computation of Internal and External Flows. Wiley: New York, 1990.
32. Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by �nite volume methods using

Runge–Kutta time-stepping schemes. AIAA Paper, vol. 81. 1991; 1259.
33. Choi D, Merkle CL. The application of preconditioning in viscous 
ows. Journal of Computational Physics

1993; 105:207–223.
34. Turkel E. Preconditioning methods for solving the incompressible and low speed compressible equations. Journal

of Computational Physics 1987; 72:277–298.

32



35. Turkel E, Fiterman A, van Leer B. Preconditioning and the limit of the incompressible 
ow equations. Journal
of Applied Numerical Mathematics, 1994.

36. Turkel E, Radespiel R, Kroll N. Assessment of preconditioning methods for multidimensional aerodynamics.
Computers and Fluids 1997; 26:613–634.

37. Weiss J, Maruszewski J, Smith W. Implicit solution of preconditioned Navier–Stokes equations using algebraic
multigrid. AIAA Journal 1999; 37:29–36.

38. Chorin AJ. A numerical method for solving incompressible viscous 
ow problems. Journal of Computational
Physics 1967; 2:12–26.

39. Longatte F. Contribution �a l’Analyse Ph�enom�enologique des Ecoulements Instationnaires dans les
Turbomachines: Etude du Couplage Pompe-Circuit et Rotor-Stator. Ph.D. Thesis, Institut National Polytechnique
de Grenoble, France, 1998.

40. Hakimi N, Pierret S, Hirsch C. Presentation and application of a new k-eps model with wall functions.
Proceedings of Eccomas, 2000.

41. Coutier-Delgosha O, Fortes-Patella R, Reboud JL. Evaluation of the turbulence model in
uence on the numerical
simulations of unsteady cavitation. Journal of Fluids Engineering 2003; 125:38–45.

42. Kueny JL, Reboud JL, Desclaux J. Analysis of partial cavitation: image processing and numerical prediction.
Proceedings of the Cavitation‘91, ASME-FED, vol. 116. 1991; 55–60.

43. Ho�man M, Sto�el B, Coutier-Delgosha O, Fortes-Patella R, Reboud JL. Experimental and numerical studies
on a centrifugal pump with 2D curved blades in cavitating conditions. Journal of Fluids Engineering 2003;
125:970–978.

44. Pou�ary B. Mod�elisation num�erique des �ecoulements dans une roue centrifuge: analyse des m�ecanismes associ�es
�a la chute de performances en cavitation. Master Report, E.C. Lyon, 2001.

45. Coutier-Delgosha O, Fortes-Patella R, Reboud JL. Numerical simulation of turbopump inducer cavitating
behaviour. Internatinal Journal of Rotating Machinery, 2004, to be published.

46. Hirsch C, Hakimi N. Preconditioning methods for time-marching Navier–Stokes solvers. Solution Techniques
for Large-Scale CFD Problems (CMAS). Wiley: New York, 1995; 333.

47. Kubota A, Kato H, Yamaguchi H. A new modelling of cavitating 
ows: a numerical study of unsteady cavitation
on a hydrofoil section. Journal of Fluid Mechanics 1992; 240:59–96.

33


