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ABSTRACT

This paper deals with a new multiple input multiple out-
put active control algorithm applied to reduce synchronous
machine vibrations. Usually, this kind of algorithm has
good performance on linear time-invariant, or slowly time-
varying systems. The present system has been developped
taking into account the presence of a linear periodically
time-varying transfer function. Signals are first shown pe-
riodic with the same fundamental frequency. Next, Fourier
coefficients of the signals measured by sensors are linked to
the inputs ones thanks to a linear matrix equation. Clas-
sical least mean square minimization can then be used to
find the optimal input Fourier coefficients. Finally, a sim-
ple adaptive algorithm updating these coefficients is elabo-
rated, in order to converge to the optimal solution and to
follow the disturbances fluctuations. Results on real vibra-
tion signals show good attenuation performance with one
or several sensors.

1. INTRODUCTION AND PROBLEM
STATEMENT

For most of rotating machines, vibrations are noisy and
damaging. Therefore strategies which lead to their attenu-
ation are interesting. This paper deals with such an active
control system applied to a synchronous alternator. It is
supposed to be triphase with p pole pairs, driven with a
constant rotating frequency vo and run without load. Ma-
chine vibrations are measured by M accelerometers placed
around the stator frame (a; denotes the angular position
of the jth sensor).

This system acts as follows: the three stator coils are
supplied with currents ¢1(t), ¢2(t) and i3(t), meant to create
an additional magnetic field. It generates a force, and fi-
nally an additional vibration of the stator frame. The aim of
the strategy set out in this paper is to elaborate input cur-
rents, whose engendered vibrations interact destructively
with natural machine ones.

The transfer model between input currents and vibra-
tions measured by the jth sensor is determined in [1], and
given in Fig. 1. Input gains, function of a;, represent the
effect of stator coils on input currents. The sum of these
three scaled signals is next modulated by:

m;(t) = X cos(2mprot — pay) (1)
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Figure 1: Transfer model between input currents and
vibrations measured by the jth sensor

This linear periodically time-varying (LPTV) transfer can
be determined in real-time, thanks to an angular sensor
placed on the rotor shaft. z;(t) is then proportional to the
force applied on the stator frame at angular position a;.
The stator frame reaction toward this force is modelized as
a linear time-invariant (LTI) system whose transfer function
is G;(v). It is supposed to have been previously identified.
Its output y; (t) is equivalent to the stator frame additional
vibration engendered by i1 (t), i2(t), and i3(t) at «;. This
signal, summed with the natural vibration one d;(t), forms
the total vibration e;(t) measured by the jth accelerometer,
also called error signal. This model is valid whatever j =
1,...,M.

As shown in Fig. 1, m;(t) followed by G, (t) can be seen
as a single LPTV transfer function. Unfortunately, classi-
cal active control methods are developed for LTI or slowly
time-varying systems [2, 3, 4], and have middling perfor-
mance in this strong time-varying case [5]. The multiple
input multiple output (MIMO) control strategy proposed
in this paper locally reduces the stator vibrations power,
although the system is LPTV. In section 2, we directly
compute optimal input signals expression 41(t), 2(¢) and
3(t) in the mean square sense. As disturbances d;(t) due
to the machine rotation are periodic, optimal input signals
are also shown periodic, and are expanded in Fourier se-
ries. Optimal Fourier coefficients minimizing the squared
error are calculated, and are shown stationary. Their time-
invariance leads to increased attenuation performance, in
comparison with classical active control methods. A prac-



tical adaptive algorithm allowing to reach these solutions,
and simple enougth to be implemented in a digital signal
processor, is also provided. In section 3, the efficiency of
this control system is investigated on real vibration signals.
In this paper, the system characteristics (pole pair num-
ber p, rotating frequency vy, sensors angular positions «;,
and transfer functions G;(v)) are supposed to be known, or
previously estimated.

2. THEORETICAL STUDY

2.1. Preliminary remarks

Disturbances d;(t) being due to the machine rotation, their
spectra mostly consist of spectral lines located at harmonic
frequencies of vo [5]. Now, to reach good attenuation rates,
“antivibrations” y;(t) have to be strongly correlated with
signals to cancel [4]. Therefore, their spectra must have
the same property and be also made up of spectral lines.
Next, LPTV systems formed by the association of m;(t)
and G;(v) imply only pro frequency shifts [5, 6]. There-
fore, input signals also should be modelized as a set of sine
waves with frequencies nvg (n € N). Finally, these sig-
nals are supposed to be band-limited, and approximated
by their N first harmonics. All signals are then periodic
with fundamental frequency vy, their Fourier transforms
consist of a sum of generalized Dirac functions located at
nvo (n € {—N,...,+N}), and scaled by complex numbers,
called Fourier coefficients. Moreover, only the N + 1 coef-
ficients corresponding to non-negative frequency are neces-
sary since all signals are real. Fourier coefficients of e; (t),
respectively d;(t) and i;(t), corresponding to the frequency
nvo are noted e;,,, respectively d;, and ;..

