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ABSTRACT

The objective of this paper is to present the Spectral
Kurtosis (SK) as a spectral analysis tool complemen-
tary to the classical power spectrum density (PSD).
Theoretical definition of the SK is firstly justified,
followed by a study of its behavior with respect to
the spectral components of signals. An unbiased es-
timator is thus proposed, with its exact variance, and
its signal to noise ratio sensivity. Finally, results are
illustrated by applying SK and PSD on synthetic and
real signals.

1 Introduction

In the past few years, higher order statistics have
been an extensive field of research [1, 2]. These
works lead to several analysis tools, complementary
to classical second order methods. One useful tool is
the fourth-order cumulant based kurtosis, providing
a measure of distance to gaussianity. In frequency
domain, the Spectral Kurtosis (SK) of a signal is de-
fined as the kurtosis of its frequency components. It
was initially defined and used to detect “randomly
occurring signals” in [3, 4]. In this work, the kurto-
sis of the real and imaginary parts of the frequential
components of signals are estimated separately. This
allows dealing with real variables, but leads to an in-
complete definition and estimation. In [5, 6], the SK
approach is generalized by using the frequency com-
ponents modulus. Unfortunately, the authors don’t
give a theoretical definition and use only a moment
based estimator instead of the cumulant based one.
Moreover, they present the SK only in ambient gaus-
sian noise context. The correct theoretical definition
of SK, using cumulants of complex random variables,
was finally given in a source separation context [7, 8].
In this work, the SK is used to measure the distance
to gaussianity of different spectral components, but
a biased estimator is provided.

In this paper, an unbiased estimator of the SK with

its theoretical variance is proposed. The influence
of the signal to noise ratio is studied for this new
estimator. This tool provides complementary infor-
mations with respect to the classical power spectral
density (PSD), which are very useful in signal anal-
ysis.

2 Definition

Let z(n) be a real discrete time random process,
and X (m) its N-point Discrete Fourier Transform
(DFT). The spectral kurtosis (SK) of z(n) is defined
as the kurtosis of the complex random variable X (m)
at each frequency bin m:

H4{Xf(m)aXT(m)aXT(m)aXf(m)}
[k2{ X (m), Xt (m)}]°

where Xt(m) € {X(m), X*(m)}, X*(m) is the com-
plex conjugate of X(m) and k, is the rt* order cu-
mulant.

Unfortunately, Eq. (1) leads to several different def-
initions. In order to solve this problem, z(n) is sup-
posed to be a stationary random process. There-
fore, the frequency component X (m) is a circular
complex random variable at each frequency bin m
[9, 10]. This particularity implies that the only non-
null cumulants of X (m) must have as many complex
conjugate terms as complex non-conjugate terms.
Hence, the only definition of the SK that does not
vanish for stationary signals is:

k4{X (m), X*(m), X (m), X*(m)}
[k2{ X (m), X *(m)}]”
In the stationary case, using the simplifications due

to the circularity of complex random variables [9, 10],
the definition of SK in terms of expectation is:

_ E{|X(m)|"} -2 [E{IX(m)Iz}]2

’Cz (m) 2
[B{x m)*}]




3 Properties

Let b(n) be a stationary random process with abso-
lutely summable k** order multicorrelations, what-
ever k. This means that b(n) is sufficiently random
such that samples which are well separated in time
can be regarded as approximately independent. This
property is verified by the most commonly encoun-
tered stochastic processes.
It was shown in [1, pp. 94-98] that for this kind
of process, often called “mixing process”, its N-
points DFT B(m) tends toward a centered gaus-
sian circular complex random variable at each fre-
quency bin m, with N — +o00. Its PSD is denoted
(m) = k2{B(m), B*(m)} = E{|B(m)[*}.
Knowing that all rt* order cumulant, with r > 3,
are zero for a gaussian (complex) random variable,
its SK becomes:

Ky(m) =0 (4)

Let s(n) = Ae’ (2r5En+e) he g stationary harmonic
process, with ¢ a random variable uniformly dis-
tributed over [—m,w]. Since its N-points DFT is
S(m) = Aé(mg)el?, where d(m) denotes the Dirac
function, it is a simple exercise to prove, using Eq.
(3), that the SK of this process at the frequency bin
myg is:

Ks(mg) = —1 (5)

Let x(n) be a stationary process given by the sum of
the two previous processes:

z(n) = s(n) + b(n) (6)

In frequency domain, at the frequency bin my,
S(mg) = Ae’¥ is a non-gaussian circular complex
random variable and B(myg) is a gaussian circular
complex random variable, independent of S(my).
Defining the local Signal to Noise Ratio (SNR) as

A2

¥ (mo)

SN R(mq) = (7)

the SK of z(n) at the frequency bin mg is (see ap-
pendix A.1):

SNR(mo) )2 ®

etm) = (1 s i)

This equation reduces to Eq. (4), respectively (5),

when SNR(mg) tends toward 0, respectively oo.

