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AbstractNowadays, the complex manufacturing processes tmbe dynamically modelled and controlled to opsenthe
diagnosis and the maintenance policies. This artpresents a methodology that will help developihypamic Object
Oriented Bayesian Networks (DOOBNS) to formalisehsaomplex dynamic models. The goal is to haveregg reliability
evaluation of a manufacturing process, from itslanmgentation to its operating phase. The added vaflukis formalisation
methodology consists in using the a priori knowkedd both the system’s functioning and malfunctigniNetworks are built
on principles of adaptability and integrate undeties on the relationships between causes andteff€hus, the purpose is to
evaluate, in terms of reliability, the impact of/sgal decisions on the maintenance of the systds. Methodology has been
tested, in an industrial context, to model theatwlity of a water (immersion) heater system. © @®ublished by Elsevier
Science Ltd.
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They present some application cases and highligie t
1. Introduction advantages of each technique with respect to therst
Nevertheless, large and complex BNs are difficaltdesign
One of the main challenges of the Extended and to maintain. This is the reason why the metmmposed
Enterprise is to maintain and to optimise the dqyaif within the SERENE project [8] is interesting. Thigethod is
the services delivered by industrial objects inyaainic based both on BNs and on a hierarchical decompasiti the
way along their life cycle. The purpose is to cinee decision-making model for system safety analysiecdRt
decision aiding systems to maintain the system in publications focus on Object Oriented Bayesian Neks
operation. Nevertheless, most of the automatecesysst  (OOBNS) [18], [3], [4]. Indeed, they allow to implent the

do not provide the means of intelligent interprietatof SERENE methodology based on Bayesian networks.

the information when great process disturbances bav The top down BNs construction that uses severalseof

be considered. Moreover, decisions can be takerowit abstraction, and the powerful model elaborationhmatsm for

a perfect perception of state of the system. Thidiad the models that have repetitive structures, mak&ROvery
perception argues in favour of using a probabdisti useful to model processes. Elementary models ame tised
estimation of the system state. As described intf8ls and both the structure and the parameters can peoved
issued from the Artificial Intelligence can be usex through an analysis of past experiences.

bring help in decision aiding systems of manufantur Weber,et al.[24], proposed a model-based decision system
processes. based on a static probabilistic model that allowsiagnose

Works on system safety and Bayesian Networks faults by using an analysis of the system’s fumgtig and
(BNs) were recently developed in [16] and the autrre  malfunctioning. In order to improve diagnosis andimenance
works presented by Boudali and Dugan [5]. Bobleib,  strategies, our purpose is to define a dynamic inotiehe
al., [6] explain how the Fault Tree can be implemdnte process behaviour. This model allows computing estat
by using BNs. In the paper [7] the authors desctiitee probability distributions by taking into accounttbdhe age of
stochastic modeling techniques as FT, BN and Rigtri the components and the latest maintenance opesation



The purpose of this paper is to introduce an Object
Oriented Approach to model the system’s reliabilitigh
Dynamic Bayesian Networks (DBNs) model. In [20] the
authors demonstrate that DBNs are equivalent tckar
Chains (MCs). The problems that are considered duere
those involving systems whose dynamics can be
modelled as stochastic processes, in which thesideci
maker’s actions influence the system’s behavioure T
current state of the system and the action thapdied
on that state determine the probability distribatmver
the next states. In the work [26] a study is daditao
the comparison between MCs and DBNs for system
reliability estimation and the paper [27] descrilibs
reliability modelling effectiveness of the DBNs to
simulate a stochastic process with exogenous @intstr

This paper is divided into 6 sections. Section 2
presents the problem statement and highlights thiem m
drawback of a model based on a MC model, i.e. aisé f
growing of the state space with respect to theesyst
complexity. Section 3 describes the Bayesian Néktsvor
theory and defines the dynamic and the object teten
representation of BN wused in the following. The
proposed methodology is an original formalisatibatt
can be useful to model system reliability (sectfrby
means of DOOBNSs (section 5). Finally, the simulatid
a water heater system is developed in section Ganm
conclusions and perspectives are discussed inoBectti

2. Problem statement

In order to take the uncertainty into account, the
process state is considered as a random variable th
takes its values in a finite state space correspgnth
the set of all the possible process states. A M@walto
model the system dynamics over these states [9].

2.1. The Markov Chain notations in reliability

We will first of all define the notations used to
describe the MC model. LeX be a discrete random
variable used to model a process with a finite nemdd
mutually exclusive statésl,...,s\,,}. The vectorn, then,

denotes a probability distribution over these state

n=[n(s) .. TS, .. Tsw)], M(sy) 20

, oy = W _ (1)
with 1(s;,) = p(X =s;) and Zlﬂ(%) =1

Assuming that the occurrence of events imply system
state transitions, from a state at time stef)(to a state
at time step K), the process produces a sequence
(T, T4,..T4 4, TG) that can be modelled as a discrete

MC if: T (sy) = P(Xy =Sy|My) . The Markov

property makes it possible to specify the statdtic
relationship among states as a transition prolgbili
matrix Pyc. The MC is qualified as homogeneous if the

state transition probabilitiesp; = p(X, = sj|Xk_1 =g) are

time independent.