2.2. jth sensor signal analysis

Organizing the Fourier coefficients of e;(t) in vector form,
the following expression is obtained :

Ej:dj+Gj'Mj-Cj-’i (2)
where:
T
ej=1[ e e ein |
T
dj =[ dj, dj, diy |

i=[i1(p) TN tp T2(-p) E2N4p  B3(—p) " BN 4]
The superscript T denotes the standard transpose.

G; = diag(y, ) [ Gj(0) Gj(wo) Gj(Nwo) ]
diag y 1y denotes an [V + 1] x [V + 1] diagonal matrix. It
represents the filtering effect of G;(v) on the Fourier coeffi-
cients, and is diagonal thanks to the time-invariance of the
transfer function.

2p—1 times

. —N— .
e % 0...0 etiP 0

0 e P Q...0 etiPed

This [N + 1] x [N + 2p + 1] matrix represents the ampli-
tude modulation effect due to m;(t), which is a linear time-
varying process. This transfer involves prg frequency shifts
in the signal spectrum, or identically in vector components,
which explains the matrix shape.

C; = ( cos(pay)I cos(pa; — Z)I  cos(pa; — 25)I )

I denotes the identity matrix. The [N +2p+1] % [3 x (IV +
2p + 1)] matrix C; is made up of three diagonal matrices,
corresponding to the input gains shown in Fig. 1.

Finally, Eq. (2) gives the relation between the jth error
signal, input signals, and the jth disturbance signal. This
relation also depends on the system caracteristics, ¢.e. the
known matrices Gj, M; and C;.

2.3. Global analysis

M accelerometers placed around the stator frame at an-
gular positions o; are now considered. The optimal input
signals minimizing the vibration power on these sensors are
desired. First, we show that Fourier coefficients of the M
error signals are linked to the inputs ones thanks to a lin-
ear matrix equation. This generalizes Eq. (2) and regroup
the Fourier coefficients of all error signals. Using definitions
of vectors and matrices given in section 2.2, the following
elements are defined:

d = [df - df di 1"
e = [ef - € .. eﬂ]T

These two [M x (N + 1)] vectors regroup the Fourier coef-
ficients of all disturbance and error signals.

G, -M, -C,
T = :
Gy My - Cur

This [M x (N + 1)][3 x (N + 2p + 1)] matrix represents the

transfer function of the global system between the three in-

put signals and the vibrations they generate at the sensors.
These different elements verify the global equation:

e=d+T: ¢ 3)

2.4. Cost function

Input signals are said optimal if they minimize the sum of
errors power, thanks to a minimum amount of inputs power.
A cost function corresponding to this aim is:

M 3
_1 E: Z __H H .
°- 2 [;'_1Pej+’yj_1pij] seetat )

where the superscript 7 denotes the Hermitian transpose,
and Py; the power of x;(t).The real constant 7 controls
the balance between reducing the squared errors e - e, and
increasing the “control effort” 47 -4. The same cost function
is studied in [7] for LTI or slowly time-varying systems, and



for one harmonic only. Using Eq. (3), C is expanded out
into a generalized matrix quadratic form in the variable 2:

c= " [T" - T+~Ii+d" -d 5

i [T d] + [T7 - d]" i )
C presents a unique global minimum with regard to %, be-
cause the matrix [TH -T +~I ] becomes positive definite
taking v > 0. The first line of (5) contains the vibra-
tions power generated by inputs acting alone, summed with
the disturbances power and a fractional part of the inputs
power. These terms are never negative, and cannot mini-
mize the function C. Nevertheless, the terms of the second
line, i.e. the cross-power between antivibrations and distur-
bances, can be negative and used in order to achieve this
minimization.

2.5. Optimal solution and adaptive algorithm

The global minimum of C is reached with the optimal value
of

. b -1 H

zopt:—[T -T+71] T .d (6)

This equation gives the vector of the optimal Fourier coeffi-
cients of input signals as a function of system characteristics
T, the constant -y, and the frequency components of the dis-
turbances d. It is the so-called “Wiener solution”. Unfortu-
nately, it is difficult to use in practice because disturbances
d;(t) are not directly measured. In order to obtain a so-
lution as a function of the measurable vector e, a gradient
descent algorithm with a convergence rate u [8, 9] is derived
from Eq. (5):

i1 = (1= 2p9)i — 2uT" - e (M

Vector % represents the frequency components of % peri-
odic signals. Therefore it needs to be updated following
Eq. (7) every % seconds (subscript ! denotes a variable
valid during Ith period). Moreover, the innovation term of
(7) depends on known matrix T', and vector e; including
Fourier coefficients of signals measured by sensors. Only e;
then has to be processed each period, thanks to a Fourier
transform. This algorithm converges to the optimal solu-
tion (6) because the cost function has no local minima.

