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Hierarchical Image Partitioning using Combinatorial Maps

We present a hierarchical partitioning of images using a pairwise similarity function on a combinatorial map based representation. We used the idea of minimal spanning tree to find region borders quickly and effortlessly in a bottom-up way, based on local differences in a color space. The result is a hierarchy of partitions with multiple resolutions suitable for further goal driven analysis. The algorithm can handle large variation and gradient intensity in images. Dual graph pyramid representations lack the explicit encoding of edge orientation around vertices i.e they lack an explicit encoding of the orientation of planes, existing in combinatorial maps. Moreover with combinatorial maps, the dual must not be explicitly represented because one map is enough to fully characterize the partition.

Introduction

The authors in [START_REF] Keselman | Generic model abstraction from examples[END_REF] asked: "How do we bridge the representational gap between image features and coarse model features?" They identify the 1-to-1 correspondence between salient image features (pixels, edges, corners,...) and salient model features (generalized cylinders, polyhedrons,...) as a limiting assumption that makes prototypical or generic object recognition impossible. They suggested to bridge and not to eliminate the representational gap, and to focus efforts on region segmentation, perceptual grouping, and image abstraction. The union of regions forming the group is again a region with both internal and external properties and relations. Low-level cue image segmentation cannot and should not produce a complete final good segmentation, because there is an intrinsic ambiguity in the exact location of region boundaries in digital images. Problems emerge because homogeneity of low-level cues will not map to the semantics [START_REF] Keselman | Generic model abstraction from examples[END_REF], and the degree of homogeneity of a region is in general quantified by threshold(s) for a given measure [START_REF] Fu | Hierarchical color image region segmentation for content-based image retrival system[END_REF]. The low-level coherence of brightness, color, texture or motion attributes should be used to come up sequentially with hierarchical partitions [START_REF] Shi | Normalized Cuts and Image Segmentation[END_REF].

A grouping method should have the following properties [START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF]: capture perceptually important groupings or regions which reflect global aspects of the image, be highly efficient, running in time linear in the number of image pixels (e.g Minimal spanning tree), and creating hierarchical partitions [START_REF] Shi | Normalized Cuts and Image Segmentation[END_REF].

In a regular image pyramid the number of pixels at any level l, is r times higher than the number of pixels at the next reduced level l + 1. The so called reduction factor r is greater than one and it is the same for all levels l. If s denotes the number of pixels in an image I, the number of new levels on top of I amounts to log r (s). Thus, the regular image pyramid may be an efficient structure for fast grouping and access to image objects in top-down and bottomup processes. However, regular image pyramids are confined to globally defined sampling grids and lack shift invariance [START_REF] Bister | A critical view of pyramid segmentation algorithms[END_REF]. Bister et.al. [START_REF] Bister | A critical view of pyramid segmentation algorithms[END_REF] concludes that regular image pyramids have to be rejected as general-purpose segmentation algorithms. In [START_REF] Montanvert | Hierarchical image analysis using irregular tesselations[END_REF][START_REF] Jolion | The adaptive pyramid, a framework for 2D image analysis[END_REF] it was shown how these drawbacks can be avoided by irregular image pyramids, the so called adaptive pyramids, where the hierarchical structure (vertical network) of the pyramid was not a priori known but recursively built based on the data. Moreover in [START_REF] Cho | Image Segmentation from Consensus Information[END_REF][START_REF] Meer | Consensus vision[END_REF], was shown that irregular pyramids can be used for segmentation and feature detection.

Each level represents a partition of the pixel set into cells, i.e. connected subsets of pixels. The construction of an irregular image pyramid is iteratively local [START_REF] Meer | Stochastic image pyramids[END_REF][START_REF] Jolion | Stochastic pyramid revisited[END_REF]. This means that we use only local properties to build the hierarchy of the pyramid. On the base level (level 0) of an irregular image pyramid the cells represent single pixels and the neighborhood of the cells is defined by the 4 (8)-connectivity of the pixels. A cell on level l + 1 (parent) is a union of neighboring cells on level l (children). This union is controlled by so called contraction kernels (decimation parameters, see [START_REF] Kropatsch | Hierarchical, Adaptive and Robust Methods for Image Understanding[END_REF]). Every parent computes its values independently of other cells on the same level. This implies that an image pyramid is built in O[log(image diameter)] time. Neighborhoods on level l + 1, are derived from neighborhoods on level l. Two cells c 1 and c 2 are neighbors if there exist pixels p 1 in c 1 and p 2 in c 2 such that p 1 and p 2 are 4-neighbors. We assume that on each level l + 1 (l ≥ 0) there exists at least one cell not contained in level l. In particular, there exists a highest level h . In general the top of the pyramid can have one vertex, i.e. an apex.

