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A new inequality for the Hermite constants

Roland Bacher
∗

Abstract: We prove an inequality of the form γn ≥ Cn(γn−1) between
Hermite’s constants γn and γn−1. This inequality yields also a new proof of
the Minkowski-Hlawka bound ∆n ≥ ζ(n)21−n for the maximal density ∆n of
n−dimensional lattice-packings. 1

1 Introduction and main results

We denote by min(Λ) = minλ∈Λ\{0}〈λ, λ〉 the minimum (defined as the
squared Euclidean length of a shortest non-zero element) of an n−dimensional
lattice Λ ∈ En in the Euclidean vector-space En and define the density of Λ
by

∆(Λ) =

√

(min Λn)n

4n det Λn
Vn

where Vn = πn/2

(n/2)! stands through the whole paper for the volume of the

n−dimensional unit-ball in En. The density ∆(Λ) is the proportion of vo-
lume occupied by a maximal open Euclidean ball embedded in the flat torus
En/Λ with volume

√

det(Λ) and having a shortest closed geodesic of length
√

min(Λ). The largest density ∆(Λ) achieved by an n−dimensional lattice Λ
is called the maximal density ∆n in dimension n. Related constants are the

maximal center density δn = ∆n/Vn and the Hermite constant γn = 4δ
2/n
n

in dimension n. The sequence γ1, γ2, . . . of Hermite constants satisfies for
n ≥ 3 Mordell’s inequality

γn ≤ γ
(n−1)/(n−2)
n−1

which yields an upper bound for γn (if n ≥ 3) in terms of γn−1. Our main
result is a complementary inequality bounding γn from below in terms of
γn−1. For the convenience of the reader we state it in three equivalent ways,
either in terms of densities ∆m, center-densities δm or Hermite constants γm

in dimension m. It involves the Möbius function µ : N>0 −→ Z defined by
µ(l) = (−1)a for a natural integer l ∈ N which is a product of a distinct
primes and by µ(l) = 0 if l is divisible by the square of a prime number.

∗Support from the Swiss National Science Foundation is gratefully acknowledged.
1Math. class.: 10E05, 10E20. Keywords: Lattice packing, Hermite constant, inequality
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Theorem 1.1 (i) The maximal densities ∆n−1 and ∆n of lattice-packings
in dimensions n− 1 and n ≥ 2 satisfy the inequality

2n−1∆n−1

⌊2∆nVn−1/(∆n−1Vn)⌋
∑

k=1

∑

l|k

µ(l)

ln−1

√

1 −
(

k∆n−1Vn

2∆nVn−1

)2
n−1

≥ 1

where the sum
∑

l|k is over all positive integral divisors l ∈ N of the natural
integer k.

(ii) The maximal center densities δn−1 and δn of lattice-packings in
dimensions n− 1 and n ≥ 2 satisfy the inequality

2n−1δn−1
π(n−1)/2

((n− 1)/2)!

⌊2δn/δn−1⌋
∑

k=1

∑

l|k

µ(l)

ln−1

√

1 −
(

kδn−1

2δn

)2
n−1

≥ 1.

(iii) The Hermite constants γn−1 and γn in dimensions n−1 and n ≥ 2
satisfy the inequality

π(n−1)/2

((n − 1)/2)!

⌊γn/2
n /γ

(n−1)/2
n−1 ⌋
∑

k=1

∑

l|k

µ(l)

ln−1

√

γn−1 − k2

(

γn−1

γn

)n
n−1

≥ 1.

Remark 1.2 (i) The function

(x, y) 7−→ Fn(x, y) =

⌊xy⌋
∑

k=1

∑

l|k

µ(l)

ln−1

√

x−
(

k

y

)2
n−1

is ≥ 0, continuous and strictly increasing in x > 0 and y > 0 if xy ≥ 1.
(It is moreover differentiable, except on the hyperbolas xy = n for n ∈ N.)
Knowledge of (a lower bound for) γn−1 implies a lower bound γn ≤ γn defined
by

π(n−1)/2Fn(γn−1,
√

γn/γn−1

n
) = ((n− 1)/2)! .

A completely analogous observation holds of course also for ∆m and δm.
(ii) The inequality of Theorem 1.1 is tight for n = 2. For n = 3, we

get from δ2 = 1/2
√

3 the lower bound 0.1695 ≤ δ3 = 1/4
√

2 ∼ 0.1768. For
n = 9, the known value δ8 = 1/16 gives the lower bound δ9 ≥ 0.0388 (a
lattice with center-density 0.0442 is known), for n = 25 the known value
δ24 = 1 coming from the Leech lattice (see Cohn-Kumar, [3] and [4]) yields
δ25 ≥ 0.657 (a lattice with center-density 0.707 is known).

(iii) The above examples show that our inequality is better than the tri-
vial inequality δn ≥ δn−1

2 obtained by considering the orthogonal sum Λn−1⊕
4µn−1Z where µn−1 is the minimal length of a densest (n− 1)−dimensional
lattice Λn−1.
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(iv) The factor

∑

l|k

µ(l)

ln−1
=

∏

p prime,p|k

(

1 − 1

pn−1

)

yields only a minor improvement for huge n and is the analogue of a standard
trick leading to the factor ζ(n) in the Minkowski-Hlawka bound ∆n ≥ ζ(n)

2n−1 .

Theorem 1.3 For all ǫ > 0, there exists N such that

∆n ≥ 1 − ǫ

2n
∑∞

k=1 e
−k2π

∼ (1 − ǫ) 23.1388 2−n

for all n ≥ N .

Remark 1.4 Theorem 1.3 is slightly better that the Minkowski-Hlawka bound
which shows the existence of lattices with density at least ζ(n) 21−n, cf. for-
mula (14) in [5], Chapter 1. The best known bound for densities achieved by
lattice packings (together with a very nice proof) seems to be due to Keith
Ball and asserts the existence of n−dimensional lattices with density at least
2(n− 1)2−nζ(n), see [2].

The paper is organized as follows:
Section 2 introduces notations and summarizes for the convenience of

the reader a few well-known facts on lattices. It contains also an easy (and
seemingly not very well-known) result on integral sublattices which are or-
thogonal to a non-zero integral vector in Zn−1.

In Section 3 we define of µ−sequences which are the main tool of this
paper. Theorem 3.3 of this Section gives a quantitative (and somewhat tech-
nical) statement for extending a suitable finite µ−sequence (s0, . . . , sn−1) to
a µ−sequence (s0, . . . , sn−1, sn). The lattice (s0, . . . , sn)⊥ ∩Zn+1 associated
to such an extension is obtained by an “approximate lamination” of its sub-
lattice (s0, . . . , sn−1)

⊥ ∩ Zn. Theorem 3.3 is the central result of this paper
since it implies easily Theorem 1.1 as shown at the end of Section 3. The
proof of Theorem 1.3 is more technical and given in Section 6.

Section 4 states and proves a weaker and easier statement than Theorem
3.3. Although not necessary for the other parts of the paper, this section
describes a fairly elementary and almost effective method for constructing
dense lattices. It contains moreover the main idea for proving Theorem 3.3
in a simplified form.

Section 5 describes the proof of Theorem 3.3.
Section 6 is devoted to the proof of Theorem 1.3.
Section 7 contains a few final comments and remarks.
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2 Definitions

All facts concerning lattices needed in the sequel are collected in this Section
for the convenience of the reader, see [5] and [7] for more on lattices and
lattice-packings.