In the next section, the performance of this MIMO ac-
tive control system is investigated through computer exper-
iments on real signals.

3. SIMULATION RESULTS

3.1. Simulation conditions

Real vibration signals have been measured on an alternator
with p =1 pole pair and a rotating frequency vy = 23.8Hz.
Moreover, they have been filtered to limit their frequency
range between 1 and 3kHz (IV was chosen big enough to
take these frequencies into account). The following results
were obtained using these signals, with a simulated ma-
chine. Mechanicals LTI transfer functions G;(v) were mod-
elized with different order 4 infinite impulse response filters,
and modulation signals m;(t) were supplied by an angular
sensor placed on the rotor shaft.

Moreover, algorithm parameters were set constant (u =
0.1, ¥ = 0.01) in order to compare the different results.

Finally, an attenuation performance criterion is neces-
sary to quantify the system efficiency. The Normalized Cost
Function, defined in (8), is chosen:

c
Crn =100 X —— 8
where C is the cost function defined in (4). This quan-
tity is represented in percentage, and should be as small as

possible if the control system is efficient.

3.2. Single output results

In this section, the number of sensor is limited to M = 1,
so as to analyse the system behavior at a single point of the
stator frame.

Firstly, the effect of the number of inputs on the atten-
uation performance is investigated. One sensor was shifted
all around the machine, and C,, was calculated for each sen-
sor position a1, using one and then three input currents. It
is represented in polar coordinates in Fig. 2. For the one

Figure 2: C,, versus ai in polar coordinates, obtained for
one (dashed) and three (solid) input currents

input case, C,, varies from 20% to 100% as a function of
ai. Therefore, the system presents spatial limitations since
two stator frame points can not be reached (C,, ~ 100% for
a1 = 90° and 270°). Nevertheless, when three inputs are
used, they work in relays to generate an attenuation force
at each point and performance remains constant and very
good whatever a1 (C, ~ 20%). In next simulations, all
inputs then have been used.

Secondly, the convergence behavior and the attenua-
tion effect on signals are represented in Fig. 3. The learn-
ing curve of the adaptive algorithm, representing C, ver-
sus period numbers, is shown in Fig. 3(a). This crite-
rion converges as expected toward an optimal value, which
is approximately 25% of the disturbance power. The pa-
rameter p controls the convergence speed of the system,
while ~y controls the final value of C), [7]. However, non-
synchronous sampling involves oscillations of the curve after
convergence. Fig. 3(b) represents the disturbance and error
spectra after convergence. The disturbance spectral line lo-
cated at 1666Hz is well attenuated (more than 10dB reduc-
tion), but some small interference spectral lines are created
here and there, due to the sinusoidal amplitude modulation.
In spite of these interferences, the system attenuated more
than 75% of the disturbance power.
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Figure 3: Single output attenuation performance

3.3. Multiple output results

In this last section, three sensors are used in order to mini-
mize vibrations at several points at the same time. They are
placed on the stator frame, with angular positions a1 = 0,
az = 45° and a3 = 90°. Only the time evolution of C,
is represented in Fig. 4, because the spectra obtained on
each accelerometer are similar to those of the Fig. 3(Db).
After convergence, C,, represents approximately 50% of the
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Figure 4: Multiple output attenuation performance:
learning curve

disturbances power. Moreover, for sensor 1, respectively 2
and 3, the error power represents 49%, respectively 45% and
57% of the disturbance one. Therefore, this control system
may be used to create a “zone of quiet” on the stator frame.
This is interesting, for example, to have motionless fixing
point on the stator frame, and isolate the direct machine
environment from its vibrations.

4. CONCLUSION

A new MIMO active control algorithm applied to
synchronous machine vibrations has been developed. Its

originality is due to the fact that it takes into account
the linear and periodically time-varying transfer function,
through which inputs act on disturbances. First, we have
demonstrated that all signals are periodic with the same
fundamental frequency. Next, the relation between their
Fourier coefficients has been shown linear. Thereby, it is
easy to find the optimal Fourier coefficients of the input
signals minimizing a quadratic cost function. Finally, sim-
ulations carried out on real vibration signals lead to the
following conclusions :

e attenuation performance becomes independent of the
sensor location if three inputs are used,

e results obtained for one or several sensors are encour-
aging with a view to implement this algorithm in a
digital signal processor.

Nevertheless, several points still have to be studied, like
the optimal choice of the algorithm parameter 7y in order
to adjust the input signals power. Another improvement
would comnsist in having good performance in case of fast
variation of the rotating frequency vyg.
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