Region adjacency graphs (RAG), dual graphs [START_REF] Haxhimusa | Segmentation Graph Hierarchies[END_REF] and combinatorial maps have been used before [START_REF] Brun | Contraction kernels and combinatorial maps[END_REF] to represent the partitioning of 2D space. From these 3 structures, the combinatorial map seems to be the most adequate because, RAGs cannot correctly encode multiple boundaries and inclusions, and dual graphs lack the explicit encoding of edge orientation around vertices, present in a combinatorial map [START_REF] Brun | Contraction kernels and combinatorial maps[END_REF]. Moreover with combinatorial maps, the dual must not be explicitly represented because one map is enough to fully characterize the partition, and also the dual can be easily deduced anytime.

In this paper we present the hierarchical image partitioning method introduced in [9] using combinatorial maps (Section 2) and combinatorial pyramids. The building of the minimum weight spanning tree (M ST ) using Borůvka's algorithm [START_REF] Borůvka | O jistém problému minimálnim[END_REF], which is an efficient parallel method, and (dual) combinatorial map contraction is presented in Section 3. We will end with some experimental results (Section 4) and conclusions (Section 5). 

Combinatorial Maps

We will recall here some information about combinatorial maps: definitions and some properties. For a more detailed description of combinatorial maps see [START_REF] Brun | Dual Contraction of Combinatorial Maps[END_REF].

Definition 1 Combinatorial map. A combinatorial map G is the triplet G = (D, σ, α)
, where D is a set called the set of darts and σ, α are two permutations defined on D such that α is an involution:

∀d ∈ D α 2 (d) = d
If the darts are encoded by positive and negative integers, the permutation α can be implicitly encoded by α(d) = -d (see Figure 1). In the following, we will use alternatively both notations. A combinatorial map may be seen as a planar graph encoding explicitly the orientation of edges around a given vertex. Thus all graph definitions used in irregular pyramids [START_REF] Kropatsch | Parallel graph contraction for dual irregular pyramids[END_REF] such as end vertices, self loops, or degrees may be retrieved easily. The symbols α * (d) and σ * (d) stand, respectively, for the α and σ orbits of the dart d. More generally, if d is a dart and π a permutation we will denote the π-orbit of d by π * (d). The cardinal of this orbit will be denoted |π * (d)|. Some topological notions can be defined on G:

Definition 2 End vertices

• α * (d) is a self loop iff -d ∈ σ * (d) • α * (d) is a self-directed loop iff σ(d) = -d or σ((α(d)) = d • α * (d) is a bridge iff α(d) ∈ φ * (d). • α * (d) is a pendant edge iff σ(d) = d or σ((α(d)) = d
Using combinatorial maps each vertex is implicitly defined by its set of darts. Thus a vertex partition of a combinatorial map may be defined by encoding each vertex by one of its dart (see definition 3). 

Definition 3 Partition. Given a combinatorial map

G = (D, σ, α), D 1 , . . . , D n ⊂ D is a vertex-partition of G iff: 1. ∀i ∈ {1, . . . , n} D i = ∅. All D i are non-empty. 2. ∀d ∈ D ∃i ∈ {1, . . . , n}, ∃d ∈ D i | d ∈ σ * (d ). Each vertex may be retrieved thanks to a dart in one D i . 3. ∀i, k ∈ {1, . . . , n} 2 σ * (D i ) ∩ σ * (D k ) = ∅.
p D,D D → D d → σ n-1 (d) with n = M in{p ∈ IN * | σ p (d) ∈ D }
is an injective function.

Definition 4 Partition into Connected Components.