The reliability of a system can be modelled by gsanMC.
This method leads to a graphical representatiop) gd. 124).
Let’s consider the modelling of a component (eptitye will
use a discrete random variab}e with two states §p, dowr}
to represent respectively the operational and riaifitate of the
component. The matrix PMC described below defines t
probabilistic state transitions betweeip)and fown:

1-p
Pc { .- 'ﬂ @

Where p,, represents the failure probability of the compdnen
between time steps k1) and (K)
P, = P(X, =dowrjxk_1 =up). Let T the time to failure of the
component be a positive random variable with aroegptial
distributionf (T) =A@ ™. In reliability studies, A is the

parameter known as the component failure rate. ;Twerhave:
p, = At (see page 37 in [2]) wherAt represents the time

interval between time stepk-{) and k), A being a probability
per time unit (Fig. 1). In the following\t is assumed to be
equal to 1 hour. For constant failure rates, theM&ime to
Failure (MTTF) is defined (see page 87 in
[10]): MTTF =1/A.

A

OO,

Fig. 1. Markov Chain.
2.2. Problem to model complex process

The MC method is suitable for computing the religbof
entity or system of low complexity. However, wher deal
with complex systems with several components, vesa a
combinatorial explosion of the number of statest thee
necessary to model the system reliability, makingC M
unmanageable. To decrease the model's complexitg, t
hypothesis (a) according to which there is no siamdous
occurrence of failure is assumed. Even if this ligpsis
simplifies the transition probability matrix, theumber of
states is still prohibitive for the modelling of maplex real
systems with MC.

In practice, to deal with this modelling problemetimods
based on Fault Tree (FT) or Success Tree (ST)4@iri[10])
can be wused. These methods assume the statistical
independence between events (hypothesis (b)), lzey also
assume that a static model of the situations isrgitHowever,
hypothesis (b) is no longer valid when componenaveh
common causes or when components have severakefailu
modes.

Stochastic Petri Net ([19] and [11]) is also a meth
traditionally used to model the system reliabili§tochastic
Petri Nets provide a powerful modelling formalism.
Unfortunately, the reliability analysis relies onvionte Carlo



simulation procedure that requires a great numier o the conditional probabilitiesp(n;|n;) over eachn; state
simulations when very low probabilities are targete

The following part deals with a method that will knowing its parents statesn(). This CPT is defined as a
allow to exploit the advantages of both the MC #mel matrix:
FT approaches within a single representation tloasd
not assume the hypotheses (a, b) and that doelyot P(nj|pa(nj)):

on a Monte Carlo simulation to calculate the system _ _

reliability. This method is based on Dynamic Bagesi p(n]- =slnl‘ni =sfi) p(n]- =g |n =g 3

Networks. : : 3)
- b=¢h=a] - syt =s)

3. Bayesian Network theory Py =5 ‘ni =sw) 0 PN =SNG =

BNs are probabilistic networks based on graph  conceming the root nodese. those without parent, the

theory. Each node represents a variable and the arc cpT contains only a row describing thepriori probability of
indicate direct probabilistic relations between the oqh state.

connected nodes. Variables are defined over several Various inference algorithms can be used to compute

states. The DBNs allow to take into account time by arginal probabilities for each unobserved node emjiv
defining different nodes to represent the variab#s  jhtormation on the states of a set of observed soflbe most

different time slices. classical one relies on the use of a junction (see [15], pp.
. . 76). Inference in BN [13] then allows to take imtocount any
3.1. The Bayesian Network notations state variable observation (an event) so as to taptae

) . probabilities of the other variables. Without anyeet
BNs are directed acyclic graphs used to representhseryation, the computation is basedagpriori probabilities.

uncertain knowledge in Artificial Intelligence [15RA When observations are given, this knowledge isgirtied into
BN is defined as a c'(‘)_upIéB:((N, A).P), V\'/,h_ere NA) the network and all the probabilities are updatezbedingly.
represents the graph\™ is a set of nodes A" is a set of Knowledge is formalised as evidence.hard evidenceof

arcs;P represents the set of probability distributionstth  the random variablex indicates that the state of the node

are associated to each node . When a node is matt a . n n ; -
) . - nON is one of the stateS,, : s ,.. . For instanceX is in
node, i.e. when it has some parent nodes, theldistm n {Sl s'\"}

is a conditional probability distribution that quiies the states! : p(n=g)=1 and p(n=sy4)=0. Nevertheless,

probabilistic dependency between that node and itswhen this knowledge is uncertaispft evidencesan be used

parents. (see [22]). A soft evidence for a nodeis defined as one that
A discrete random variableX is represented by a enables the updating of the prior probability valder the

node nON with a finite number of mutually exclusive states ofn. For example,X is in states! and s}, with the

states. States are defined 8p:\s/,..sy[. The vector . :
! 87 {Sl SM} v same probability and not in the other stafsi=s') =05,

" denotes a probability distribution over theseestats
p(n =) = 05 and p(n = Se(rm)) =0.

eq. (1), wherer'(sy) is the marginal probability of

being in statey,. In the graph depicted in Fig. 2, nodes 3.2. Dynamic Bayesian Network

n and n; are linked by an arc. I{n;,n;)J A and
A DBN is a BN that includes a temporal dimensiohisT
new dimension is managed by time-indexed randoriabkes.

nj. The set of the parents of nodg is defined as X; is represented at time stépby a noden; ) N with a

(nj,n;) 0 A thenn is considered as a parent of

pa(n;) =ny. finite number of states, :{s[1i .y } T denotes the
probability distribution over these states at tistepk. Several

time stages are represented by several sets osridgle.. N, .