An n−dimensional lattice is a discret-cocompact subgroup Λ of the
n−dimensional Euclidean vector space En. Denoting by 〈 , 〉 the scalar
product and choosing a Z−basis b1, . . . , bn of a lattice Λ = ⊕n

j=1Zbj , the
positive definite symmetric matrix G ∈ Rn×n with coefficients

Gi,j = 〈bi, bj〉

is a Gram matrix of Λ. Its determinant det(G), called the determinant of Λ,
is independent of the choosen basis b1, . . . bn and equals the squared volume
of the flat torus En/Λ. The norm of a lattice vector λ ∈ Λ is defined as
〈λ, λ〉 and equals thus the square of the Euclidean norm

√

〈λ, λ〉. A lattice
Λ is integral if all scalar products {〈λ, µ〉 | λ, µ ∈ Λ} are integral. An
integral lattice of determinant 1 is unimodular. An Euclidean lattice Λ is
unimodular if and only if every group homomorphism ϕ : Λ −→ Z is of the
form ϕ(v) = 〈v,wϕ〉 for a suitable fixed element wϕ ∈ Λ. The minimum

min Λ = minλ∈Λ\{0}〈λ, λ〉

of a lattice Λ is the norm of a shortest non-zero vector in Λ. The density
∆(Λ) and the center-density δ(Λ) of an n−dimensional lattice Λ are defined
as

∆(Λ) =

√

(min Λ)n

4n det Λ
Vn and δ(Λ) =

√

(min Λ)n

4n det Λ

where Vn = πn/2/(n/2)! denotes the volume of the n−dimensional unit-ball
in En. These two densities are proportional for a given fixed dimension n
and ∆(Λ) measures the (asymptotic) proportion of space occupied by the
sphere packing of Λ obtained by centering n−dimensional Euclidean balls of
radius

√

min Λ/4 at all points of Λ.
Given an n−dimensional lattice Λ ⊂ En the subset

Λ♯ = {x ∈ En | 〈x, λ〉 ∈ Z ∀λ ∈ Λ}

is also a lattice called the dual lattice of Λ. The scalar product induces a nat-
ural bijection between Λ♯ and the set of homomorphisms Λ −→ Z. A lattice
Λ is integral if and only if Λ ⊂ Λ♯. For an integral lattice, the determinant
group Λ♯/Λ is a finite abelian group consisting of (det Λ) elements.

A sublattice M ⊂ Λ is saturated if Λ/M has no torsion (or equivalently
if M = (M ⊗Z R) ∩ Λ).

We leave the proof of the following well-known result to the reader.
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Proposition 2.1 (cf. Chapter I, Proposition 9.8 in [7]) Let M and N be
two saturated sublattices of dimension m and n in a common unimodular
lattice Λ of dimension m+n such that M and N are contained in orthogonal
subspaces.

Then the two determinant groups M ♯/M and N ♯/N are isomorphic. In
particular, the lattices M and N have equal determinants.

Two lattices Λ and M are similar, if there exists a bijection Λ −→ M
which extends to an Euclidean similarity from Λ ⊗Z R to M ⊗Z R. The
set of similarity classes of lattices is endowed with a natural topology: a
neighbourhood of an n−dimensional lattice Λ is given by all lattices having
a Gram matrix in R>0 V (G) where V (G) ⊂ Rn×n is a neighbourhood of a
fixed Gram matrix G of Λ.

Similar lattices have identical densities and the density function Λ 7−→
∆(Λ) is continuous with respect to the natural topology on similarity classes.

Consider the set Ln of all n−dimensional integral lattices of the form

Λ = {z ∈ Zn+1 | 〈z, s〉 = 0}

for s ∈ Nn+1 \ {0}.

Proposition 2.2 The set Ln is dense in the set of similarity classes of
n−dimensional Euclidean lattices.

There are thus lattices in Ln with densities arbitrarily close to the ma-
ximal density ∆n of n−dimensional lattices.
Proof of Proposition 2.2 Given a Gram matrix G = 〈bi, bj〉 of an n−di-
mensional lattice Λ = ⊕n

j=1Zbj, Gram-Schmidt orthogonalization of the
Z−basis b1, . . . , bn (with respect to the Euclidean scalar product) yields a
matrix factorization

G = L Lt

where L = (li,j)1≤i,j≤n is an invertible lower triangular matrix.
Choose a large real number κ > 0 and consider the integral lower trian-

gular matrix L̃(κ) whose coefficients l̃i,j ∈ Z satisfy

|l̃i,j − κli,j | ≤ 1/2

and are obtained by rounding off each coefficient of κL to a nearest integer.
Define the integral matrix

B(κ) =













l̃1,1 1 0 0 . . .

l̃2,1 l̃2,2 1 0
...

. . .
. . .

l̃n,1 l̃n,2 . . . l̃n,n 1












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of size n× (n+ 1) with coefficients

bi,j =











l̃i,j if j ≤ i
1 if j = i+ 1
0 otherwise .

The rows of B(κ) span an integral sublattice Λ̃(κ) of dimension n in
Zn+1. Moreover, the lattice Λ̃(κ) is saturated since deleting the first column
of B(κ) yields an integral unimodular square matrix of size n × n. The
special form of B(κ) shows that there exists an integral row-vector

v(κ) =













1

−l̃1,1

l̃1,1 l̃2,2 − l̃2,1
...













∈ Zn+1

such that B(κ)v(κ) = 0. We have thus

Λ̃(κ) = v(κ)⊥ ∩ Zn+1 ⊂ En+1 .

Since limκ→∞ 1
κ B(κ) is given by the matrix L with an extra row of zeros

appended, we have

limκ→∞
1

κ2
B(κ)(B(κ))t = G

and the lattice 1
κ Λ̃(κ) converges thus to the lattice Λ for κ→ ∞. Considering

the integral vector s = (s0, s1, . . .) ∈ Nn+1 defined by si = |v(κ)i+1| for
i = 0, . . . , n, we get an integral lattice

{z = (z0, . . . , zn) ∈ Zn+1 | 〈z, s〉 = 0}

of Ln which is isometric to Λ̃(κ). 2

3 µ−sequences

Let µ ≥ 2 be a strictly positive integer. A µ−sequence is a finite or infinite
sequence s0 = 1, s1, s2, . . . of (l + 1) strictly positive integers such that the
n−dimensional lattice

Λn = {(z0, z1, . . . , zn) ∈ Zn+1 |
n
∑

k=0

skzk = 0} = (s0, . . . , sn)⊥ ∩ Zn+1

has minimum ≥ µ for all n ≥ 1 which make sense (ie. for n ≤ l if
the sequence (s0, s1, . . . , sl) has finite length l). Since Λn is saturated in

6



Zn+1 by construction and orthogonal to the 1−dimensional saturated lat-
tice Z(s0, . . . , sn) ⊂ Zn+1, Proposition 2.1 shows that we have det(Λn) =
∑n

k=0 s
2
k. We get thus a lower bound for the density

∆(Λn) =

√

(min Λn)n

4n det Λn
Vn ≥

√

µn

4n
∑n

k=0 s
2
k

Vn

of the n−dimensional lattice Λn associated to a µ−sequence (s0, . . . , sn, . . .).
This lower bound is an equality except if the sequence (s0, . . . , sn) is a (µ+
1)−sequence.

Remark 3.1 We hope that the double meaning of µ will not confuse the
reader: µ(l) ∈ {−1, 0, 1} denotes always the Möbius function of a natural
integer l while µ or µ1, µ2, . . . stands for natural integers.

