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Abstract

Jet frames, that is a generalisation of ordinary frames on a manifold, are described in
a language similar to that of gauge theory. This is achieved by constructing the Cartan
geometry of a manifold with respect to the diffeomorphism symmetry. This point of vue
allows to give new insights and interpretations in the theory of jet frames, in particular
by making an interpolation between ordinary gauge theory concepts and pure jet ones.
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Introduction

A description of jet theory, and more precisely that of jet frames, described e.g.
in [E] or [E], is proposed on the basis of Cartan type geometry : the geometry associated
to a differentiable manifold M formally represented as the homogeneous space

M ~ Diff (M) /Diff . (M)
where Diff ,(M) are the diffeomorphisms that don’t move a point x € M, is constructed.

The interest of such a construction is that it realises a intermediate between the
pure jet language and the pure gauge theory language (principal fiber bundles). This
gives an alternative description, in global terms, of the differential sequences given in
[A], a gravity interpretation of the objects introduced, all being synthetised in some field
theory of frames.

The first section, needed for both technical and notational purposes, is a short re-
view and reformulation of the algebraic machinery exposed in [ff], and alternatively in [f]
and [ in a closely related context.

The second section begins by recalling what are the jet frames of [, or, as we
shall see of [J. We then describe an alternative viewpoint on the subject, based on a
procedure of prolongation similar to that of [f] or [f], but here adapted to the infinite
dimensional geometry of Diff (M). It allows to construct the so-called linear frames, of
arbitrary order, the first order frames being the usual ones. See [[] for an example of the
use of Cartan connection, i.e. the dual version of 2-frames and 3-frames there, in gravity.

The third section presents a field theory like treatment of the objects thus con-
structed. It is shown how to recover, in a simplified manner, the differential operators
and sequences of [E], and a concrete description is given, in terms of symmetry, and
deformations.
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1 Algebraic preliminaries

Two functions ¢, ¢’ : R® — R™ are said equivalent to order k at x € R™ if they have the
same derivatives at x up to order k. The equivalence class is called a k-jet, and denoted

k().

1.1 Formal vector fields, Jet groups
9

G and

e On R™ with coordinates x%, a = 1,--- ,n, the formal vector fields are the (9, =
sum on repeted index)

1

X = ZXk with Xj = —

k>—1

a b1 b1
X b1---bk+1x SRR ALas 8(1

equiped with minus the ordinary Lie bracket of vector fields (the minus is taken by analogy
with a group acting on one of its homogeneous space, see [f]). This defines a graded Lie
algebra

glos = @ gl with [glg, gl/] C gl p
k>—1

where gl is the space of X}’s. The k’s are ”spins” with respect to the dilatation operator
[Xk,D] = ka, D = x“@a

e The jet group GLF of order k is the space of (k+ 1)-jets of (orientation preserving) local
diffeomorphisms g of R such that g(0) = 0. Denoting by ¢* = jg“(g) its elements, the

group law is (formal successive derivations)

g " =t (god)

By restrictions on the order of jets, we obtain projections GL*¥ — GL*~! whose kernel
GLy, is normal and abelian in GLF, and we have

GL*/GL, ~ GL* ', GLF ~ GL* ' x GL,,

Recursively, the projections GL*¥ — GL*! — ... — GLY = GLg induce the decomposi-
tion (factorisation of jets)

GLF = GLFM ' x GLy, = (GL* 2 x GLj_1) x GLj, = - --

and we shall denote this GL¥ = GLy x GL; X --- X GLj, , in correspondance with the
decomposition ¢* = gog1 - - - gk
Alternatively, letting H* be the oo-jets such that jg“(g) = jé““(id), we obtain a normal



subgroup of GL* which identifies GLF ~ GL>/H*. So, infinitesimally, we obtain the Lie
algebra isomorphisms

k
LieHy = @ gly, LieGr, = @Pal/ P ot ~ Pt

1>k+1 >0 I>k+1 >0

So, the product in GLF is the truncation to (k + 1)-jets of the product in GL>®.

1.2 The jet action Ad

For X e gl_{®--- ® gl, written X = dt = Oijrl(gbt) where ¢; : R™ — R" for each t on
the path t — ¢, do = id, and gF+t1 = j¥*2(g), g(0) = 0, define :
— d
Ad(¢")X = d| o godiog™) (1)
t=0

This is well defined since the result only depends on the (k + 2)-jet of g. This is an action
of GL** ' on gl_; ©--- @ gl;. In particular Ad(gry1), grs1 € GLg11 is an isomorphism of
degree k of gl_, & --- P gl :

Ad(gra1)) X 1@ 0 Xp) =X 1@ © X1 D Xp + (X 1) (2)

where oy, € gl 1 C gl ® gl*; thanks to GLy11 ~ gl 1, kK > 0. We denote by GLyj; the
group of degree k isomorphisms of gl_; @®--- @ gly, then GL; ; ~ gl, ®@gl*,, its action being
given by the same formula (f). Finally, we obtain in this way an action of GLF x GLy 1
on gl ;@@ gl, which extends Ad, and still denoted Ad.