Ny includes all the random variables relative to tistiee k

Fig. 2. Basic BN. ([14] and [9] pp. 38-45).
An arc that links two variables belonging to diffat time

In this work, the seP is represented with Conditional ~ Slices represents a temporal probabilistic deperel@etween
Probability Tables (CPT). Then, each node has anthese variables. Then DBNs allow to model randomiattes
and their impacts on the future distribution ofestlvariables.

Defining these impacts asnsition-probabilitiesbetween the

n; are defined over the setsS, :{Sfi S&} states of the variable at time stefi and those at time stdp
non . . leads to the definition of CPTs, that are relativeinter-time

andS,, 3{511 ""S_J}'The CPT ofn; is then defined by  gjices, equivalent to the one defined in the presisection (eq.
(3)). With this model, the future slic&k)(is conditionally

associated CPT. For instance, in Fig. 2, the nogesnd



independent of the past given the preséet)( which 3.3. Object Oriented Bayesian Networks
means that the CPTP(ni’k|pa(niyk)) respects the

Markov properties [17]. Moreover, this CPT is
equivalent to the Markovian model of the variab¥e

Modelling systems containing an important number of
variables with BNs generally leads to complex meddio
avoid this phenomenon, Koller has defined a padrcciass of
described in section2.1 if pa(m)=n,4 and BNs, the Object Oriented Bayesian Networks (OOBM3][

S =S_ ie: Their modelling is based on the decomposition & g¢tobal
Mkt ik network into hierarchical levels [3],[4]. This resentation
method allows to decentralize and to structurekih@ewledge

P(ni,k|ni,k—1)=PM<: (4) within BNs of reduced size. Thanks to their stroetuthe
OOBNSs are then well suited for the modelling of usttial

Starting from an observed situation at time dte, systems.

the probability distributionn[} over n; states is 4. Reliability modelswith BN

computed by the DBN inference. To compu@gr,

several solutions are proposed in the literatunee Of
them consists in developingtime slices, resulting to a
network size growing proportionally t® [17]. In this
work, we have chosen another solution that allows
keeping a compact network form, and that usestitera
inferences [28]. The notion of time is introducédough
inference. Indeed, it is possible to compute the

Bayesian networks provide a powerful mathematical
formalism to model complex stochastic processese Th
equivalence between Bayesian Networks and the icédss
Fault Trees method is described in the followingtisa in the
same way as it is in [6] and [5]. The comparisotwieen Fault
Trees and Bayesian Networks is done under the hggist of
Fault Trees validity: in other words, events refatéo
components or to functions can only be modelled winary

probability distribution of any variabl&; at time sterk states. Then, the power of BN will be presentedhia next
based only on the probabilities corresponding toeti section. We will argue that BNs are well suitablethods for
stepk-1. The probability distributions at time stlepl... the modelling of the complex propagation of faikitarough a
are computed using successive inferences. Then, aprobabilistic network of multimodal variables. Tlsisction will
network with only two time slices is defined Fig Bhe present the BN model of the dependent failure meaesthe

first slice contains the nodes corresponding toctimeent propagation of uncertainty. The last section wilsdribe the
time step K-1), the second one those of the following dynamic BN and their equivalence to the Markov @bai
time step K). Observations, introduced as hard evidence

or probability distributions, are only realised the 4.1. Fault Trees and Bayesian Networks to model relighbil
current time slice. The time increment is carried by

setting the computed marginal probabilities of tioele A Fault Tree allows to describe the propagationcdegf
at time stefk as observations for its corresponding node the failure across the system. System reliabilityaweailability
in the previous time slice. are modelled according to the assumption of inddpece

between the events affecting the entities (hypaghés), see

time feedback
ime feedbac chapter 7 in [10]).

-E When components cannot be repaired, the basicdaaltts

P(n, |n» ) : represent component failures. Under such conditidhe

\'; Tkt : probability evaluation of fault trees based on takure rates

__E corresponds to the system reliability. The hypadthés) is then

inference naturally respected. When components are repajriidebasic

fault events depend on the failure and repair ratas, the

Fig. 3. DBN for the random variabl. components’ unavailability are computed using a Wdar
Fault Tree model and used as basic events in the FT. Undemgs®on

(a), the probability evaluation of such fault treesresponds to
the system unavailability. Nevertheless, from acfical view
point, hypothesis (a) is hardly verified. Indeadthe case of a
repairable system, the failure of a component gdlyehas an
effect on the behaviour of the other component&réfore, in
this paper the purpose is only to model the systestiability.
ey v The following notation is adopted: (CMPup) indicates
down down that the component CMP is functioning, and (CM&own)
C) C) indicates that a failure has occurred (the compbmerhen

unable to perform its function). Fig. 4 comparesngntary

models of parallel components CMP1 and CMP2 thdtemugp
Fig. 4. Classical FT models of parallel components. the system function ;S Whereas a classical model of this

parallel structure is based on a Fault Tree, thdeitiog with



Bayesian Network is realized with a single struetas
depicted in Fig. 5 (the structure is identical &erial
configurations). The CPT contains the conditional
probabilities that translate the failure propagatiogics
across the functional architecture of the system.
Therefore, the CPT is defined automatically by an
OR/AND gate. These CPTs ame priori given, and
probabilities are equal to 0 or 1 since the logictte
failure propagation is deterministic. To compute th
reliability of the function § events on component are
considered as statistically independent ([12] &8))f