Remark 3.2 (i) The condition s0 = 1 is of no real importance and can be
omitted after minor modifications. It is of course also possible (but not very
useful) to consider sequences with coefficients in Z.

(ii) Any subsequence si0 = s0, si1 , si2, . . . of a µ−sequence is again
a µ−sequence and permuting the terms of a µ−sequence by a permutation
fixing s0 yields of course again a µ−sequence.

(iii) Lattices associated to µ−sequences are generally neither perfect
nor eutactic (cf. [7] for definitions). Their densities can thus generally be
improved by suitable deformations.

Theorem 3.3 Let µ1, µ2, . . . be a strictly increasing sequence of natural
integers 2 ≤ µ1 < µ2 < . . .. Suppose that we have finite µk−sequences
(s(µk)0, . . . , s(µk)n−1) with existing limit-density

∆̃n−1 = limk→∞
µ

(n−1)/2
k

√

4n−1
∑n−1

i=0 s(µk)
2
i

Vn−1 > 0

for the sequence of orthogonal lattices (s(µk)0, . . . , s(µk)n−1)
⊥ ⊂ Zn.

Let σn be a positive real number such that

2n−1∆̃n−1

A
∑

k=1

∑

l|k

µ(l)

ln−1

√

1 − k2

(

2n−1∆̃n−1
Vn

Vn−1
σn

)2
n−1

< 1

where

A =

⌊

21−nVn−1

Vn∆̃n−1σn

⌋

.

Then there exists a natural integer K such that for all k ≥ K, the µk−se-
quence (s(µk)0, . . . , s(µk)n−1) can be extended to a µk−sequence (s(µk)0, . . . , s(µk)n)

satisfying 0 < s(µk)n < σnµ
n/2
k Vn.

The proof of Theorem 3.3 will be given in section 5. We proceed now to
prove Theorem 1.1 under the assumption that Theorem 3.3 holds.

7



3.1 Proof of Theorem 1.1

Suppose that the inequality of assertion (i) does not hold for some natural
integer n. By Proposition 2.2 we can find a sequence of finite µk−sequences
(s(µk)0, . . . , s(µk)n−1) (with µk → ∞) such that

limk→∞
µ

(n−1)/2
k

√

4n−1
∑n−1

i=0 s(µk)
2
i

Vn−1 = ∆n−1 .

Choose a positive real number σn such that

2n−1∆n−1

⌊2∆nVn−1/(∆n−1Vn)⌋
∑

k=1

∑

l|k

µ(l)

ln−1

√

1 −
(

k∆n−1Vn

2∆nVn−1

)2
n−1

<

< 2n−1∆n−1

A
∑

k=1

∑

l|k

µ(l)

ln−1

√

1 − k2

(

2n−1∆n−1
Vn

Vn−1
σn

)2
n−1

< 1

where A = ⌊ 21−nVn−1

Vn∆n−1σn
⌋.

We have thus 2n−1σn <
1

2∆n
or, equivalently,

∆n <
1

2nσn
.

Applying Theorem 3.3 and extracting a suitable subsequence from µ1, µ2, . . .,
we can suppose that all sequences (s(µk)0, . . . , s(µk)n−1) can be extended
to µk−sequences (s(µk)0, . . . , s(µk)n) with

limk→∞
s(µk)n

µ
n/2
k

= α ≤ σnVn .

Using

limk→∞
1

µn−1
k

n−1
∑

i=0

s(µk)
2
i =

V 2
n−1

4n−1∆2
n−1

we have

limk→∞
1

µn
k

n
∑

i=0

s(µk)
2
i = limk→∞

1√
µk

V 2
n−1

4n−1∆2
n−1

+ α2 = α2

and get the existence of a sequence of n−dimensional lattices

(s(µk)0, . . . , s(µk)n)⊥ ⊂ Zn+1

with limit-density

limk→∞

√

µn
k

4n
∑n

i=0 s(µk)
2
i

Vn =
1

2nα
Vn ≥ 1

2nσnVn
Vn > ∆n

in contradiction with maximality of ∆n. 2
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4 A easy crude bound for the lexicographically

first µ−sequence

Theorem 4.1 Given an integer µ ≥ 2 there exists an increasing µ−sequence
s0 = 1 ≤ s1 ≤ . . . such that

sn ≤ 1 +
√

µ− 2
√

µ− 1 + n/4
n
√
π

n

(n/2)!
≤ √

µ
√

µ+ n/4
n
√
π

n

(n/2)!

for all n ≥ 1.

The proof of Theorem 4.1 is elementary and consists of an analysis of
the “greedy algorithm” which constructs the first µ−sequence with respect
to the lexicographic order on sequences. An easy analysis shows that the
lexicographically first µ−sequence satisfies the first inequalities of Theorem
4.1. The greedy algorithm, although very simple, is unfortunately useless
for practical purposes.

A µ−sequence satisfying the inequalities of Theorem 4.1 yields already
rather dense lattices as shown by the next result.

Corollary 4.2 For any µ ≥ 2, there exists a µ−sequence (s0, s1, . . . , sn) ∈
Zn+1 such that the density of the associated lattice Λn = (s0, . . . , sn)⊥∩Zn+1

satisfies

∆(Λn) ≥ (1 + n/(4µ))−n/2

2n
√

(n+ 1)µ
.

Remark 4.3 Taking µ ∼ n2/4 we get the existence of lattices in dimension
n (for large n) with density ∆ roughly at least equal to

1

2n−1 n
√

(n+ 1) e

which is reasonably close to the Minkowski-Hlawka bound ensuring the ex-
istence of lattices with density at least ζ(n) 21−n, cf. formula (14) in [5],
Chapter 1.

Lemma 4.4 The standard Euclidean lattice Zn contains at most

2
√

µ+ n/4
n πn/2

(n/2)!

vectors of (squared Euclidean) norm ≤ µ.

Proof We denote by

B≤√
ρ(x) = {z ∈ En | 〈z − x, z − x〉 ≤ ρ}

9



the closed Euclidean ball with radius
√
ρ ≥ 0 and center x ∈ En. Given√

µ,
√
ρ ≥ 0 and x ∈ B≤√

µ(0), the closed half-ball

{z ∈ En | 〈z, x〉 ≤ 〈x, x〉} ∩B≤√
ρ(x)

(obtained by intersecting the closed affine halfspace Hx = {z ∈ En | 〈z, x〉 ≤
〈x, x〉} with the Euclidean ball B≤√

ρ(x) centered at x ∈ ∂Hx) is contained
in B≤√

µ+ρ(0).
Since the regular standard cube

C = [−1

2
,
1

2
]n ⊂ En

of volume 1 is contained in a ball of radius
√

n/4 centered at the origin, the
intersection

(z + C) ∩ {x ∈ En | 〈x, x〉 ≤ µ+ n/4} = (z + C) ∩B≤
√

µ+n/4
(0)

is of volume at least 1/2 for any element z ∈ En of norm 〈z, z〉 ≤ µ.
Since integral translates of C tile En, we have

1

2
♯{z ∈ Zn | 〈z, z〉 ≤ µ} ≤ Vol {x ∈ En | 〈x, x〉 ≤ µ+ n/4} .