1.3 Spencer cohomology

Spencer cohomology [f] is the cohomology of the abelian Lie algebra of translations gl_;
with values in gl_, so Spencer cochains are gl,, ® A*gl* ;. This space decomposes into a
direct sum of the gl ; = gl ® Algl* |. For a cochain « of form degree I, the coboundary
operator is

l
Z XZ,OZ XOa XZ',' o aXl)]’ XZ € g[—l’ 62 =0 (3)
=0

where " here denotes omission. In particular gl appears as the kernel of gl; _; 2,
8li_1,2. More generally, Spencer d-cohomology is trivial [A], and so the particular sequences
(for each k)

0 gl ol 2 8l_12 2.2 8l nt1n —=0 (4)



are exacts.
The Ad action of GL* 1 on gl_; @ --- gl induces an action on Spencer cochains, that we
still denote Ad, and given by, fora =a_1 & @ ar €gl_;; ® - D gl :

Ad(g)a =Ad(g)oaoAd(go ), g€ GL*™, g=go.91. .Gkt

1.4 Notations
For G a Lie group, a G-principal bundle P above the base space M will be denoted by
G—=P——M

We shall think of this as a non linear version of a short exact sequence. For g € GG, the
right action on p € P is denoted Ry(p) = p.g, and the vertical vector field on P induced
by X € LieG is denoted X.

The associated bundle F defined by a left action p of G on the space V will be denoted

E=Px,V

and its space of sections I'(F). The space of I-forms on M with values in the bundle F
is denoted Q!(M, E), and the space of tensorial forms on P with values in V is denoted
QL(P,V). These two spaces are isomorphic.

2 Geometry of frames
Fix now an n-dimensional differentiable (and orientable) manifold M.

2.1 Jet frames

A (k + 1)-jet frame above = € M is the (k + 1)-jet at 0 of a (orientation preserving) local
diffeomorphism ¢ : R” — M such that ¢(0) = z. We shall denote this e¥ = j&™1(¢), and
MPF the space of eF’s. The projection

Thy—1 ME — M, A
where eF = jg“(qﬁ), z = jJ(¢) = ¢(0), and right action
M* x GL* — M*, (e",¢") = Ryi(e*) = e*.g" = j5* (0 g)

where ef = j¥1(¢), g* = j**1(g) with g(0) = 0, turns M* into GL*-principal bundle
above M :
GLF — MF— M (5)



More generally, for k' < k, the projection
T ! - Mk — Mk,, ek eF
where ¥ = j¥*+1(¢), and right action
M* x GLy4q % -+ x GLy, — M*, (*, g"*) ng'k(ek) = e gt = k(g0 g)

where ¢g¥'F = jA+1(g) with jg/“(g) = jg/ﬂ(id), defines on M* the structure of a GLj/ 1 X
.+ X GLy-principal bundle above M*"

GLk/+1 X - X GLp —— ppk —— MF (6)

We obtain in this way a tower of principal bundles :

ME ME—1 A MO M (7)

Alternatively, since GLj/41 X - -- X GLy is a normal subgroup of GLF, we have an induced
principal structure on the quotient M*/G Ly 41 x --- x GLg and this is isomorphic with
M¥ . See e.g. [{] for a coordinate description of these bundles.

2.2 Interpretation : Induced linear frames

Let k> —1. Denoting by R™F the (k + 1)-jet frames bundle of R”, and O = jg“(id), we
obtain the natural isomorphy :

ToR™  ~gl & &gl

because each X = X_ 1@ --- ® X € gl_; @ --- @ gl can be written X = % |t:0j§+1(¢t)'

A (k + 2)-jet frame eF*! = j§+2(¢) induces a locally defined isomorphism
Ppr  RYE = MP, GEH(f) = jo T (00 )

whose derivative Ek_,_l* at O only depends on j§+2(gb) = e#*1. So, to each e, we can
associate the isomorphism

k1 = Ppr1xj0: Ol B B gly — T, M*

We call the ej1’s linear frames (of order k 4 2). The definition of projections 7y —1, and
(infinitesimal) right action of M* — M, show successively that ej; satisfies :

(1) Trp—1xhp1 (X 1@ O Xp) =€ (X 1D D Xp)
(i1) er1 (Xo@ - ®Xp)=Xo@ - @ Xy,



The properties (i) and (ii) above means respectively the right and left squares in the
following diagram commute :

gl gl —=9gl 1@ - Dgly —=gl 1 D---Dglp

ToM* T« M* Toe—r MF1

where Ty M¥ is the vertical tangent space of M* — M. Under the action of gFt! € GLF 1,

g* 1 = j2(g), dra1 becomes Plqq With :

GG = i (dogof) =i (pogofoglog)
= Gr1(G T (9o fog ™)) .g" = (R o b)) Gy T (g0 fog™))
so, by derivation at O, we obtain the transformation of egyq :

hir = Rypserss o Ad(g") ®)

2.3 Frame forms and their Structure equations
2.3.1 Frame form

On M*F1, let u be a tangent vector at eF+ = j5+2(g),

d 2 k1
. € Topsr MFT
7 It:O‘70 (1) ettt

where t — ¢; a path such that ¢y = ¢. From the jet point of vue, we define the frame

form 6% as
d

Hk _ = k+1 —1
W=, @ os) Q
From the linear frame point of vue, the frame form is defined as
Gk(u) = ek+fl7rk+17k*u (10)

where e, 1 is the linear frame induced by e¥*1. Formulas (f]) and ([[(]) agree since

_ - -1 d . d — -1,
€kl Thp ksl = Ppp1 s E‘tzojgﬂ(@) = 0 o (¢k+1 (J§+1(¢t)))
_d kel -1
o dt [t=0 Jo (@7 0

The properties of the frame form 6% on M**! are summarised in, see [f] :



The frame form 6 = 6F on MF! is a gl_; ® --- @ gl,, valued one-form on MF*!
such that :

(i) Ry*0=Ad(g™ "0, g GLM!
(ZZ) H(XO D---D Xk-i—l) =Xg®-- Xp, kerf = kermﬂ_l,k* = T]H_leJrl
(i) myyy 0" =06 mod gy

Properties (i) and (iii) follow directly from ({) and the definition of the right action
and projection, and (i) is a direct consequence of ([l() and the fact that e,,; is an
isomorphism. We will sometimes omit the superscript k£ on #¥ when it is possible to do
so. The frame form decomposes as 0% = 0_1 © 0y @ - - - @ 0}, with 6; the gl; part.