Pr(S3 = up)ET = Pr(CMP1 =upn CMP, = up)
Pr(S, = down); =
Pr(CMR, = down] CMP, = down)

n (5)
= Pr(S; =up)er =[] Pr(CMR =up)
i=1
2
=1-7 Pr{CMPR = down) = Pr(S; = Up)BN
i=1
P(S;/CMR,CMR,)
CMP, up down
CMP, up down up down
up 1 1 1 0
Ss3
down 0 0 Q L

Fig. 5. Equivalent BN of the parallel structure.

4.2. BN to model dependent failure modes and
uncertain propagations

Thanks to the CPTs, BNs provide a model of the
propagation of several failure modes in the sysiEmen,
it is possible to synthetically represent in a daised
form system made up of entities with several failur

Table 1. FMEA.
Failure Modes Causes Effect
CMP failurel| Effect 1
function
in mode 1
CMP failure2 | Effect 2

The states of function S3 are defined by failurede® For
instance, node S3 in the BN (Fig. 6) takes theofuilhg states:
up or down.No prior probability is associated with these Hate
because they are computed according to the stdtében
parents, i.e. the causes described by Ohdes.

P(S;|CMR,CMR,)

CMPy up down1l down2

CMP, | up |down| wup down up down
Ss up 1 1 1 0 0.2 0

down 0 0 0 1 0.8 1

Fig. 6. BN to model complex structure.

The CPT of the functions3s defined by using the columns
of the causes and the failure modes of the FMEAyaisa
Nevertheless, a BN representation can turn outetcuseful
insofar as a combination of causes (for instancePElown?2
and CMRB=up) can lead to several failure modes of the
function with different probabilities. In Fig. 6he uncertainty
is represented by the probability distribution (@3).

As it is known in the FMEA analysis, a failure modan
happen to cause other failure modes accordingedoaitics of
the failure propagation through the system. The BN
representation is able to model this propagati@vertheless

modes. The hypothesis of independence betweenwevent the construction of this model has to be structuattion 5 of

(failures) made for FT is not necessary. Indeed,sBN

this paper presents a method to model the religbibif

allow computing exact repercussions of dependent COMplex systems.

variables to the system reliability. Moreover, & i
possible to introduce uncertainty by setting prolitas
in the interval of value [0, 1].
Failure Mode, Effects Analysis (FMEA) [23] allows
to determine the failure modes associated with a
component (Table 1). Therefore, the states (corsitlas
exhaustive) of a CMP node are, for instance:
* up: the component is available,
e downl the component is unavailable due to the
failure 1,
* down2 the component is unavailable due to the
failure 2...

4.3. Dynamic Bayesian Networks to model entities

time feedback

&,

Fig. 7. Generic Component DBN.



The reliability of low complexity components can be

formalising and unifying these two results in aqud model

modelled as a DBN made up of two nodes as presentecby means of OOBNSs.

in Fig. 7. An MC model of componerX; reliability is

easily translated into a DBN model [26]. Thus,
independent components (entities) of the process ar
modelled using DBN equivalent to an independent MC.
For instance, as it is defined in sectdf, a component

is modelled by a discrete random variat{ewith states
{up, dowr}. Then two nodes are defined to model the
random variable at time slicek) @nd k-1): CMPK) and
CMP(k-1). These nodes, linked by an arc that represents

the dependency between the component states at time

stepk and its states at time stdpX), are both described
by the statesyp, dowrt.
Equations (2) and (4) define the CPT

P(CMP(k)|CMP(k—1)) linking the two time slices. The

parameters are those defined to build the MC moftlel
the component. To compute the probability
p(CMP(k) =up) according to which the variabl¥; is

in the stateup at ), the following equation may be used:
p(CMP (k) = up) = (1-AAt) p(CMP (k - 1) = up)(6)

Equation (6) corresponds to the classical formdla o
the discrete model of the MC.

5. Modelling approach

The main interest of such a method enabling a
reliability modelling thanks to BNs lies in the
propagation of the component failure states throtingh
functionality of the system. Nevertheless, modgllin
complex systems requires a methodology that wilp he
specify the BN's structure and the states of itsabées.
Methods like Structured Analysis and Design Techeiq
(SADT) and FMEA are traditionally used in practice;
therefore we will endeavour to formalise the BNnfro
this knowledge representation [25].
5.1. Unification  of  system and
malfunctioning knowledge

functioning

The model is elaborated before the implementatfon o
the system. By that time, the main technologicalicts
are made. But it is still necessary to define thgistics
of maintenance which contribute to reach goalsrms
of performance. We propose here to design the BN
model by using both the functional analysis (SARRY
the malfunctioning analysis of the system (FMEAhe
definition of the environment, external resourcasd
failure modes are formalised at the level of theitrma
function and Elementary Function (EF). The desmipt
of the components failures and reliability are matée
level of component (CMP).