Using the fact that the unit ball in Euclidean n−space has volume πn/2/(n/2)!
(cf. Chapter 1, formula 17 in [5]) we get the result. 2

Proof of Theorem 4.1 For n = 0, the first inequality boils down to
s0 = 1 ≤ 1 +

√
µ− 2 and holds for µ ≥ 2. Consider now for n ≥ 1 a

µ−sequence (s0, . . . , sn−1) ∈ Nn.
Introduce the set

F = {(a, k) ∈ N2 | ∃ z = (z0, . . . , zn−1) ∈ Zn \ {0} such that

ak = |〈z, (s0, . . . , sn−1)〉| and 〈z, z〉 + k2 < µ} .
Since Λn−1 has minimum ≥ µ, the equality 〈z, (s0, . . . , sn−1)〉 = 0 implies

〈z, z〉 ≥ µ for z ∈ Zn \ {0}. This shows that we have a, k > 0 for (a, k) ∈ F .
Since for a given pair of opposite non-zero vectors ±z ∈ Zn with norm

0 < 〈z, z〉 < µ there are at most
√

µ− 1 − 〈z, z〉 ≤ √
µ− 2 strictly positive

integers k such that 〈z, z〉+ k2 < µ, such a pair ±z of vectors contributes at
most

√
µ− 2 distinct elements to F . The cardinality f = ♯(F) of F is thus

bounded by

f ≤
√

µ− 2
♯{z ∈ Zn | 0 < 〈z, z〉 ≤ µ− 1}

2
≤
√

µ− 2
√

µ− 1 + n/4
n πn/2

(n/2)!

where the last inequality follows from Lemma 3.1. There exists thus a
smallest strictly positive integer

sn ≤ f + 1 ≤ 1 +
√

µ− 2
√

µ− 1 + n/4
n πn/2

(n/2)!

10



such that (sn, k) 6∈ F for all k ∈ N. The strictly positive integer sn satisfies
the first inequality of Theorem 4.1 and it is straightforward to check that
the n−dimensional lattice

Λn = {z ∈ Zn+1 |
n
∑

i=0

sizi = 0}

has minimum ≥ µ. This shows the first inequality. Iteration of this con-
struction yields clearly an increasing µ−sequence.

The second inequality

1 +
√

µ− 2
√

µ− 1 + n/4
n
√
π

n

(n/2)!
≤ √

µ
√

µ+ n/4
n
√
π

n

(n/2)!

of Theorem 4.1 boils down to

1 ≤
√

2
√

2 + n/4

√
π

n

(n/2)!

for µ = 2. This inequality is clearly true since the n−dimensional Euclidean

ball of radius
√

2 + n/4 has volume
√

2 + n/4
√

πn

(n/2)! and contains the regular

cube [−1
2 ,

1
2 ]n of volume 1.

For µ ≥ 3 we have to establish the inequality Φ(1) − Φ(0) ≥ 1 where

Φ(t) =
√

µ− 2 + 2t
√

µ− 1 + t+ n/4
n
√
π

n

(n/2)!
.

We get thus

Φ(1) − Φ(0) ≥ infξ∈(0,1)Φ
′(ξ)

≥ 1√
µ

√

µ− 1 + n/4
n

√
π

n

(n/2)! + n
2

√
µ− 2

√

µ− 1 + n/4
n−2

√
π

n

(n/2)! .

For n = 1 and µ ≥ 2 we have

Φ(1) − Φ(0) ≥
√

1 − 1

µ

√
π√
π/2

≥ 2√
2
> 1 .

For n ≥ 2 and µ ≥ 3 we get

Φ(1) − Φ(0) ≥
√

2 + n/4
n−2

√
π

n−2

((n − 2)/2)!
π

and the right-hand side equals π > 1 for n = 2. For n > 2, the right hand
side equals π times the volume of the (n − 2)−dimensional ball of radius
√

2 + n/4 containing the regular cube [−1
2 ,

1
2 ]n−2 of volume 1. The second

inequality follows. 2
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Proof of Corollary 4.2 Theorem 4.1 shows the existence of a µ−sequence
(s0 = 1, . . . , sn) satisfying

s0, . . . , sn ≤ √
µ
√

µ+ n/4
n
√
π

n

(n/2)!
.

This shows for the lattice Λn = (s0, . . . , sn)⊥ ∩ Zn+1 the inequality

det Λn =
n
∑

i=0

s2i ≤ (n + 1)µ(µ+ n/4)n
πn

((n/2)!)2
= (n+ 1)µ(µ+ n/4)nV 2

n

and implies

∆(Λn) ≥
√

µn

4n(n+ 1)µ(µ+ n/4)nV 2
n

Vn

which proves Corollary 4.2. 2

5 Proof of Theorem 3.3

The main idea for proving Theorem 3.3 is to get rid of a factor
√
µ when

computing an upper bound f for the size of the finite set F considered in
the proof of Theorem 4.1. This is possible since the volume of the standard
unit-ball of large dimension concentrates along linear hyperplanes. During
the proof, we use for simplicity the slightly abusive notation µ = µk and
(s0, . . . , sn) = (s(µk)0, . . . , s(µk)n). Since µ belongs to the strictly increasing
integral sequence µ1 < µ2 < . . . tending to infinity, we consider sequences in
the µ→ ∞ limit. This allows us to neglect boundary effects when replacing
counting arguments by volume-computations.

In the sequel we write

g(x) ∼x→α h(x) , respectively g(x) ≤x→α h(x) ,

for

limx→α
g(x)

h(x)
= 1 , respectively limsupx→α

g(x)

h(x)
≤ 1 ,

where g(x), h(x) > 0.
Proof of Theorem 3.3 We prove first a weaker statement assuming

the stronger inequality

2n−1∆̃n−1

A
∑

k=1

√

1 − k2

(

2n−1∆̃n−1
Vn

Vn−1
σn

)2
n−1

< 1

where

A = ⌊ 21−nVn−1

Vn∆̃n−1σn

⌋.

12



Details for dealing with the extra factor
(

∑

l|k
µ(l)
ln−1

)

will be given later.

Up to replacing σn by a slightly smaller real number, we can suppose

that 21−nVn−1

Vn∆̃n−1σn
6∈ N. Choose a positive real number σ̃n < σn such that we

have the equalities

A = ⌊ 21−nVn−1

Vn∆̃n−1σ̃n

⌋ = ⌊ 21−nVn−1

Vn∆̃n−1σ̃n

⌋

(where ⌊x⌋ ∈ Z denotes the integer part of x ∈ R) and the inequality

2n−1∆̃n−1

A
∑

k=1

√

1 − k2

(

2n−1∆̃n−1
Vn

Vn−1
σ̃n

)2
n−1

< 1.

We fix σ̃n in the sequel and introduce ǫ = σn
σ̃n

− 1 > 0. We prove Propo-
sition 3.3 for all µ huge enough by showing the existence of a µ−sequence
(s0, . . . , sn−1, sn) with sn ∈ I ∩ N where

I = [σ̃nµ
n/2Vn, (1 + ǫ)σ̃nµ

n/2Vn] = [σ̃nµ
n/2Vn, σnµ

n/2Vn] .

Since our computations rely on strict inequalities involving volume-compu-
tations which are continuous in ∆̃n−1, this implies the weakened form (with-

out the factor
(

∑

l|k
µ(l)
ln−1

)

) of Theorem 3.3.

For k = 1, 2, . . . ∈ N we define finite subsets

Ik = {s ∈ I ∩ N|
n−1
∑

i=0

sixi = ks for some (x0, . . . , xn−1) ∈ B
<
√

µ−k2 ∩ Zn}

of natural integers in I ∩ N where B
<
√

µ−k2 ∩ Zn denotes the set of all in-

tegral vectors (x0, . . . , xn−1) ∈ Zn having (squared Euclidean) norm strictly
smaller than µ− k2.