In the limit & — +o00, we can think of the frame form as the Maurer-Cartan form
on the group Diff (M), the translation part _; corresponding to (the tangent space of)
M in the formal quotient (see introduction) :

M =~ Diff (M) /Diff, (M) (11)

and the 0y @ 01 @ --- part corresponding to the Maurer-Cartan form on the ’structure
group’ Diff . (M) of the formally defined principal bundle

Diff,(M) — Diff (M) — Diff (M) /Diff, (M) ~ M

2.3.2 Structure equations, Bianchi identities

On M4, the gl_; @ --- @ gl;,_;-valued 2-form
1
OF 1 = gp* + 5[0’2 0%] mod bj_;

is tensorial and invariant under Gy, so it descends to a 2-form on Mj. It satisfies the
structure equations, analogous to the Maurer-Cartan equations on a group manifold (recall
the formal identification between the frame form and the Maurer-Cartan form of Diff (M))

1
oF 1 = do* + 5[9’2 0¥] mod bhp_; =0 (12)
This is proved in local coordinate form in [f], for & = 0,1. One can also prove this directly
in the same way one proves the Maurer-Cartan equations for a group.
By exterior differentiation of the term dg* + %[9’€ ,0F], and use of the structure equations

(1), one deduces the Bianchi type identities :

1
0%, dok + 5[9’?,9’?] =0 mod by, (13)



Note that, in contrast with gauge theory, the Bianchi identities are not the sole consequence
of the structure equations.
2.4 Linear frames : reconstruction of the jet frames

We shall denote for later convenience M = M_;.

2.4.1 1-frames

A 1-frame above x € M is an isomorphism

e g1 — T M
For ey and ef, above the same z, ep Lo e( is an isomorphism of gl_; so can be written
eo loey = Ad(gy) for go € GLo. So, the space My of 1-frames is a G Lo-principal
bun% above M with projection my _; : eg — « and right action ey — ep.go = Ry,(€0) =
e0 0 Ad(go), which is isomorphic to M?. The frame form 6 = _; on My is then defined as

0=y omo 1.

It satisfies the same properties as the frame form on M°. So, we have a principal bundle
structure
GLy—— My ——M

such that, at the tangent space level, the following commutative and exact diagram occurs

gl ——glh® gl ——gl_;

l 2

To My Too Mo =2 T, M

Note the well known fact [[L(, fij that this is this last point which makes the difference
between gravity and ordinary gauge theory.
2.4.2 k-frames, k > 1

Induction hypothesis
Assume now we have constructed spaces M; of ¢;’s, for 0 < [ < k, which are isomorphic to
the M', and so have the same structure and same properties as displayed previously. We

denote 71 : My — M;_y the projections, and T} M}, = ker 7y ;_1.. We shall construct
the space M}, isomorphic to M**1! by a prolongation procedure similar to those of H, [

10



First prolongation of M

We define a (k + 2)-frame above e, € M}, as an isomorphism
ep+1: 9l - D gl — T, My,
such that the following diagram commute :
go®---gly —0l1 - Dgl —0l 1D Dl

TOM]C TekMk‘ Tek_le,1

Let Mj, 1 be the space of the ej41’s.
Principal bundle structure

e For e;iq and € 41 above the same e, the definition then implies that the iso-
morphism e 417! o e?H_l of gl_; & --- &gl is of degree k i.e.

eks1 0 €pyy = Ad(gr,1), gk1 € GLya
Alternatively, this means we have constructed, above e;, € M}, the commutative square :

Ad
gl &gl S @ gl

le;c+1 lek-’_l

TekMk‘ TekMk;

All this proves that the projection 741k : ery1 — eg, and right action epyq +— ejpyq 0

Ad(gg,1) identifie the principal bundle :

GL My Mj, (14)

e Next, consider eg1, 6;9+1 above the same x € M for the projection mj 1 1 = mp 10
Tkt1,k- Then egy1, €, are above ey, e, with ej = en.g*, ¢* € GL*. For any ¢*t! above
g*, with respect to the projection GL¥t!1 — GL*, we define €y = Rygruepyr o Ad(gFth)
(see equation (§)). Then e}, is a (k + 2)-linear frame above e}..
So, by the preceding point, we have g1 € GLg,1 such that e}, o Ad(gk,1) = €}, and we
obtain

hr = Bypnerir o B(g) (15)

11



with g%l = ng.gk,l In one word, we have just constructed the commutative squares :

E rdk+1
gl @ @gh Mgl @@ gl e gl

’ "
lekﬂ lek+l €k+1
R -1

. K *
Te;c Mk id Te;c Mk ? Tek Mk?