The modelling approach consists, from the analysis
of the systemic functioning based on SADT graphical
representation [21], in representing the abnormal
operation (malfunctioning) based on FMEA and then i

The functioning and malfunctioning of the systera dual
and must be studied together to control each systeiable. It
leads, first, to focus on the system functioningefation to its
environment and its internal and external resourthis action
can be made by using SADT graphical representafidns
modelling is based on a principle of functional @®position
of the components, from functions and sub-functidos
elementary functions.

RHD Report on
the function state
in relation to HD

AD having to be
used by function

Function >
HD having to
be transformed
by function

AD supporting the function
Fig. 8. Flows and Function Representation.
Main Process Functionality
/ / / = /

\
!
1
\
1
\
\
\
|

N
.
.

A4

d

Component

Entity
equipment
set of components
human resources

Elementary functions
Fig. 9. Functional decomposition.

Each function (Fig. 8) represents a modification af
“product” carried out by the system. It producesconsumes
flows such as “Having to Do” (HD) materialising the
Input/Output (I/0O) finality and “being Able to Do'AD)
representing I/O energies, resources, activity stpgrom this
step, simplifying assumptions are made for estingatthe
reliability. Therefore, the output flow is a repdRHD) that
represents the function’s finality. This flow issasned to be
the added value on the product flow representellign 8 by
the Input HD flow that is transformed by the fuocti This
output flow represents the functioning or failuredes of the
function (as reliability of the function). Only tHeHD flow is
taken considered as output. It is thus transfereesl
informational view of physical result through theut flow of
another function.

From this functioning, the malfunctioning is inddcey
considering that the relationship between these nvedles is
directly linked to the relationship between the mal and



abnormal states of the variables. An FMEA analysis
enables to create a malfunctioning model that helps
identify the failure or degradation modes of each
function, the elements that are responsible forféiiare
(causes) and the possible consequences of thégeesai
(effects).

For example, the RHD flow can take the valug™
corresponding to the nominal state of the actiwitythe
values ownZT, “down2 to identify the causes and the
effects associated with these two abnormal stdths.
failure causes are either external (linked to thput
flows) or internal when they are linked to the AD
function support flow (components). A set of statas
thus be associated with each component. Theses state
correspond to: nominal operation, failure 1, fala@r...

To model high functional levels, OOBNs are composéd

generic sub-functions that are structured as in Egy When
the function carries out several missions, it issgiole to

duplicate several inputs or outputs nodes (AD, HPD...

Moreover, it is also possible to model sub-funcsiom parallel
or in series (Fig. 11).

In Fig. 11, as the generic sub-functions F1 andaFe in
line, the report RHD1 is transferred to F2 througbk input
flow HD. As the functions F2 and F3 form a V stuwret, the
node RHD is linked to RHD2 and RHD3 in order to qare
the RHD of the overall function. The connectiongween
functions are defined as CPT that represents thpagiation
logics of the failure modes, as it is presented Eig

OOBNs allow to describe systems thanks to serial
parallel component architectures. However, the GREsher

In the same way, the consequences are observablghan the OOBN structures—constitute the relationseoial or

either on function output flows or on the influerafethe
component degradation development on itself (to go
towards a breakdown state). To sum up, a failursea
leads to a failure mode (e.g. the modification bé t
function state reported in RHD), which leads thection

to be unable to produce the HD nominal flow any enor

5.2. Reliability modelling with OOBN

The Bayesian Network representation is based on the
functional decomposition of the system. The flows a
represented by discrete random variables that are
represented by the nodes of the BN. This representa
is structured as a tree (Fig. 9). Its root is anBDO
representing the highest abstraction level. The
elementary functions represent the lowest functiona
levels modelled by BNs. The connections between the
sub-functions are modelled by logical functions. EN3
are consist of generic sub-functions in the high
functional levels of the model.

Then, a unified representation can be obtained by
directly  building OOBNs from the  dual
functioning/malfunctioning analysis presented abdve
keep the concept of the generic function, inputs ar
modelled by input nodes defining the random vaseabl
associated with the flows AD, HD. The generic fimict
represented in BN formalism is given in Fig. 10.

{AD % { HD

. ’ . /

N N
Function X

Fig. 10. Generic BN input and output nodes striectur

{ap
¢ 3

T

¥

T
% !

R
Function 3
RHD3

v
4,

Fig. 11. High level of the functional decomposition

>
Function 1

RHD1
v

Function 2
RHD2

parallel architectures.

Thus, the same relation between functions can
represented by the two different structures degiateFig. 12
and Fig. 13. This structural difference has no iotpan the
calculations of reliability if the CPT is defineds dollows,
where * is a logical operator representing thetietabetween
functions k and F:

e Fig. 12: the CPT of
P(RlIF, F) = P(R) * P(F).

e Fig. 13. the CPT models the

or

be

the node F3 defined

transformation

P(X|F, F») = P(R) * P(F,) and the CPT associated to
Fs (P(X|R)) corresponds to the identity operator (i.e.
the CPT's diagonal is equal to 1, all the others

probabilities being equal to 0).