We have

|
n−1
∑

i=0

sixi| ≤

√

√

√

√

n−1
∑

i=0

s2i

√

√

√

√

n−1
∑

i=0

x2
i ≤µ→∞

√

√

√

√

µn−1V 2
n−1

4n−1∆̃2
n−1

√

µ− k2

∼µ→∞
21−n µn/2Vn−1

∆̃n−1

for (x0, . . . , xn−1) ∈ B<
√

µ−k2 . This shows Ik = {∅} if

k >
21−nVn−1

Vn∆̃n−1σ̃n

≥ A.

An extension (s0, . . . , sn−1, sn) with sn ∈ I of a µ−sequence (s0, . . . , sn−1)
is a µ−sequence if and only if sn 6∈ ⋃A

k=1 Ik.
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Introducing the sets

Xk(a) = {(x0, . . . , xn−1) ∈ Zn |
n−1
∑

i=0

sixi ∈ kI ∩ kN + a,
n−1
∑

i=0

x2
i < µ− k2},

we have obviously ♯(Ik) ≤ ♯(Xk(0)). This ensures the existence of a µ−sequence
(s0, . . . , sn−1, sn) with sn ∈ I ∩ N if we have

A
∑

k=1

♯(Xk(0)) < ♯{I ∩ N}. (1)

Denoting by

Xk(∗) = {(x0, . . . , xn−1) ∈ Zn | 1

k

n−1
∑

i=0

sixi ∈ I,
n−1
∑

i=0

x2
i < µ− k2}

the union of the disjoint sets Xk(0),Xk(1), . . . ,Xk(k − 1), the following
asymptotic equalities hold.

Lemma 5.1 We have

♯(Xk(j)) ∼µ→∞
1

k
♯(Xk(∗))

for j = 0, . . . , k − 1.

It is thus enough to compute ♯(Xk(∗)) in order to get an asymptotic
estimation of Xk(0) ∼µ→∞ 1

k ♯(Xk(∗)). We have

♯(Xk(∗)) = ♯{(x0, . . . , xn−1) ∈ Zn | 1

k

n−1
∑

i=0

sixi ∈ I,
n−1
∑

i=0

x2
i < µ− k2}

∼µ→∞ Vol{(t0, . . . , tn−1) ∈ En |
n−1
∑

i=0

t2i ≤ µ,
1

k

n−1
∑

i=0

siti ∈ I}

and the requirement 1
k

∑n−1
i=0 siti ∈ I amounts to the inequalities

kσ̃nµ
n/2Vn ≤

∑

siti ≤ kσnµ
n/2Vn.

For huge µ (and fixed k), the number k♯(Xk) is thus essentially the vol-
ume Wk of a subset of the n−dimensional ball of radius

√
µ. More precisely,

this subset is delimited by the two parallel affine hyperplanes orthogonal to
(s0, . . . , sn−1) which are at distance

kD̃ = k
σ̃nµ

n/2Vn
√

∑n
i=0 s

2
i

∼µ→∞ k
√
µ 2n−1 Vn

Vn−1
∆̃n−1σ̃n
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and (1 + ǫ)kD̃ of the origin.
We have thus

Wk =
∫ k(1+ǫ)D̃

kD̃

√

µ− t2
n−1

dtVn−1 ≤ ǫkD̃
√

µ− k2D̃2
n−1

Vn−1

≤µ→∞ ǫkσ̃nµ
n/2 2n−1Vn∆̃n−1

√

1 − k2
(

2n−1σ̃n
Vn

Vn−1
∆̃n−1

)2
n−1

.

Using the asymptotic equalities ♯(Xk) ∼µ→∞
Wk
k , we get

A
∑

k=1

♯(Xk) ≤µ→∞ ǫσ̃nµ
n/2 2n−1∆̃n−1Vn

A
∑

k=1

√

1 − k2

(

2n−1σ̃n∆̃n−1
Vn

Vn−1

)2
n−1

.

Together with the obvious estimation

♯{I ∩ N} ∼µ→∞ ǫσ̃nµ
n/2Vn,

we have now

♯{I ∩ N}
∑A

k=1 ♯(Ik)
≥µ→∞

21−n

∆̃n−1
∑A

k=1

√

1 − k2
(

2n−1σ̃n∆̃n−1
Vn

Vn−1

)2
n−1 > 1

by assumption on the choice of σ̃n. This proves the weak version (without

the factor
∑

l|k
µ(l)
ln−1 ) of Theorem 3.3 by inequation (1) since ♯{I ∩N} −→ ∞

if µ→ ∞.
We consider now intersections among the sets I1, I2, . . . , IA in order to

deal with the factor
∑

l|k
µ(l)
ln−1 . This leads to a slightly better estimation of

♯(
⋃A

k=1 Ik) and completes the proof of Theorem 3.3.
Call an element x = (x0, . . . , xn−1) ∈ Xk(0) primitive if it is not of the

form hZn for an integral divisor h > 1 of k. Call x imprimitive otherwise.
An imprimitive element is of the form hx̃ with x̃ ∈ Xk/h(0) and contributes
a common integer to the sets Ik and Ik/h. This implies the inequality

♯(
A
⋃

k=1

Ik) ≤
A
∑

k=1

♯(Xk(0)p)

where Xk(0)p ⊂ X(k)0 denotes the set of all primitive elements in X(k)0.
It is thus enough to estimate the number of primitive elements in Xk(0).

We have

♯(Xk(∗) ∩ hZn) ∼µ→∞
1

hn
♯(Xk(∗)).

We have obviously Xk(a) ∩ hZn = ∅ for a 6∈ hZ. Applying Lemma 5.1,
obviously modified, to the sublattice hZn ⊂ Zn of index hn shows

♯(Xk(αh) ∩ hZn) ∼µ→∞
1

k/h
♯(Xk(∗) ∩ hZn).
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We get thus

♯(Xk(0) ∩ hZn) ∼µ→∞
1

khn−1
♯(Xk(∗)) ∼µ→∞

1

hn−1
♯(Xk(0)).

Since an element x ∈ Xk(0)∩hZn belongs also to Xk(0)∩lZn for any natural
divisor l of h and since

∑

l|h µ(l) = 0 for h ≥ 2, the number ♯(Xk(0)p) of
primitive elements in Xk(0) is asymptotically given by





∑

l|k

µ(l)

ln−1



 ♯(Xk(0)).

This leads to the majoration

♯(
A
⋃

k=0

Ik) ≤µ→∞
A
∑

k=1





∑

l|k

µ(l)

ln−1



 ♯(Xk(0))

and proves Theorem 3.3. 2

Proof of Lemma 5.1 The statement of Lemma 5.1 is equivalent to the
asymptotic equalities

♯(Xk(j)) − ♯(Xk(i))

♯(Xk(∗)) ∼µ→∞ 0

for 0 ≤ i, j < k.
Fix 0 ≤ i < j < k. Associate to an element (x0, x1, . . . , xn−1) ∈ Xk(j)

the element (x0 + i− j, x1, . . . , xn−1) provided that it belongs to Xk(i). This
induces a bijection between subsets X̃k(j) and X̃k(i) of Xk(j),Xk(i). The
set of “bad” points

Bk(i, j) =
(

Xk(j) \ X̃k(j)
)

∪
(

Xk(i) \ X̃k(i)
)

consists of some integral points at bounded Euclidean distance < k ≤ A
from the boundary ∂Zk of the the set

Zk = {(z0, . . . , zn−1) ∈ Rn |
n−1
∑

i=0

sizi ∈ kI,
n−1
∑

i=0

z2
i ≤ µ− k2}.