Thus, the projection 7,41 —1 and the right action identifie M}, ; as a GLF!-principal bundle
above M :

GL* x GLy1 = GLM! Mg M (16)

e The principal fibrations ([4) and ([[d), are summarised in

GLyy — GLM = GLF x GLyy — GL*

| | |

Tk41,k

GLj 1 M. 1 M,
lwk-kl,—l lﬂk,—l
M M

Frame form

On Mj, 1, we define the frame form 0% as :

k 1
0% = epr1 Trot ks

Then, the definition of right action ([[§) and definition of (k+2)-frames are dually encoded
in the properties :

(i) R,"0F =Ad(g71)e*, g€ GLM!
(i1) OF(Xo® - ® Xpy1) = Xo®--- Xy, ker@F = ker mpy pu = Thyt MFT1
(i) mheq x0° 1 =06 mod gl

From this, we define the curvature form as :
1
OF 1 = 4o* + 5[0‘“, 0¥ mod bj_; (17)

Horizontality of the frame form (i7) then proves ©*~! is basic, z'X@’LC*1 =0, X=X
-++ @ X}, 1. Equivariance (i) proves that ©F~1 is equivariant under GL* :

R0t = Rd((g) e (18)

12



and transforms affinely under GL; 7 :

R ©OF1=0"1_9a,06_,

9k,1
Finally, the recursive property (ii7) and induction hypothesis prove the recursive identity
7TZ+17k@k72 =01 mod gl,_1=0 (19)
All the properties of ©%~1 are then equivalently encoded in the torsion map
t: Mpy— gly_19 =gl ®A%gl",
with :

which maps eg11 to te, .,

teps (X1, Y1) = O Neppa (X)), eng1 (Y1) = d(0% Mmr(epsn (Xo1)-ex1 (Y1)

where e1(X_1) is a lift of exy1(X_-1) € TMy, to TMy1, and where (0%1)_1 is the
component of degree (k — 1) of the frame form #*~! on Mj,. We then have the covariance
properties :

t = Ad(¢" Yot oAd(g) , t

ep+1-9* €k+1 ekt+1-9k,1 tek+1 — Oay, (20)

We summarise this by saying the following diagram is commutative and covariant under
the GL* action :
GLy1 ~ gl — Mg

| ]

9%—1,2 —_— El[k—1,2

Reduction to M,

Now, by evaluating the Bianchi identities of Mj, (satisfied by the induction hypothesis)

ek—l,de’f—w%[ek—l,ek—l] =0 mod bj_s

on vectors egy1(X_1),ex11(Y-1),ex11(Z-1), we obtain

ot =0

€k+1

so that the torsion at each egy is a J-cocyle. This last property and the exactness of the
0-sequence

aliin gl —2= gl 10 —2> gl o3 (21)

13



at gly_q o then proves that we have t., = Oay, for a ap € gl ; ~ GL;. Thanks to
equivariance (), all this proves the existence of (k 4 2)-frames with null torsion, i.e. the
map t has a kernel. We then simply define

Myy1 =t1(0)

that is My are the ejyq such that Z., ., = 0. Then both the equivariance (0) and the
exactness of (RI]) at glj, 1 then prove that My 1 — My is a subbundle of My, ; — M), with
structure group GLj11 =~ gl ;. All these facts are summarised in the exact commutative
diagram, which completes the diagram following equation (RQ) :

gl ~ GL M1 —— M,
|
ol ~ GLg My 1 Mj,
B ¢
g1 o=——=00_1
B P
g0z ——=0l_23

The first column describes an exact Spencer d-sequence, the second the construction of
M1, and the first two lines the principal fibrations so obtained.

Structure of My

We have thus obtained an iterative fibration

GLg+1 — GLM! —GLF

R

GLj1q Mi 1 M,
M ————— M

M. is equiped with the frame form 6 inherited from M. 1, and now we have, as the

torsion of eg 1 vanish :
eF 1=

14



i.e. the structural equations. So My has the same structure as M} at the next order.

Using the induction hypothesis M}, ~ M*, the map
S SR

defined in section R.3, is then, by construction, an isomorphism of principal bundles, so
Mg ~ MFHL

3 Field theory of frames

3.1 Preliminaries : Local fields
3.1.1 Local Spencer cochains

e To order k + 2, one obtains a local version of gl_; @ - -- @ gl;, by defining the associated
bundle
Sk = Mi1 Xzg0l_1 & S gl (22)

which can be seen as a higher order tangent bundle above M. Local Spencer cochains are
Sk-valued forms on M, i.e. elements of Q*(M, S). These are the basic fields of the theory.

e Owing to the structure of My, we can give alternative and useful descriptions
of this. First, recall we have

Q' (M, Sk) ~ QL1 (M1, 81, @ -+ @ gly,)

Second, this isomorphy allows to associate to each a € Q(M, Sy,) the function & on My
defined at each egy1 by

d|€k+1(X1’ e Xy) = a\ek+1(ek+2(X1)’ esepe(Xp) S a=ao00

for any egyo above epy1, X; € gl_;. We shall extend each &‘ek+1 to a null form on
gl @ - - - B gly, so that we will also write « = &of. As & is then equivariant, this naturally
defines an isomorphy between Q!(M, S;,) and the space of section of the bundle

M1 x5 (9l @ @ gl) @ Algl*

This last fact implies that we can define, point by point, an algebraic J-operator on
QY(M, Sy,). Third, to a one can also associate the vector valued form & defined as

@‘ek+1(u17 o ,’U,l) = ek+1(a‘ek+l(u17 o ,Ul))

for u; € T My 1. This means Q'(M, Sy) is also isomorphic with the tensorial forms on Mj, 1
with values in tangent vector on Mj. Then, as on any space of Lie algebra valued forms,
we can define the standard structure of differential graded Lie algebra, thus obtaining the
algebraic as well as differential brackets of [f].

15



3.1.2 Linear Spencer sequences
For o € QY(M, Sy), viewed as a tensorial form on My, we define :
dga = da+ [0, mod bg_
Then dya is still tensorial, and this defines a map
dg - QU(M, Sy) — QM Sj_1)
The structure equation © = 0 on My 1, then proves that dy is nilpotent
da=[0,a] mod bhp_y =0
thus giving the linear sequence

(M, Sk)LQI(Ma Sk-1) i)"'—>9n(Ma Skfn)i)o (23)

The proof of this is a straightforward application of the definitions. In the following, we
shall complete this sequence to the linear Spencer sequence.