4 Estimation

In practice, we usually have only one realization of
length Ny of the stationary process z(n) defined in

Eq. (6). In this case, the signal is divided into M
unoverlapped blocks, each of length N. A N-point
DFT is performed on each segment giving the ran-
dom variables X;(m), (i =1, ..., M).

Using the k-statistics as in [11], an unbiased estima-
tor of the SK of z(n) is (see also appendix A.2):

- M

Ralm) = (M + 1) 552, |Xs(m)]*

(22, 1Xim))”

-2

9)
This equation is illustrated in Fig. 1, which shows
the theoretical and estimated values of the SK versus
SNR at the frequency bin mg for the process z(n)
defined in eq. (6). Hence, this estimator is unbiased
for the sum of two processes b(n) and s(n) and also
for each process separately.
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Figure 1: Spectral kurtosis versus SN R(myg)

For the random process b(n) defined in section 3, the
variance of the previous estimator at each frequency
bin m is (see appendix A.3):

. 42 4
vartho(m)} = Gr DG Ty 4 3) < W
(10)

This allows to obtain a theoretical threshold of gaus-
sianity in frequency domain, and to detect processes
as b(n). In Fig. 2 are plotted the theoretical variance
and its estimate versus the number of unoverlapped
blocks M, as well as its asymptotic limit 4/M.

5 Behavior for nonstationary signals

Let ¢(n) be a nonstationary signal, defined as a com-
ponent that may occasionally appear over a small
time interval with a constant energy.

Assuming the signal is divided into M unoverlapped
blocks, the contribution of ¢(n) in frequency domain
can be described in each block i (i =1,..., M) as:

o;|C(m)|e?®,  VYm € Supp{C(m)} (11)
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Figure 2: Estimator variance versus M

where Supp{C(m)} is the spectral support of ¢(n).
a; is the " realization of a random variable o =
{0, 1}, representing the random occurrence of the un-
steady component (see [5, 6]).

Assuming that the unsteady component involves
only, let say, K blocks, the SK of ¢(n) is:

M [M+1

M1 [ 7 2] , Ym € Supp{C(m)}
(12)

which becomes positif if only a few blocks (i.e. K <

M+EL) are involved.

Hence, using Eqgs. (8), (10) and (12), the SK indi-

cates that, at each frequency bin m, the analyzed

signal contains a sine wave, a mixing process or a

nonstationary component.

6 Applications

This section illustrates previous results by applying
the SK on two different signals.

The first one is a synthetic signal, composed of four
different components:

e a first nonstationary component which is a lin-
ear frequency chirp between frequencies 0.03
and 0.07, present over all time support of the
signal,

e 3 second nonstationary component consisting
of a sine wave with a frequency 0.1, and a
slowly time-varying amplitude,

e 3 pure sine wave with a frequency 0.16,

e a white gaussian noise filtered by a resonant
system, with an important resonance at fre-
quency 0.24.

These different components can be visualized on the
PSD shown in Fig. 3, and the corresponding SK is
shown in Fig. 4. These two spectral quantities
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Figure 3: PSD of the synthetic signal
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Figure 4: SK of the synthetic signal

were calculated by using N = 1024-points FFT and
M = 900 unoverlapped blocs. As expected, the SK
estimator is a function of the nature of the spectral
components. Its value is positive for the nonstation-
ary spectral components (frequencies 0.05 and 0.1).
The negative value obtained for the pure sine wave
(frequency 0.16) verifies Eq. (8). At the other fre-
quency bins, the SK tends to zero with a variance
verifying Eq. (10) (even for the important resonance
at frequency 0.24).

The second signal is a supply current of an induction
machine running at a constant rotation speed. This
real signal was sampled during 60 secondes, with a
sampling frequency of 10 kHz. Its PSD, SK and
spectrogram are represented in Fig. 5, 6 and 7 re-
spectively. All these spectral quantities were calcu-
lated by using N = 3000-points DFT and M = 200
unoverlapped blocs. For the sake of simplicity, the
studied frequency range is limited between 2950 Hz
and 3200 Hz. The PSD in Fig. 5 shows that in
this frequency range, this signal is composed of two
important spectral lines at frequencies 3010 Hz and
3110 Hz (dashed arrows), four small spectral lines
(solid arrows), and a wide band noise. The SK in
Fig. 6 equals -1 for the two important spectral lines
(dashed arrows), which indicates that these compo-



nents are stationary and harmonic. Moreover, the
positive values of the SK for the four small spectral
lines (solid arrows) shows that these components are
nonstationary. Finally, the wide band noise can be
viewed as a mixing process since its SK is null.
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Figure 5: PSD of the real signal
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Figure 6: SK of the real signal
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Figure 7: Spectrogram of the real signal

All these results are confirmed by the spectrogram in
Fig. 7. Indeed, the stationarity of the two important
spectral lines is evident. Moreover, the nonstation-
arity of the small spectral lines is shown by the pres-
ence of several components that appear occasionally
at these frequencies (see solid circles).