This shows that

|♯(Xk(j)) − ♯(Xk(i))| ≤ ♯(Bk(i, j)) ≤ vol
(

Nk+
√

n/2(∂Zk)
)

∼ O(µn−1)

where Nk+
√

n/2(∂Zk) ⊂ Rn denotes the set of all points at distance ≤ k +√
n/2 from the boundary ∂Zk of Zk.

Since ♯(Xk(∗)) = O(µn) this proves the lemma. 2
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6 Proof of Theorem 1.3

6.1 Two auxiliary results

Proposition 6.1 Given a real interval A ⊂ R, let f1, f2, . . . : A −→ A
be a sequence of uniformly converging functions with continuous and dif-
ferentiable limit f(x) = limn→∞fn(x) on A. Suppose that f has a fixpoint
ξ = f(ξ) ∈ A and suppose that we have supx∈A|f ′(x)| = λ < 1.

Then the sequence sn(x) of functions defined recursively by s0(x) = x
and sn(x) = fn(sn−1(x)) converges pointwise to the constant function ξ.

Proof Given δ > 0 there exists an integer N such that |fn(x)− f(x)| <
δ(1 − λ) for all x ∈ A and for all n > N . We have then for m > N

|sm(x) − ξ| = |fm(sm−1(x)) − ξ|
< δ(1 − λ) + |f(sm−1(x)) − ξ|
< δ − λδ + λ|sm−1(x) − ξ|
< δ − λ2δ + λ2|sm−2(x) − ξ|

...
< δ − λm−Nδ + λm−N |sN (x) − ξ| .

This shows |sm(x) − ξ| < 2δ if

m > max(N,N + log

(

δ

|sN (x) − ξ|

)

/log(λ))

and implies the result since we can choose δ > 0 arbitrarily small. 2

Remark 6.2 (i) The proof of Proposition 6.1 shows in fact

|sn(x) − ξ| ≤ λn|x− ξ| +
n
∑

k=1

λn−ksupx∈A|fk(x) − f(x)| .

Asymptotically, we have thus |sn(ξ) − ξ| = O(supx∈N(ξ)|fn(x) − f(x)|)
(where N(ξ) ⊂ A is an arbitrarily small fixed neighbourhood of ξ) if supx∈N(ξ)|fn(x)−
f(x)| is decreasing at a slower rate than powers of λ.

(ii) If the sequence fn(x) = F (x, 1/n) satisfies the hypotheses of Propo-
sition 6.1 with F (x, y) having continuous partial derivatives of all orders up
to k+1 in a neighbourhood of (ξ, 0), then there exist constants a1, a2, . . . , ak

such that

sn(x) = ξ +
1

1 − ∂/∂xF





k
∑

j=1

aj

j!
n−j



+O(n−(k+1))
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where ∂a+bF
∂xa∂yb denotes the obvious partial derivative of F (x, y), evaluated at

(ξ, 0). The formulae for the first three coefficients a1, a2, a3 are

a1 = ∂/∂yF

a2 = 2a1 + (a1∂/∂x + ∂/∂y)
2 F

a3 = 12a2 − 6a1 + 6∂/∂y (a1∂/∂x + ∂/∂y)F

+ (a1∂/∂x + ∂/∂y)
3 F

In particular, for F (x, y) analytic and non-constant in y, the sequence sn(x)
is asymptotically independent from x.

(iii) Proposition 6.1 can be generalized and/or adapted to similar situ-
ations, e.g. it is enough to require |f ′(x)| < 1 in the interior of the interval
A or by replacing A with a suitable subset of C or B where B is a Banach
space. In particular, assertion (ii) above associates a formal power series

1

1 − f ′(0)





∞
∑

j=1

αj

j!
n−j



 ∈ C[[
1

n
]]

(related to asymptotic series expansions) to a holomorphic contracting func-
tion f : O −→ O such that f(0) = 0, |f ′(0)| < 1 and O ⊂ C a neigh-
bourhood of 0 by considering the holomorphic function F (x, y) = f(x) + y
from O × C into C. Since the coefficients α1, α2, . . . are polynomials in
f(0), f ′(0), f ′′(0), . . . , f (n)(0), . . ., the formal power series above can in fact
be associated to any formal power series s(x) =

∑∞
n=1 σnx

n such that σ1 6= 1.

For x ∈ (0,∞) we consider the real analytic positive function

τ(x) =
∞
∑

k=1

e−π(k/x)2 =
1

2
θ3(

i

x2
) − 1

2
,

related to the third Jacobi-theta function θ3(z) =
∑

k∈Z
eiπk2z, cf. for

instance Equation (6), page 102 in [5]. For x > 0, we have τ ′(x) =
2π
x3

∑∞
k=1 k

2e−π(k/x)2 > 0 and the easy inequalities

x

2
− 1 <

∫ ∞

0
e−

π
x2 t2dt−

∫ 1

0
e−

π
x2 t2dt <

∞
∑

k=1

e−π(k/x)2 <

∫ ∞

0
e−

π
x2 t2dt =

x

2

for x > 0 imply that x 7−→ τ(x) is an increasing analytic diffeomorphism of
(0,∞). The equation

τ

(

Ω(x)

x

)

=
1

x

defines thus a real positive analytic function Ω : (0,∞) −→ R. Equivalently,

the function Ω is given by Ω(x) = xψ
(

1
x

)

where the analytic diffeomorphism

ψ satisfies ψ(τ(x)) = τ(ψ(x)) = x for all x > 0 and is the compositional
inverse of τ .
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Proposition 6.3 The map

x 7−→ Ω(x) = xψ

(

1

x

)

is an increasing diffeomorphism from (0,∞) onto (2,∞). It has a unique
fixpoint ξ = 1

τ(1) = 1
∑

∞

k=0
e−πk2 ∼ 23.13882534 which is attracting under

iteration since

Ω′(ξ) = 1 − τ(1)

τ ′(1)
= 1 −

∑∞
k=1 e

−πk2

2π
∑∞

k=1 k
2e−πk2 ∼ 0.9135652 < 1 .

Remark 6.4 Proposition 6.3 in its full strength is not necessary for proving
Theorem 1.3 which can be deduced from the easy observation that Ω has an
attracting fixpoint ξ = 1

τ(1) .

6.2 Proof of Theorem 1.3

Given an (n− 1)−dimensional lattice of density ∆̃n−1, Theorem 3.3 implies
the existence of an n−dimensional lattice with density ∆̃n arbitrarily close
to 1

2nσ for σ > 0 defined by

2n−1∆̃n−1

A
∑

k=1

√

1 − k2

(

2n−1∆̃n−1
Vn

Vn−1
σ

)2
n−1

= 1

where

A =

⌊

21−nVn−1

Vn∆̃n−1σ

⌋

.

Given a positive constant ǫ > 0 and a natural integer N ∈ N, there exists
thus a sequence of lattices Λ1,Λ2, . . . ,ΛN of dimensions 1, 2, . . . , N with
densities ∆̃1 = 1, ∆̃2, . . . , ∆̃N satisfying

∆̃m ≥ (1 − ǫ)
dm

2m
, m = 1, . . . , N

where d1 = 2 and d2, d3, . . . , dN are recursively defined by the equation

dn−1

An
∑

k=1

√

1 − k2

(

dn−1

dn

Vn

Vn−1

)2
n−1

= 1 with An =

⌊

dn Vn−1

dn−1 Vn

⌋

.