3.2 Symmetries

3.2.1 Diffeomorphisms

We denote by Aut(M) the group of (oriention preserving) diffeomorphisms of M. Let

f=f-1€Aut(M).
From the jet viewpoint, f acts on M* by

" =5 (@) = frler) = 35T (f 0 9)
Let us analyse this from the linear frame viewpoint. The action on My is given by
eo — foleo) = f-1+€0

Then fj satisfies Ry, 0 fo = fooRg,, 90 € GLo, and my,_10 fo = f_10m,—1, so is a principal
bundle automorphism. Moreover, we have

f()kail\eo = 971|f0(60) o fox = f0(€0)71770,*1*f0*
foleo) ™ fo1umo—14 = €0 'm0, 14
9—1
leo

This shows that the action on M; defined by

e1 — fi(e1) = foser
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is well defined (i.e. ey is a 2-frame of null torsion). Recursively, we define fi1 from fj by

Jrt1(ers1) = fex€rt1

Exactly the same calculation as before proves this is well defined. Then the prolongated
diffeomorphisms satisfies :

Rgk o fr = fr o Rgk, Thg—10 fr = fr—10Tg -1
and keep invariant the frame form (same calculation as for 1)
Froh1 = ghe (24)
We shall denote ji(f) = fx the prolongated diffeomorphism.

3.2.2 Extended diffeomorphisms

e Now, denote by Aut(Mj) the automorphism group of My — M as a principal fiber
bundle, that is :
fr € Aut(My) : fro ng = ng o fr

Then Aut(My) is a a subgroup of the group of diffeomorphisms of M}, which preserves the
fibers of M}, — M. The gauge group GL* of M, — M are the vertical automorphisms in
Aut(Mk) i.e.

fr€GLF: fi oRp =Ry o fr fk(ﬂlzil(x)) = 7T/Lz_171(35)

for all z € M. Similarly, we define the gauge group GL; of My — Mj_1, and we observe
that the gauge group of My — My, k' < k,is GLp41 X -+ X GL, so that in particular

GLF ~GLyx -+ x GL

As usual, gauge transformations, in GL* say, are isomorphic with section of the adjoint
bundle Mj, x aq GL*, thanks to the isomorphy ¢* — §* defined by

9" (ex) = ex-G" (er) = Rgr(c,) (ex)

e We define projections fr11 — fi by

feler) = mhr1k(frri(ers))
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for any egy1 above e. This is well defined thanks to the equivariance of fiy1, and we
have 411 © fi41 = fx © Th+1,k- In other words, we have commutation in

GLj11 M1 AL My,
N
GLgy1 Mgy 25 0,

Mi 1 Mj, My M
lfk«rl lfk lfo lfl
Mj. 1 M, My M

Note that these projections are group morphisms from Aut(Mjy1) to Aut(My). For fiy1,
fl;+1 projecting on the same fi, the automorphism fllc,+1 = f,H_l’l o fl;+1 then preserves
the fibers of My1 — My, and is thus a gauge transformation :

fllc-i-l = fk-i—l o f]/gl+1 s f];/+1 € g£k+1
So we obtain a principal bundle

GLp1 — Aut(My 1) — Aut(My)

with gauge transformations projecting on the identity of Aut(My). More generally we
obtain in this way principal bundles :

GLp 1 X - X GL —— Aut(My) — Aut(My)

and in particular
GLF —— Aut(Mj41) — Aut(M) (25)

This last bundle admits the global section given by f_1 — fri1 = jr+1(f-1). The section
Jk+1 enables us to construct, for fry; € Aut(My,1) projecting on f_; € Aut(M), the
gauge transformation ¢*t! € GLF! defined by :

fre1 = Jre1(fo1) o gF (26)

The equation (R6) gives a global trivialization of (RF), that is of the semi-direct product
Aut(Myy 1) =~ Aut(M) x GLML
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3.2.3 Synthesis

For fry1 € Aut(Mgy1), we define the first Spencer operator

Dofri1 = fepr 08 — 0"

Then Dpfy,1 is a tensorial (gl_; @ --- @ gl )-valued 1-form, that is Dy fry1 € QH(M, Sy).
Indeed, for X = Xo @ --- & Xk11, the equivariance of fj,1 implies :

i ¢ Do fir1 = 0" (frr1:X) — 0F(X) = 0%(X) — 0"(X) = 0
and, for g € GLFH,
RyDofir1 = Ryfin™0° — Ryf* = fr1"Ryf" — Ry
= Ad(g™") fre1"0" — Ad(g7")0" = Ad(g™") Do frsa

Moreover,

Dy defines a cocycle on the group Aut(My, ) with values in QY(M,Sy), with ker-
nel the group of diffeomorphisms of M, that is Dgfri1 =0 iff fre1 = Jrr1(f-1)-

Indeed, the cocycle relation follows from :
Dy(fryrogri) = (farrogri1) 0" — 0% = grir* fryr "0 — 0"

= Gr+1 (fk+1*9k - 9k) + g1 0 — 0F

= gk+1 Do fri1+ Dogrra
Next, we have already shown that fri1 = jikr1(f), f € Aut(M), keeps the frame form
invariant, i.e. Dgfry1 = 0. Conversely, suppose Dy fry1 = 0 ie. fri1*0F = 6%, As

* nk k
Ji41" ey = ) pga(enta) © frtis
Frr(ers1) Mot s frits
= frrr(ers1) FreThr 1 s