Fig. 12. RB:

Fig. 13. RB: in line structure.

These two structures are then equivalent. The ehoione
structure rather than another depends on the $ggcibf the
problem

The OOBN model offers the possibility to compute th

system reliability. However, equivalence betweers Bfid BNs
is verified only if the system variables are ddsed as binary.



This restrictive hypothesis does not apply to BNshey
allow to consider random discrete variables defined
an unrestricted set of states. In short, a BN ¢anys be
defined as equivalent to a FT, but the reverselisef
Therefore, the modelling of failure modes by OOBN
represents an increase of precision with respecdheo
reliability model.

5.3. To model Elementary Function states related to
components

If a component is used to perform several sub-
functions, the output node CMP of the Component BN
appears at the highest level containing the comptotie
a component performs only one sub-function
(Elementary Function EF), the output node CMP appea
as an AD flow supporting the function (Fig. 8) in a
generic sub-function BN (Fig. 14).

The CMP output nodes are directly linked to the EF
nodes representing their functionality. The CMPtesta
are defined by the causes analysed by means of EMEA
The causes are either internal to the low BN lawel
linked to CMP, or external, i.e. linked to the ihmodes
AD or HD. The common causes are defined in higher
hierarchical levels and the information is forwatdey
heritage between the levels through the input angut
nodes.

The EF nodes are linked to the CMP nodes and to the
input nodes leading to compute the RHD states
probabilities (Fig. 14). If all the EFs are up thtee RHD
is up.

Fig. 15. Generic Component BN.
5.4. Model of components DOOBN

As for functions, a generic model is proposed for
components (or for a set of components). Fig. 15
describes a Dynamic Object Oriented Bayesian Neétwor
DOOBN representing the model of a generic component
a component node CMP(k-1) and its evolution defiasd
a Markov Chain modelled by the CPT of the node
CMP(K).

It is now necessary to determine the probabilities
associated with the states of the component. These
probabilities depend on the reliability of the camnpnt.

Then, the probabilities associated with CMP(k) netiges
in the BN are estimated for a given operating t{if@ble 2).

The CMP(k) node is defined as an output node. Then,

probabilities associated with the CMP(k) states ased to
compute probabilities of the Elementary Functiatest related
to this component.

Table 2. Component states and probabilities.

up 1
(correct operation)
_ downl
CMP(k=0) (cause of failure 1) 0
down 2 0
(cause of failure 2)

5.5. Use of the model in operation: reliability estimato

The objective of the decision-making problems is to
compare several alternative solutions (combinatiof
decisions). The proposed model allows the simulataf
several scenarios.

Once decisions have been taken, the BN model dkfine

above can be used as an estimator of the systesiiedbitity
with respect to the chosen policy. The BN modebwadl to
analyse the influences implied by the degradationsthe
functions’ states. This analysis is based on thaukition of a
component failure, a common cause or an unconfgrofita
sub-function. The objective is to forecast the iotpa failures
on the functions. It is then possible to analyseupstream and
downstream consequences on the whole system. laonEe,
if we consider a component failure, an evidence loarset as
P (CMP=downl) = 1. The sub-functions probabilitees then
updated by the BN inference. The RHD of each fumcti
relates the failure impact on each functional level

6. Application

The proposed method is applied to a classical elaoipa
water heater process. The objective of the therpmatess
(show in Fig. 16) is to ensure a constant watew flate with a
given temperature. The process is composed ofkagtqmipped
with two heating resistors R1 and R2.

i v
$i :Dﬁ T sensor
R1
S L
| iR2
I Qo
T

H sensor

Fig. 16. Thermal process.



The system inputs are the water flow rate Qi, the determine the failure rates quantifying the traositbetween
water temperature Ti and the heater electric pddvtrat component states. These figures depict the Markio®irG of
is controlled by a computer. The outputs are théewa the components, which are considered, in this stuay
flow rate Qo and the temperature T that are regdlat independent. State 1 represents a component withitwie.
around an operating point (Qi=Qo= 20 |.fiand T = The process is made of seven components that hader
50°C). The input temperature of the water Ti = 208C 4 states. Modelling the system with a Markov Chaisds to
assumed to be constant. define 1728 states (4x2x3x4x3x3x2=1728). The system

The components of this system are indexed in the reliability is then computed according to the titioe matrix
FMEA analysis (Table 3). The failure modes of each Pyc that defines the probabilities linking all the tet This
component are defined as well as their effects. The matrix requires approximately 3 million parameters.
causes are linked with the component states or the Therefore, the reliability estimation of this presdrom the
unavailability of the electric energy required topply MC model is very difficult to obtain. In the follang, the
the component. Therefore, the loss of energy is a DOOBN modelling proves to be a more efficient and
common cause of the 6 failure modes. convenient tool. This model is a unified represeotaof the

The figures (Fig. 17 to Fig. 23) present the Mean knowledge formalised from FMEA, SADT analysis, and