Equivalently, the sequence d1, d2, . . . is given by d1 = 2, d2 = f1(2), d3 =
f2(d2), . . . , dn+1 = fn(dn), . . . where f1, f2, . . . : (0,∞) −→ (0,∞) are the
functions defined implicitely by the equations

x

⌊fn(x)Vn/(xVn+1)⌋
∑

k=0

√

1 − k2

(

xVn+1

fn(x)Vn

)2
n

= 1 .
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Stirlings formula n! =
√

2πn(n/e)n(1 +O(1/n)) shows

Vn+1/Vn =
√
π

(n/2)!

((n+ 1)/2)!
=
√

2π/n (1 +O(1/n)) .

We have thus asymptotically

x

⌊fn(x)Vn/(xVn−1)⌋
∑

k=0

√

1 − k2

(

xVn+1

fn(x)Vn

)2
n

=

(

x
∞
∑

k=1

e−k2π(x/fn(x))2
)

(1 +O(1/n))

and fn(x) −→ Ω(x) uniformly on any compact subset of (0,∞). By Proposi-

tion 6.3 we can find α < ξ =
(

∑∞
k=1 e

−πk2
)−1

∼ 23.14 < β such that Ω′(x) ≤
19/20 for x ∈ [α, β]. We have thus uniform convergency fn(x) −→ Ω(x) for
x ∈ [α, β], and there exists an integer N such that fn([α, β]) ⊂ [α, β] for all
n ≥ N . This implies Theorem 1.3. 2

The following Table illustrates the convergence of the sequence d1 =
2, d2, . . .:

1 2.00000000 2.00000000 0
2 3.62759873 3.99997210 −0.7447467
4 8.08369319 7.92472241 0.6358831
8 18.71971890 14.38756801 34.6572071

16 30.69030131 20.71395996 159.6214617
32 29.45114255 22.98242063 206.9991014
64 25.53248635 23.13821340 153.2334688

128 24.17810739 23.13882533 133.0281029
256 23.63011883 23.13882534 125.7711333
512 23.37820694 23.13882534 122.5633803

1024 23.25703467 23.13882534 121.0463495

The first column shows the indices n, choosen as successive powers of 2.
The second column shows the corresponding value of dn. The third column
shows the (n−1)−th iteration of Ω, starting from the initial value 2. The last
column is the difference between the second and third column, multiplied
by n and illustrates the expected asymptotic properties.

Asymptotically, the number dn is roughly given by

23.13882534 + 119.58193
1

n
+ 1473.8282

1

n2
+ 25774.448

1

n3
+ . . .

(cf assertion (ii) of Remark 6.2).
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6.3 Proof of Proposition 6.3

Using the orientation-reversing diffeomorphism x = 1
τ(Y ) 7−→ Y = ψ

(

1
x

)

of

(0,∞) we have
Y

τ(Y )
= Ω(x) = Ω

(

1

τ(Y )

)

.

The inequality τ(Y ) < Y
2 shows Ω(x) = Y

τ(Y ) > 2 and 2Y
Y −2 > Y

τ(Y )

implies limx→0+Ω(x) = 2. Since

limY →0+

Y

τ(Y )
= limY →0+Y e

π2/Y 2

(

1 +
∞
∑

k=2

e−π(k2−1)/Y 2

)−1

= ∞

the continuous map Ω has image (2,∞).
Since x 7−→ Y is orientation reversing, d

dxΩ(x) > 0 is equivalent to strict
positivity of

Y 2 d

dY

(

τ(Y )

Y

)

= Y τ ′(Y )−τ(Y ) =
∞
∑

k=1

(

2πk2 − Y 2
)

e−π(k/Y )2 = πF0

(

Y√
π

)

where

F0(Y ) =
∞
∑

k=1

(2k2 − Y 2)e−(k/Y )2 =
∞
∑

k=1

k2

(

2 − 0!

0!

(

Y 2

k2

))

e−(k/Y )2 .

Set

Fn(Y ) =
∞
∑

k=1

k2(n+1)



2 −
n
∑

j=0

n!

j!

(

Y 2

k2

)n+1−j


 e−(k/Y )2 .

We have

Y 3

2
F ′

n(Y ) =
∞
∑

k=1

k2(n+1)



−
n
∑

j=0

n!k2

j!
(n+ 1 − j)

(

Y 2

k2

)n+2−j

+k2



2 −
n
∑

j=0

n!

j!

(

Y 2

k2

)n+1−j






 e−(k/Y )2

=
∞
∑

k=1

k2(n+2)



−
n
∑

j=0

(n+ 1)!

j!

(

Y 2

k2

)n+2−j

+
n
∑

j=1

n!

(j − 1)!

(

Y 2

k2

)n+1−(j−1)

+2 −
n−1
∑

j=0

n!

j!

(

Y 2

k2

)n+1−j

− n!

n!

(

Y 2

k2

)n+1−n


 e−(k/Y )2

=
∞
∑

k=1

k2(n+2)



2 −
n+1
∑

j=0

(n+ 1)!

j!

(

Y 2

k2

)n+2−j


 e−(k/Y )2

= Fn+1(Y ) .
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All functions F0, (Y ), F1(Y ), . . . , Fn(Y ), . . . are analytic for real Y > 0 and
satisfy limY →0+Fn(Y ) = 0. We have thus F0(Y ) > 0 if there exists a natural
integer n such that Fn(Y ) > 0 for all Y > 0.

Consider

F4(Y ) =
∞
∑

k=1

k10



2 −
4
∑

j=0

24

j!

(

Y 2

k2

)5−j


 e−(k/Y )2 .

We will show that F4(Y ) > 0 for Y > 0.
Denote by

t4,k(Y ) =
(

2k10 − k8Y 2 − 4k6Y 4 − 12k4Y 6 − 24k2Y 8 − 24Y 10
)

e−(k/Y )2

the k−th summand involved in F4(Y ). Let ρ ∼ 0.60074553 be the unique
positive real root of t4,k(kY ) = k10t4,1(Y ).

For natural integers m,N with N ≥ m set

A4,m =
m
∑

k=1

t4,k((m+ 1)ρ)e(k/((m+1)ρ))2−(k/(mρ))2

B4,m(N) =
N
∑

k=m+1

t4,k((m+ 1)ρ) .

For Y such that mρ ≤ Y ≤ (m+ 1)ρ one checks easily that

A4,m ≤ A4,m +B4,m(N) ≤
N
∑

k=1

t4,k(Y ) < F4(Y )

and a computation shows that A4,m +B4,m(100) > 0 for m ≤ 19 which im-
plies F4(Y ) > 0 for Y strictly positive such that Y ≤ 12 < 20ρ ∼ 12.01491.

Consider the function

g4(x, y) = T4(x) + T4(y − x)e−y(y−2x)

where

T4(z) = 2z2(4+1) −
4
∑

j=0

4!

j!
z2j = 2z10 − z8 − 4z6 − 12z4 − 24z2 − 24

is essentially the polynomial part with respect to k involved in the summands
t4,k(Y ) of F4(Y ). We have the following result whose proof will be given
later:

Lemma 6.5 There exist two real numbers α ∼ 2.629623 and β ∼ 2.714446
such that β − α > 1

12 and g4(x, y) ≥ 0 for all (x, y) ∈ D = [0, ρ] × [α, β] ∼
[0, 0.601] × [2.63, 2.71].
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Consider now a fixed positive real number Y ≥ 12. Since Y (β − α) ≥
12(β − α) ∼ 1.017874 > 1 (with α ∼ 2.63, β ∼ 2.7144 as in Lemma 6.5) we
can find a natural integer L such that αY < L < βY . For k ≤ ρY a positive
integer we have now

t4,k(Y ) + t4,L−k(Y ) = Y 10e−(k/Y )2g4(
k

Y
,
L

Y
)

(remark that k ≤ ρY ≤ ρ
αL ∼ 0.2284531L < 1

2L implies k < L − k). Since

0 < k
Y ≤ ρ and α < L

Y < β, Lemma 6.5 implies t4,k(Y ) + t4,L−k(Y ) > 0.