Given a combinatorial map G = (D, σ, α), and a partition D 1 , . . . , D n . This partition will be called a partition into connected components iff:

∀i ∈ {1, . . . , n} G i = (D i , σ • p D,D i , α) is connected σ * (D i ) = α(σ * (D i ))
The second equality means that there is no edge which connects D i to D j .

Definition 5 Dual Combinatorial Map. Given a combinatorial map

G = (D, σ, α), the com- binatorial map G = (D, ϕ, α) is called the dual of G.
The permutation ϕ is defined by:

ϕ = σ • α
The orbits of ϕ encode the faces of G. Note that the function ϕ is a permutation, since it is the composition of two permutations on the same set.

The connectivity is preserved by the dual transformation [START_REF] Brun | Dual Contraction of Combinatorial Maps[END_REF]. 

G = G/α * (d) = G \ α * (d)
This operation will be denoted C d . Note that this operation is well defined since d is a self-loop in G iff it is a bridge in G.

Definition 8 Contraction Kernel. Given a connected combinatorial map G = (D, σ, α), the forest [START_REF] Brun | Dual Contraction of Combinatorial Maps[END_REF] F = (D 1 , . . . , D n ) will be called a contraction kernel N iff:

SD = D - n i=1 D i = ∅
The set SD is called the set of surviving darts.

Definition 9 Equivalent Contraction Kernel. Given a combinatorial map

G 0 = (D, σ, α), a contraction kernel N 1 of G 0 , the contracted combinatorial map G 1 = G 0 /N 1 , and N 2 a contraction kernel of G 1 , the contraction kernel K 3 of G 0 for witch G 0 /N 3 = (G 0 /N 1 )/K 2 , is called the equivalent contraction kernel of N 1 and N 2 .
The successive application of N 1 and N 2 forms a new operator on G 0 denoted by

N 2 • N 1 .
A combinatorial pyramid is a stack of successively reduced combinatorial maps, where each map is build from the one below by selecting a set of vertices named surviving vertices and mapping each non surviving vertex to a surviving one.

Image Partitioning

Let G = (D, σ, α) be a given attributed combinatorial map with the vertex set V = σ * (D) and edge set E = α * (D). We will discuss later about the attributes. The goal is to find partitions P = {CC 1 , CC 2 , ..., CC n } such that these elements satisfy certain properties. The author in [START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF] defines the function, Comp(•, •), which measures the difference along the boundary of two components relative to a measure of the differences of components' internal differences. This definition tries to encapsulate the intuitive notion of contrast: a contrasted zone is a region containing two connected components whose inner differences (internal contrast) are less than differences within it's context (external contrast). We define an external contrast measure between two components and an internal contrast measure of each component. These measures are defined in [START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF][START_REF] Guigues | The Hierarchy of the Cocoons of a Graph and its Application to Image Segmentation[END_REF], analogously.

Let G = (D, σ, α, attr v , attr e ) be a given attributed combinatorial map with the vertex set V = σ * (D) and edge set E = α * (D) on the base level (level 0). Vertices v ∈ V and edges e ∈ E are attributed, i.e. attr v : V → R + and attr e : E → R + . One possible way to attribute the edges is given in Section 4. The combinatorial map on level k of the pyramid is denoted by

G k (D k , σ k , α k ). Every vertex u ∈ V k = σ * k (D k
) is a representative of a component CC i of the partition P k . The equivalent contraction kernel of a vertex u ∈ V k , N 0,k (u) is e set of darts (a subtree) of the base level d ∈ D that are contracted; i.e. applying equivalent contraction kernel on the base level, one contracts the sub combinatorial map G ⊆ G onto the vertex u.