Time To Failure (MTTF) parameter allowing to independent MC of components.
Table 3. FMEA - Component states.
Function Element Failure Mode | Effects Causes
to transform | VALVE V Remains closedQi=0 No energy from (AD)
pressure to Valve is down (state 4)
Qi Remains open | Qi>0 No energy from (AD)
Valve is down (state 3)
The water flow Qi different from the Valve is down (state 2)
rate is biased |desired Qi
to stock TANK Leak of water | Water loss in the Tank is down (state 2)
water environment Fissure
QitoH
to transform | WATER PIPE| Clogged Qo =0 Pipe is down (state 3)
H to Qo Restricted Qo< desired Qo Pipe is down (state 2)
to heat watef HEATING Maximum level| T> desired T Heating resistor is down
fromTito T | RESISTOR |of heat (state 2)
No heating T=Ti=20°C No energy from (AD)
Heating resistor is down
(state 4)
Heating power T< desired T Heating resistor is down
loss (state 3)
to measure |H SENSOR | Biased measurgQo is different from the |H sensor is down (state 2)
H real Qo
No measure | Impossibility to control | No energy from (AD)
Qo H sensor is down (state 3)
to measure TT SENSOR | Biased measurgT is different from the realT sensor is down (state 2)
T
No measure | Impossibility to control P| No energy from (AD)
T sensor is down (state 3)
to control COMPUTER | Control loss | Deviation of T and H No energy from (AD)
V and P Computer is down (state 2)




MTTF,=10 000 h | A=1 10° K" MTTF,=5000h | A=210"h
MTTF,=500 h A=20 10" h2 MTTF,;=10 000 h | A\,=1 10" h*
MTTF;=7 000 h | A\,=1.43 10" h* _ L

MTTF,=2 000 h A=5 104 h—l Flg. 21. WATER PIPE rellablllty MC model.
MTTFs=15000 h | As=0.66 10" h*

Fig. 17. HEATING RESISTOR reliability MC model. m
A1 Ao
m | MTTF;=40000 h | A,=0.25 10 h* |
Az
Fig. 22. TANK reliability MC model.

MTTF;=5000 h | A,=2 10* h*

MTTF,=3000h | A,=3.310*h*

MTTF3=45000 h | A\;=0.22 10" h'*

Fig. 18.

H SENSOR reliability MC model.

A1

A2

OWOPO

OO,

| MTTF1=8 000 h

| A=1.25 10K

A3 Fig. 23. COMPUTER reliability MC model.
MTTF,=5 000 h A=2 10% ht
MTTE,=3 000 h A=3.310*h?
MTTF;=45000 h | A\;=0.22 10* h* HD1

ADL1 Electric
Power Order T=50T
AD2 water input

pressure and Ti RHD water output

temperature T
—— > To provide P

and flow rate Qo

Fig. 19. T SENSOR reliability MC model.

)\ )\ | Warm Water
1 2 AD3 system
e e e parameters
temperature T
)\ and level H AD4
3 WATER HEATER PROCESS

MTTF;=5 000 h M=2 10% h? Fig. 24. SADT level A-O.
MTTF,=3000h | A,=3.3 10" h*
MTTF;=6 000 h As=1.66 10" h*

Fig. 20.

VALVE V reliability MC model.

10



ADL1 Electric HD1
Power Order T=50C
HD Order V
AD2 water input ¢
pressure and Ti
P{ To transform RHD Qi AD1 Electric
Pressure Power
to Qi
Q Al
\4
AD4-1 T trol RHD V
o contro
VALVE V Vand P
>
AD3 system A2 RHD P
parameters
temperature T AD4-2 COMPUTER,
and level H SENSORS
ADL1 Electric
Power HD Order P
AD . RHD water output
f temperature T
Qi _ .
To transform Ll
AD QitoH RHD water
Ti > TitoT A3 level H . | To transform :THD water output
AD water H to Qo ow rate Qo
AD4-3 level H Ad
TANK, HEATING RESISTOR
AD4-4
WATER PIPE
Fig. 25. SADT level AO.
F Bavesialab - C:\users\Weber\R# [S\ Travail DD i (] |

Metwork DetaBasze Edt “iew Learning

Temporal

Optionz  Help

HEATING RESISTOR.hif *

HEATING RESISTOR (k) HEATING RESISTOR (k+1)
1 Node Edition i x|
< | NG RESISTOR Gty 7] o» || (BRI Made
~Type Deterrminist |
ILabeIed ﬂ -Conditional Probabilitiy Table
~State List HEATIMNG ... | statel (up) | state2 (do.. stated ipo... | stated ino ...
statel fup) 99.969 0.01o 0014 0.0o07
stated (up state? (do.. 0.000 99.800 0.000 0.200
state2 (down level max) stated (po.. 0.000 0.000 99.950 0.050
stated (power loss) stated (no . 0.000 0.000 0.000 100.000
stated (no heating)
Add State Delete State Hormalize/Complete
ok Cancel
| @

Fig. 26. Dynamic Bayesian Network model of the HEAG RESISTOR.
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6.1. SADT Analysis

Fig. 24 presents the level A-O of the system SADT
analysis. This figure depicts the interaction betmwéehe
system and the external environment through the AD,
HD and RHD flows. The main functionality of the

process is:
e to provide Warm Water.

The next figure presents the level A0 describing th
four functions that are necessary to perform thenma

task of the system (Fig. 25):
« to transform Pressure into Qi (Al),
* to control V and P (A2),
* to transform Qi into H and Tiinto T (A3),
« to transform H into Qo.