These two applications show that the SK provides

complementary usefull informations on the nature of
the signal components with respect to the classical
PSD.

7 Conclusion

Finally, the SK can be viewed as a complemen-
tary spectral analysis tool with respect to the PSD.
Indeed, it provides further informations about the
spectral nature of the analyzed signal. More specifi-
cally, it indicates at each frequency bin, if the signal
contains nonstationary, stationary harmonic or mix-
ing process.
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A Appendices

For simplification, we denote in the following:
kx @) (m) = Ka{X(m), X" (m), X (m), X" (m)}
kx2)(m) = k2{X(m), X*(m)}

Al

At the frequency bin mg, the components S(mg) and
B(myo) are two independent circular complex random
variables. Knowing that the cumulant of a sum of two
independent (complex) random variables equals the sum
of cumulants of each variable [1, pp. 19], the SK of z is:

K. (mo) = rs(4)(mo)+rp () (mo)
=(mo) [Ns(z)(m0)+53(2)(mo)]2
By using the property that all ** order cumulant, with
r > 3, are zero for a gaussian (complex) random variable:
1C.o (mg) = K5 (a)(mo)
=(mo) ['65(2)(77%o)+f~’~13(2)(m0)]2
These complex random variables being circular, the rela-

tion above in terms of expectation is (see [9]):
E{|S(mo)|*}—2[E{|S (mo)|?}]?
[B{S(mo)2}+E{|B(mo)I2}]

With E{|S(mo)|} = A*, E{|S(m0)|’} = A?, E{|B(mo)|’}
= 73(mo) and using Eq. (7), the relation (8) is proved.

Kaz(mo) =

A.2
As in the real case, an estimator of the SK is given by:
-~ ;‘&\X 4 (m)
Ka(m) = X0 (13)
[Rx @) (m)]

with Bx4)(m) and Kx(2)(m) unbiased estimators of the
fourth, respectively, second order cumulant.
The numerator Kx4)(m) in Eq. (2) in terms of expecta-
tion is:
2

rx(a(m) = E{|X(m)|"} — 2 [E{| X (m)|’}]
hence, an estimator of kx(4)(m) will be given by:

Ex@(m) = f(M) Ei\il |X¢(m)|4+

+ (M) X [ Xa(m)?| X (m))?

Developing the second sum, we obtain:

Bxa(m) = (F(M)+g(M))XL, [ Xi(m)|*+

+ g Xy 1 X (m) | X (m)?
Supposing the realizations X;(m) and X;(m) are inde-
pendent and taking the expectation in the relation above,
we get:

E{Rx@(m)} = M(f(M)+g(M))E{|X(m)|"}+

2
+  M(M -1)g(M) [E{|X(m)|*}]
Thus, an unbiased estimator of the numerator is provided
when M(M —1)g(M) = —2 and M(f(M) + g(M)) = 1,
giving:
MI(VIJ\/}——Il) Zzﬂi1 |Xi(m)|4+
+ e Liger 1 Xi(m)|1X; (m))?
In the same manner, un unbiased estimator of the second
order cumulant is:
Rx(2)(m) = 3 305, 1Xs(m)|®
Replacing the last two equations in Eq. (13), we obtain

the estimator of SK given in Eq. (9).
If b(n) is a mixing process (see section 3), then:

7'5)((4)("1)

K m
ABL()Z and Kp)(m) are independents (14)
(R (m)]

at each frequency bin m. This property is not proved
here; for more details see [11, Chap. 12]. Thus:

E{rp)(m)} Kp(a)(m)

- E{[’K\,B(z)(m)]2} - E{[EB(Q)(m)]Z}
(15)

25(4) (m)

, =0
[Re(2)(m)]

E{

If s(n) is a harmonic process (see section 3), then:

~

Ks(mo) = —1 leading to E{Ks(mo)} = Ks(mo)
Hence, from these two last equations and using appendix
A1, the estimator of the SK of z(n) given in Eq. (9) is
unbiased.

A3

For a mixing process b(n), the variance of the estimator
given in Eq. (9) is:
~ 2 - 2
var{Ro(m)} = p{Eeetily gy taat,
[RB(2) (m)] [RB(2) (m)]
Using Eqgs. (14) and (15), it follows that:
o Rp )] _ E{[Rpa )]’}
var {Ko(m)} = E{ {93;1(”")}4} - E{{EB;;(m)%‘*}
After some mathematical manipulation and knowing
that: E{|B(m)|'} = 2 (m), E{|B(m)|°} = 67} (m) and
E{|B(m)|®} = 24v2(m) for a gaussian complex circular
random variable B(m), we obtain:

"~ 2
E{[Rpa)(m)]"} = 1t (m)
E{[Rpey(m)]"} = QDAL b ()

which prove the relation (10).