. . . 1 _
the equation fi1*0% = 0% implies fii1(ers1)” fesThilhs = €kl ‘Thiiks and so

Dy fr11 = 0 is equivalent to :

Srr1(ert1) = freri (27)
Then, from equation (R7) the result is easily proved by induction on k.
|
All this is summarised in the exact sequence
id —— Aut(M) 255 Aut(Mysr) —22 QY(M, Sg) —— 0 (28)

Jk+1 being a group morphism and Dy a group cocycle.
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3.2.4 Action of Aut(My,1) on local fields

It is useful for next purpose to compute the action of an extended diffeomorphism on a
local field.

e As a preliminary, take fri1 € Aut(Mgi1), then as Dpfri1 € OY(M, S), we can
view it as a function Dgfi11 on My with values in gl_; @ -+ @ -- - gl}, (section B.1.0]).
For X =X_,&---® X}, and any ex12 above e, one finds :
befk+1|ek+1(X) = Do fit1)e,,, (err2(X))
= fe417 0, (er2(X)) = X
= frrr(eri) Mhpn g frpreeria(X) — X
All this proves that the map

X = X 4 fri(erin) Trot s fosieerra(X)

that we shall denote 1 + Dgfk+1, is an automorphism of gl_; & --- & gl;, inducing the
identity on the gly ® --- @ gl part, and that this is indeed the equivariant version of

0+ Do frr1 = fr170.

o Take a local field a € Q*(M,Sg). Viewing a as a tensorial form on M1, the
action of fr41 is simply
a— o = Jrr1

Equivariance of fr41 shows this is consistent.

e View now « as a equivariant function & on M1 (section B.1.J)). @& transforms
to &. At egy1, we have

~/ / *
@ Oe|ek+1 = a|6k+1 = fk+1 a\ek-u
= Yfpaenin) © Totisfers
= Yfa(enrn) © Ofisatensn) © Fotisensy
and, by evaluating on ey, o(X), for any exyo above epiq :
~/ ~
a\ek-u(X) = a|fk+1(ek+1)(9|fk+1(ek+1)(fk+1*ek+2(X)))
dlfk+1(ek+1)(1 + DGf’f'H)\ekH
All this means that, from the equivariant viewpoint, the field & transforms as :
a—a = e a@o (14 Bgfk+1) (29)

Note that if fr11 comes from a diffeomorphism, i.e. Dyfri1 = 0, then the preceding
tranformation law is, as expected, @ — fr11"@.
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3.3 Deformations
3.3.1 Deformation space

e Consider the group By of automorphisms of gl_; & --- & gl;, which induce the identity
on gly @ - -- & gl;,. This group then consists in inversible transformations such that :

X 10Xo® @ X — Xoq+ p-1(Xo1) © Xo+ po(X-1) © -+ © Xp + ppe(X-1)
where p; € gl; ;. We denote this simply 1 + fi. The inverse transformation is
Xa& Xo® - @X, — (1+i-1) ' XaeXo—fio(l+jiq) ' Xge
@ X — i (14 i)™ X

sothat 1+ € By iff 1 +pu—y € B_y = GLo. As By is a subspace of gl_; 1 & -+ @ gl 1,
GLFH acts on the left with Ad on it (preserving the inversibility property), and we can
define the associated fiber bundle

By = Mg+1 X 5q Bk

To each section fi € I'(By) seen as a equivariant Bjg-valued function on My.1, we can
associate the tensorial one-form p € Q(M, Sy) defined by (see section B.1.1) :

p=fob_y (30)

so that we have the identity
(I+a)of=0+p

We shall denote by Q'}(M,S},) the subspace of Q'(M, S;) constituted of sections of By
under the correspondance (BJ). Then w = @ + i obeys the equivariance and horizontality
conditions :

(1) Ryw= Ad(g Yw, g e GLFH
(i) wXo® - ®Xp)=Xo® - & Xy
and, for any ex1o above epy1,
(491) X 1@ @& Xg = Wie, ., (ex2(X1 @ -+ @ Xy)) is inversible

Reciprocally, if w obeys (i) and (ii), then defining p = w — 6, we have iy =X — X =0
so horizontality, and Rju = Ad(g~1)p by equivariance of 6, so u € Q1(M, S,), with corre-
sponding fi. Next, as wye, ,, (ex2(X-1 @& & Xy)) = X+ a1 X1 ® & X+ pe X1,
(737) implies that in fact 1 4 fi is inversible i.e. i € Bg.
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e For p, v in I'(By), we can compose the isomorphisms 1+ i and 1+ 7 of gl_; @ --- @ gy,
at each egy1, to obtain (14 )(1+2) = 1+ p.v (recall By, is a group). We have, from the
equivariant point of vue

pv=p+v+pov_g
and from the form point of vue
pv=p+v+iyu

where we see p and v as 1-forms valued in T'(TM},) (section B.1.1) and 4, is the interior
product extended to vector-valued forms.

e Alternatively, we can see the bundle B, as some jet space relative to the differ-
ential operator Dy previously defined. Indeed, defining at each epy1, the equivalence
relation :

fesr~ fior 0 Dofistjensy = Doftitjenss > frrts forr € Aut(Myyq)

and denoting [Dg fr11] the resulting class, we build a bundle associated to My

\ek-q-l -
by considering the elements [Dg fi41] with equivariance under GL**! inherited from the

tensoriality of Dy fry1 :

(Do fr1] — Ad(g™") o [Do fr41] o Ad(go)

under ej41 — €x4+1.9. This allows us to identify this bundle with Bj.
Now, for i € By, written as i = [Dgpgg+1] i.e. p = [Dggr+1], the cocycle relation for Dy
passes to the jet equivalence to give :