The internal contrast measure of the CC i ∈ P k is the largest dissimilarity measure of the component CC i i.e. the largest edge weight of the N 0,k (u) of a vertex u ∈ V k :

Int(CC i ) = max{attr e (e), e ∈ α * (N 0,k (u))}. (1) 
Let u i , u j ∈ V k be the end vertices of an edge e ∈ E k . The external contrast measure between two components CC i , CC j ∈ P k is the smallest dissimilarity measure between component CC i and CC j i.e. the smallest edge weight connecting N 0,k (u i ) and N 0,k (u j ) of vertices u i ∈ CC i and u j ∈ CC j :

Ext(CC i , CC j ) = min{attr e (e), e = (d, -d) : d ∈ N 0,k (u i ) ∧ -d ∈ N 0,k (u j )}. (2) 
The pairwise comparison function Comp(•, •) between two connected components CC i and CC j can now be defined as:

Comp(CC i , CC j ) = True if Ext(CC i , CC j ) > P Int(CC i , CC j ), False otherwise, (3) 
where P Int(CC i , CC j ) is the minimum internal contrast difference between two components:

P Int(CC i , CC j ) = min(Int(CC i ) + τ (CC i ), Int(CC j ) + τ (CC j )). (4) 
For the function Comp(CC i , CC j ) to be true i.e. for the border to exist, the external contrast difference must be greater than the internal contrast differences. The reason for using a threshold function τ (CC) in Equation ( 4) is that for small components CC, Int(CC) is not a good estimate of the local characteristics of the data, in extreme case when |CC| = 1, Int(CC) = 0. Any non-negative function of a single component CC, can be used for τ (CC) [START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF]. One can define τ to be function of the size of CC: τ (CC) = α/|CC|, where |CC| denotes the size of the component CC and α is a constant. More complex definition of τ (CC), which is large for certain shapes and small otherwise would produce a partitioning which prefers certain shapes, e.g. using ratio of perimeter to area would prefer components that are not long and thin. Let P k = CC k i , CC k j , ..., CC k n be the partitions on the level k of the pyramid i.e P k is the combinatorial map G k (D k , σ k , α k ). Algorithm 1 shows how to build the hierarchy of partitions.

Experiments on Image Maps

In the following paragraphs we will comment about some implementation issues and results. Because having a combinatorial map, one can always deduce/obtain it's dual. There is no need of storing both. All the details here (as in the whole paper) are given for the map in which vertices represent regions. In it's dual, instead of vertices, faces are used to represent regions, for all e = (d,

-d) ∈ E min , u k,i = σ * k (d), u k,j = σ * k (-d) with Ext(CC k i , CC k j ) ≤ P Int(CC k i , CC k j ) do 7:
include d and -d in contraction kernel N k,k+1

8:

end for end for 13:

9: contract combinatorial map G k with contraction kernel, N k,k+1 : G k+1 = C[G k , N k,k+1 ].
k = k + 1 14: until G k = G k-1
Output: A region adjacency combinatorial map at each level of the pyramid. and also instead of 'end vertices of an edge' we are interested in the neighboring faces of an edge (the 2 faces separated by that edge).

Choosing which map to represent is more a subjective matter because both store the same information in a not so different way (the same framework could be used to store and manage both). Because the base entity in a combinatorial map is the dart, we cannot have a map containing only one vertex and no edges. So one notable difference would be that if vertices are chosen to represent the regions, a one region map, without self loops is not possible until the background (the infinite region) is represented explicitly (darts have to be specially added for that). On the dual, where regions are represented by faces, the background/infinite region also exists, but no special darts have to be added to accommodate it, so a one region map would be made out of 2 darts that are 'sewed' together by α and by σ.

We start with the trivial partition, where each pixel is a homogeneous region. The attributes of edges are defined as the difference of its end point vertices. The attributes of edges can be defined as the difference between end point features of end vertices , attr e (u i , u j ) = |F (u i ) -F (u j )|, where F is some feature. F could be defined as F (u i ) = I(u i ), for gray value intensity images, or

F (u i ) = [v i , v i • s i • sin(h i ), v i • s i • cos(h i )],
for color images in HSV color distance [START_REF] Shi | Normalized Cuts and Image Segmentation[END_REF]. However the choice of the definition of the weights and the features to be used is in general a hard problem, since the grouping cues could conflict each other [START_REF] Malik | Textons, contours and regions: Cue integration in image segmentation[END_REF].