Fig. 27 formalises the function “to transform Qtan

H and Ti into T” from the elementary functions:

* to stock water supported by the component TANK,
* to heat water supported by the component

HEATING RESISTOR.

AD Qi To stock RHD water level H
water >
QitoH
A3l AD1 Electric Power
ADA4-3 AD water HD Order P
TANK level H
To heat water
fromTitoT ———p
AD Ti RHD water
» A32| temperature T
AD4-3 A3
HEATING RESISTOR

Fig. 27. SADT level A3 “to transform Qi to H and Ti
toT".

HEATING RESISTOR (k)

1.0

0.8

— P(statel) | |
— P(state 2)|
— P(state 3)|
0.4 P(state 4)[

0.6

0.2

——

00 * - ‘
o 500 1000 1500 2000

Fig. 28. States probabilities of the HEATING
RESISTOR.

6.2. DOOBN Model

The DOOBN model is depicted in figures: 26, 29, &0d
31.

The Dynamic Bayesian Network that models the

component HEATING RESISTOR, is presented in Fig. 26
The conditional Probability Table describes theejpehdent
Markov Chain that models the reliability of thisngponent.
Inferences are realised by using tAayesialLab (8 version)
software (http://www.bayesia.com) that uses an afiee
procedure to compute probabilities. The states abibities are
presented in the Fig. 28 according to the currieme step K).
A maintenance action is simulated whé1000h. This
maintenance action is assumed to be perfect, ik,
component is reset in state 1 (no failure, no ddafian). This
event is simulated in order to illustrate its prga@on through
the model.

The propagation through the Object Oriented Bayesia
Network model allows to take into account the dejescy
between the failure modes and the common causenpute
the system’s reliability R{). The Fig. 29 to 31 present OOBN
models corresponding respectively to the SADT IgvaB,
A31 and A32 (see Fig. 27).

The elementary function “EF to heat water” is supgad by
the component HEATING RESISTOR (Fig. 31), and deisen
on the states of the flows:

» AD Electric Power,

* AD Ti,

» AD Water level H,

* HD Order P.

This elementary function is described by four state
according to the FMEA (Table 3). These states spord to
the following failure modes:

 State 1: Function to heat water is correct.

» State 2: Function to heat water is incorrect, tkeatimg

level is maximum.

» State 3: Function to heat water is incorrect, tkeatimg

level is lower than the required level.

» State 4: Function to heat water is incorrect, tkeatimg

level is equal to zero.

Probabilities related to these states are depictdedg. 32.
The maintenance action with the component HEATING
RESISTOR has an impact on the “EF to heat wateatest
P(statel) increases and the other probabilitiesredse.
Nevertheless, in spite of the assumptions of a egéerf
maintenance action, P(statel) is less than 1. iShisie to the
failure and the degradation of the other componefftse
ageing of the system results in a degradationefriput flows
(for example: AD level H or HD Order P) of the ftion “to
heat water”. Then, the “EF to heat water” cannotpbégectly
performed.

The objective of the system is to provide warm wate
temperature T with flow rate Qo. The reliability thfe system
depends on the states of the functions: to transfr into H
and Ti into T; to transform H into Qo.

12



EdBayesialab - C:\users\Weber\RAPPORTS\Travail =131 x|
Network DataBase Edi View Learning [172(2Mce  Options  Help |

DEES[sed- - alaaEk oNX] EF to heat water (k)

1
0.9 —P(statel)
' \ — P(state2)
AD Electric er Order P 0.8 \ P(state3)
P(state4)

N
. < | AN

0.5
ADTi 0 heat water RHD temperature T 0.4 \\

’ <

0.3

= 0.2

AD Qi to stock water RHD level H 0.1 =

° 0 500 1000 1500 2000

SOl | 2l | @
) i . e -
i Fig. 32. States probabilities of the elementarycfiom: to heat
water.

Fig. 29. OOBN model of A3 SADT level.

RHD water output temperature T (k)

A31net * 09

P(correct)
P(incorrect)

0.8 \

08 NG
AD Qi EF to stdck water RHD level H 0.6 \\/
0.5 \

0.4 \

0.3

TANK 02

I — | 8 o
A3.bif A31 et O0 506 1000 1506 2000

Fig. 30. OOBN model of A31 SADT level. Fig. 33. States probabilities states of the flowdTRwater

output temperature T".

FlBayesiaLab - C:\users\Weber\RAPPORTS\ Travail DD Timodelir =10l x|
Network Database Ecit Yiew Lesrning [7f=r2ncc  Options  Help ‘
DEHS s:B- A BERES
A3Znet * HEE
’ RHD water output flow rate Qo (k)
HD Ofder P 1

P(correct)
P(incorrect)

AD Electric Powe

0.9 -
0.8 - \
0.7 -
:. 0.6 - \\/
twater RHD temperature T 0.5 - T
0.4 -
0.3 - T~

02 - \
AD water level H ( ) 0.1 -
0 - .
HEATING RESISTOR 0 400 800 1200 1600 2000

Sl ol ] | B
[Wazinet | [iazzne

Fig. 34. States probabilities of states of the fl®RiD water
Fig. 31. OOBN model of A32 SADT level. output flow rate Qo”.
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