[Do(gi+1 © frt1)] = fr1 [Dogi+1] + Do frtr

and induces the following action of Aut(My 1) on Q*(M,Sy) :

t—= fes1" 1+ Do frt (31)

Next, for ji,# € By, written as fi = [Dyfii1],7 = [Dogrs], that is p = [Dyfri1],v =
[Dogk+1] , the same cocycle condition written from the equivariant point of vue (see B.2.4)

Dy(frt1© grs1) = Do fry1 0 (1 + Degkﬂ) + Dgg

and conveniently rewritten as
1+ Dy(frv1 0 grr1) = (1 + D@fk+1) (1 + D€9k+1> (32)
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where 1+ Dy fi41 is evaluated at the point gpy1(eps1) and 1+ Dygpi1 at expq as stated
in (R9), passes to the jet equivalence, and give us back the composition of deformations :

1+ i =1+ Dyl firr 0 gran)] = (1+ Dofisa]) (1+ [Dogin]) = 1+ )1 +7)

i.e. the composition in Aut(Mjy1) induces at the jet level the composition of deformations.

3.3.2 Deformed frame bundle

Now, we analyse the deformations from another point of vue, perhaps more concrete,
and we show how to rederive in this context the results given above, and how it allows to
produce new ones.

e For i € I'(Bg), we notice that, for I < k, the section fi_1 @ --- @ [y is equivari-
ant under GL!*! and invariant under GL; 9 X - - - X GLy, so we can descend ji_1 @ --- @ [
to a section of I'(B3;) that is we can view it as a equivariant function on M.

e We define My, as the space of eg,’s obtained as

€0, = €0 © (1+f-1) L

leo

Thus My, is a GLg principal bundle over M which is in fact, here, My (as here 1 4 fi_;
is a gauge transformation). We denote :
F*LM s My — M()“u, eg — eg o (1 + ﬂfl) 1

leo

This map is a principal bundle isomorphism inducing the identity on the base M.
e Next, define My, as the space of ey ,’s obtained as :

erp = Fopwer o (1+ iy @ o))
These are linear frame above My, since

(1) mo—1x€1,u(X1 ® Xo) = eou(X-1)
(i1) e1,u(Xo) = Xo

where this comes from the fact F__ , is a principal bundle isomorphism. Again, M , is a
G Ly-principal bundle above My, and a GL'-principal bundle above M. We define

Foyu: My — My, er— Foquero(T+jiq @ ﬂO);
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This map is a principal bundle isomorphism.

e Recursively, we define M;;, as the space of ¢;;1,’s obtained as

eirty =P 1weipio(l+i 1@ @ ﬂl)fellﬂ (33)
Using the fact that the precedingly constructed Fj_; , is a principal bundle isomorphism,
we show that e;y;, are linear frames above M ,, and obtain the principal bundles

7r;+1,l
GLl+1 D Ml+1,,u — > Ml,u (34)
GLH —= Mgy, 5 M (35)

In summary, we have interpreted i as providing an iterative fibering encoded in the com-
mutative diagram :

Mp 1 M, M,y My M_,
e e e
Mk—"lvﬂ/ Mkvﬂ/ e MLM MO,M Mfl

that is 771’“7[ o Fiy1, = Fpy 0mq1y, with commutation of the subsquares (covariance of
le*lv/»‘)

GLl’Jrl KXo X GLl Ml Ml’ (36)
| e e
GLl’+1 Moo X GLl Ml# Ml/#

Note that if a deformation y is a 0-cocycle, i.e. Ofi,,, = 0 at each ey, then the induced

deformation is simply a gauge transformation ¢F¥t! € GLF of Mj.41 whose equivariant
form § = gh+! satisfies (see section [[.J) : Ad(§7') = 1+ fi.

3.3.3 Deformed frame form

As each My, is a bundle of (I 4 2)-linear frames above M ,,, we can dually define the
frame form. On M} ,, define the deformed frame form at ey, by

k _ —-1_
0, = €htip Thit s (37)
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Then, by construction of the ¢; s, 9{2 satisfies the same properties of equivariance, hor-
izontality, and recursion as the ordinary frame form on Mj,,. Moreover we have from

B3
0f = eriip My
(1 + ﬂ—l D--- ﬂk)|ek+1ek+1_1Fk717ﬂ

. ~1 ~1
= (L4 @)jep k1 ThythsFhy s

-1 _/
* Ty 1, Jox

that is the deformed frame form is related to the frame from on My thanks to
Fru'0f = (1+)00" =0+p (38)
The deformed curvature is defined as
_ 1
O, =dbj; + 16,6, mod by

and is null iff the frames ej41 ,, are indeed jet frames (this being a consequence of section
P-4). Next, computing the deformed curvature from (Bg), we have :

1
Fkvﬂ*@ﬁ_l = d((g + ,U) + 5[0 + u, 0+ M] mod hg_1

With all this in mind, we define the second Spencer operator as

1
Dop=d(0 + ) + 5[0+ p,0 + p]  mod br—y (39)

Then, without anymore calculations, it becomes clear from the deformed frames point of
vue that Dypis a gl_; @ --- @ gl,,_;-valued tensorial 2-form on My, 1, which is null iff the
deformed frame bundle My, is actually the jet frame bundle My .

3.3.4 Extended diffeomorphisms action

We shall now derive, from the deformed bundle point of vue, the transformation of i and
w under Aut(Myy1), that is, we explain where does come from the transformation law

= fr1 i+ D fry1, equation (B).