This shows F4(Y ) =
∑⌊ρY ⌋

k=1 (t4,k(Y ) + t4,L−k(Y )) +RY where all summands
involved in

RY =

L−1−⌊ρY ⌋
∑

k=⌊ρY ⌋+1

t4,k(Y ) +
∞
∑

k=L+1

t4,k(Y )

are strictly positive. We have thus F4(Y ) > 0 for all Y > 0 which implies
Fm(Y ) > 0 for all Y > 0 and m = 0, 1, 2, 3. Proposition 6.3 follows. 2

Proof of Lemma 6.5 Let α ∼ 2.629623 denote the smallest positive
real root of y 7−→ g4(ρ, y) (where, as before, ρ ∼ 0.601 satisfies t4,k(kρ) =
T4(

1
ρ ) = 0). Similarly, we denote by β ∼ 2.714446 the largest real root of

y 7−→ g4(0, y). We have β − α ∼ 0.084823 > 1
12 = 0.083333 . . ..

We leave it to the reader to check that g4(x, y) ≥ 0 for (x, y) ∈ ∂D where
∂D denotes the boundary of the product [0, ρ] × [α, β].

The computation

ey(y−2x) ∂

∂y







2(y − x)2(n+1) −
n
∑

j=0

n!

j!
(y − x)2j



 e−y(y−2x)





= 4(n+ 1)(y − x)2n+1 − 4(y − x)2n+3 + 2
n!

n!
(y − x)2n+1

= 2(y − x)2n+1
(

2n+ 3 − 2(y − x)2
)

,

spezialized to n = 4, shows that local extrema of the function

gn(x, y) = Tn(x) + Tn(y − x)e−y(y−2x)

with Tn(z) = 2z2(n+1) −∑n
j=0

n!
j! z

2j are elements of the set

{y = x} ∪ {y = x+
√

(2n+ 3)/2} ∪ {y = x−
√

(2n + 3)/2} .

The coefficients of the power-series expansions of the even analytic function
hn(x) =

∑∞
j=0 αn,jx

2j defined by

hn(x) = gn(x, x±
√

(2n + 3)/2) = Tn(x) + Tn

(

√

2n+ 3

2

)

ex
2−(2n+3)/2
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are given by

αn,j =



















1
j!

(

Tn

(
√

2n+3
2

)

e−(2n+3)/2 − n!
)

0 ≤ j ≤ n

2 + 1
(n+1)!Tn

(
√

2n+3
2

)

e−(2n+3)/2 j = n+ 1

1
j!Tn

(√

2n+3
2

)

e−(2n+3)/2 j > n+ 1 .

We have thus hn(x) > 0 and h′(x) > 0 for all x > 0 if and only if

hn(0) = αn,0 =

(

Tn

(
√

2n + 3

2

)

e−(2n+3)/2 − n!

)

> 0 .

Specializing to n = 4, we have h4(x) > 0, h′4(x) > 0 for x > 0 since

α4,0 = h4(0) = 63729/8e−11/2 − 24 ∼ 8.5557 > 0 .

This shows that the function g4(x, y) : (0,∞)2 −→ R has no local extrema
on the two lines {y = x±

√

(2n+ 3)/2}.
The line x = y does not intersect D = [0, ρ] × [α, β] ∼ [0, 0.601] ×

[2.63, 2.71]. Minima and maxima of the restriction of g(x, y) to D are thus
achieved by points on the boundary ∂D of D and the restriction of g(x, y)
to ∂D is ≥ 0. This ends the proof of Lemma 6.5. 2

Remark 6.6 The even analytic functions

hn(x) = Tn(x) + Tn

(

√

2n + 3

2

)

ex
2−(2n+3)/2

(where Tn(x) = 2x2(n+1) − n!
∑n

j=0
z2j

j! ) have all coefficients non-negative
for n ≥ 3. For n ≤ 9 this can be done by direct computations. For n >
(e3 − 1)/2 ∼ 9.54 this follows from the easy upper bound

hn(0) = −n! +

(

2
(

2n+3
2

)n+1
− n!

∑n
j=0

1
j!

(

2n+3
2

)j
)

e−(2n+3)/2

> −n! +

(

2
(

2n+3
2

)n+1
− n!e(2n+3)/2

)

e−(2n+3)/2

= 2

(

(

2n+3
2

)n+1
e−(2n+3)/2 − n!

)

> 0

and the inequality

log n! ≤
∫ n+1/2

1/2
log(x) dx =

(

n+
1

2

)

log

(

n+
1

2

)

− n+
1

2
log 2

implied by concavity of x 7−→ log x.
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7 Final remarks

The inequality

♯(
A
⋃

k=1

Ik) ≤
A
∑

k=1

♯(Xk(0)p)

appearing in the proof of Theorem 3.3 is probably not sharp. A smaller
upper bound for the cardinality ♯(

⋃A
k=1 Ik) would thus improve the results

of this paper.
The inequality above can be decomposed into the two inequalities

♯(
A
⋃

k=1

Ik) ≤
A
∑

k=1

♯(Ik,p)

and
♯(Ik,p) ≤ ♯(Xk(0)p)

where we denote by Ik,p ⊂ Ik the subset of integers corresponding to primi-
tive elements. If the subsets I1,p, . . . , IA,p are asymptotically “independent”
in the sense that

♯(
l
⋂

j=1

Ikj ,p)/♯(I ∩ Z) ∼µ→∞
l
∏

j=1

(♯(Ikj ,p)/♯(I ∩ Z)) ,

for {Ik1,p, . . . , Ikl,p} ⊂ {I1,p, . . . , IA,p} a subset of l distinct elements, one can
neglect the contributions corresponding to k = 2, . . . , A. This would lead to
a small improvement.

A probably much more important improvement would result from a bet-
ter understanding of the inequality ♯(Ik,p) ≤ ♯(Xk(0)p).

Instead of working with sublattices of Zn+1 orthogonal to a given vector
(s0, . . . , sn) ∈ Zn+1, it is possible to consider sublattices Zn+a which are
orthogonal to a set of a ≥ 2 linearly independent vectors in Zn+a. One might
also replace the standard lattice Zn+1 by other lattices, e.g. sublattices of
dimension n in Zn+1 (which approximate homothetically an arbitrary lattice
by Proposition 2.2) or of finite index in Zn+1.

Extending finite µ−sequences in an optimal way into longer µ−sequences
amounts geometrically to the familiar process of lamination for lattices (see
for instance [5] or [7]). The existence of an integer s ∈ I \ I1 implies indeed
the existence of a point P ∈ En−1 which is far away from any lattice point
of the affine lattice {(x0, . . . , xn−1) |

∑

xisi = s} ⊂ Zn and corresponds thus
to a “hole” of the lattice.

The present version of this paper ows much to Fedor Petrov whose per-
tinent questions clarified and improved (and changed the title of) a prelim-
inary version, see [1].

I thank also J. Martinet, P. Sarnak, B. Venkov and J-L. Verger-Gaugry
for helpful comments and interest in this work.
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