For our experiments we used as attributes of edges the euclidean distance between pixel RGB values, attr e (u i , u j ) = red(u i ) * red(u j ) + green(u i ) * green(u j ) + blue(u i ) * blue(u j ). [START_REF] Cho | Image Segmentation from Consensus Information[END_REF] We choose this simple color distance to study the properties of the algorithm. To compute the Note that in all images there are regions of large intensity variability and gradient. This algorithm copes with this kind of gradient and variability. In contrast to [START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF] 3 the result is a hierarchy of partitions with multiple resolutions, suitable for further goal driven, domain specific analysis 4 . On the lower level of the pyramid the image is over segmented (partitioned) whereas in upper it is under segmented (partitioned), the help of mid and high level knowledge would select the proper partitioning. Since the algorithm preserves details in low-variability regions, a noisy pixel would survive through the hierarchy. Of course, image smoothing in low variability regions would overcome this problem. We, however do not smooth the images, as this would introduce another parameter into the method. The hierarchy of partitions can also be built from an over segmented image to overcome the problem of noisy pixels. Note that the influence of τ in decision criterion is smaller as the region gets bigger for a constant α. The constant α is used to produce a kind of the over segmented image and the influence of τ is smaller after each level of the pyramid. For an overexerted image, where the size of regions is large, the algorithm becomes parameterless.

Conclusion

In this paper we presented a method for building hierarchical image partitions using Borůvka's minimal spanning tree algorithm. The hierarchy is presented as a combinatorial pyramid, where each level is a 2D combinatorial map. Combinatorial maps are defined in any dimension, thus the current work should lead the way to segmentation of digital video streams using contraction in 3D combinatorial maps/pyramids. It was shown that the algorithm can handle large variation and gradient intensity in images. Even though the algorithm makes greedy decisions locally, it produces perceptually important partitions in a bottom-up way based only on local differences. A drawback is that maximum and minimum criterion is very sensitive to noise, although in practice it has a small impact. To overcome the problem of noise, one could start with an oversegmented image produced by a robust method e.g. watershed method. A comparison between the classes of partitions produced by the presented method, and some of the well known methods (e.g. [START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF]) is planned.
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 1 Figure 1: Example combinatorial map

  Given a dart d, we call the end vertices of the edge α * (d) = (d, -d) the orbits σ * (d) and σ * (-d).

Definition 6 Definition 7

 67 Removal Operation. Given a combinatorial map G = (D, σ, α) and d ∈ D. If α * (d) is not a bridge, the combinatorial map G = G \ α * (d) is the sub-map defined by: • D = Dα * (d) and • σ = σ • p D,D . This operation will be denoted R d . Contraction operation. Given a combinatorial map G = (D, σ, α) and one dart d, in D which is not a self loop. The contraction of dart d creates the graph:

Algorithm 1 -repeat 3 : 4 :

 134 Construct Hierarchy of Partitions Input: Attributed combinatorial map G 0 . 1: k = 0 2: for all vertices u ∈ V k = σ * k (D k ) do E min (u) = argmin{attr e (e) | e = (d, -d) ∈ E k and u = σ * k (

10 :

 10 for all e k+1 ∈ E k+1 = α * k+1 (D k+1 ) do 11: set edge attributes attr e (e k+1 ) = min{attr e (e k ) | e k+1 = C[e k , N k,k+1 ]} 12:
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 22 Figure 2: Some levels of the partitioning of "Tulips(cropped)": level (number of components).
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 4 Figures 2, 3 and 4 show some of the partitions on different levels of the pyramid and the number of components. In general the top of the pyramid will consist of one vertex, an apex, which represents the whole image.
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 34 Figure 3: Some levels of the partitioning of "Obj18 355": level (number of components). Obj59 0

  The set of darts of one vertex is included in only one D i .Note that we do not have n i=1 D i = D. Condition 2, only requires that each vertex has at least one of its darts in one D i .

Lemma 1 The Restriction Operator. Given a combinatorial map G = (D, σ, α) and D ⊂ D the application :
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In[START_REF] Pavan | Dominiant Sets and Hierarchical Clustering[END_REF] results of different segmentation methods, including the ones in[START_REF] Felzenszwalb | Image Segmentation Using Local Variation[END_REF] and[START_REF] Malik | Textons, contours and regions: Cue integration in image segmentation[END_REF], are shown and compared.

Please note that a whole class of partitions is created, where a partition is not limited to a certain level of the pyramid, but can be constructed of components from different levels (the receptive fields of the vertices of a multilevel partition occupy the whole image, and do not overlap)
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