Take fri1 € Aut(Mgy1), denote by f; its projections on Aut(M;), and call i’ the
transformed of ji.

e To first order, we define ji’ uniquely from :

fO(eO) © (1 + ﬂ—l)i%(eo) = f—l*eO o (1 + ﬂ,—1)|e;
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Thus, we have :
(L4 i 1)jeo = (L+ fo* fiz1) ey © ((foleo)) ™" o f-14€0)
Now, from the section point of vue, Dyfy is such that (see section B.2.9) :
1+ Dyfo = (foleo)) ™" o f-1+€0

so that we find .
L+l = (1+ fo*fi-1) o (1 + Dg fo)

In one word, we have constructed the commutative square

fo

M(] —>M0
lF_l’H/ lFl’y‘
f—l*

My, —— My,

since we have F_1, 0 fojeg = fojeo © (14 fi-1)|fo(e)- We define the intertwining diffeomor-

phism
fO,,lL = F717/J‘ ° fO ° F_lvulil

as a useful object for later purpose.

e To second order, we define in the same way ' from the commutative square

(note the appearance of the intertwining diffeomorphism at this level)

M —L

lFO,p/ lFO,H

My L,
that is :
Foypefi(en) o (L fimy @ fio) [ oy = JoguForprser o (L+ iy @ fig) )
This is equivalent, from the definition of fq ,, to

fl(el) o(l+p-1® /10)|7f1(el) = foxer10 (1 + /1/—1 D /%)Q

and, by the same reasoning as for the first order case, this proves
(1+ Ay ®fig) = (1+ fi"fie1 ® fi"fio) o (1 + Dy f1)
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Note that this is consistent with the first order result since this last equation im-
plies, by invariance of p_; with respect to GL; and graded action of 1 + Dyfy,
1+ pay = (14 fo*fie1) o (L + Dy fo).

e Recursively, if we have defined the action at the M; level, obtaining the commu-
tative square

M, i>Ml

lFll,y/ Fi_1,

-1,

My 0 —= My,

we define the intertwining diffeomorphism f;, = Fj_1, 0 fi o Fl—l,u’il’ and i’ by the
commutative square at next level

fia1
M1 ——— My

lFl’“' lFl’”
fi

My 0 =5 Mg,
This means Fj ,(fi+1(ei41)) = fiu«F1,w (€141), that is :

Fiofimi(eg)o(l+i1@--- @ ﬂl)|}l1+1(el+1) -

fre Bt e o (L+ iy @@ )}

lery1
and, thanks to the definition of f; ,,

—1
\€L+1

Jrrilerp)o(L+ i @ - @ fu) = fierrio(L+ il @ @ fiy)

~1
[fir1(ers1)

Now, using the fact

(1+ Do firs1)jer,, = (firalerr1)) " o frersn

we obtain the transformation law

I+ @ @), =+ 1@ @ fl)f, ()0 (L+ Defl+1)\el+1

Finally, we have obtained the action of fx; € Aut(Mj41) on i in the form :

L+j— 1+ =1+ fes1"i) o (1 + Do frt1) (42)

In the form language, from section B.2.4, the equation ([[J) becomes

0+ 1 = frp1"(0 + 1)
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and we recover the transformation law

p— ' = fri1 "+ Do frs1 (43)

Note that the intertwining diffeomeorphisms f , not only depend on the transformation
fr+1 but also on the deformation y. Infinitesimally, this difference between fi1 and f ,
is reflected, at least in 2D CFT, by 'field dependant ghosts’ [f] originally introduced in [f].

3.3.5 Action of deformations on local fields

We now look for the action of deformations on local fields, in the same way as in section
B-2.4. For a deformation u of My, as the deformed frame bundle M , is also principal,
we can speak of the local fields on My, by doing the same construction as in section
B.1.1, with Mj ; replaced by M1, We shall denote Sy, ,, the deformed bundle

Sy = Myy1,u Xzg 81 @ @ gly
Take a local field o/ € Q*(M, Sk ).

e From the tensorial form point of view, the action of a deformation is to read the
form o/ on My, by pullback i.e. :

o —a=F, d (44)
This is consistent since Fj, , is a principal bundle isomorphism.

e Viewing o as a equivariant function & on My, thanks to the formula
o =d o0,
the transformation (f4) now reads :

& —a=F, ao(l+p) (45)

This is obtained with a calculation similar to that establishing (R9).

3.3.6 Synthesis

e We have obtained thus the operator Dy : Q"' (M,S;) — Q?(M, S)_1), acting on defor-
mations as

1
Dop=d(0 + ) + 5[0+ p, 0+ p]  mod br—y
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We can alternatively write, using the structure equation %=1 =0,

1
Dop = dop+ 5lp, n] mod by (46)

This is the definition of Dy we will take.
More generally, for w a gl_; & --- & gl -valued 1-form on My, satisfying properties
(@), (1), (#49) of a deformation (see section B.3.1), we define

1
Dyp = dyp+ 5[% p]  mod bhr_y
and, for technical purpose
1
Dop=dw+p)+5w+pwt+p mod by
Note that we then have
1
D,y =dow+ Dyp = dw+ 5[&),&)] + Dyp mod bhgy (47)

Then D,p and D, are still tensorial i.e. in QQ(M, Sk—1). We shall call the quantities
D,p and D, i torsion or curvature, as these concepts are not to be distinguished in
Cartan geometry. These definitions can also be used on any of the deformed frame
bundles.

As for the symmetries, the properties of Dy are summarised in :

Dy defines a cocycle on the space of deformations I'(By) ~ Q' (M,Sy), seen as a

group, with values in Q*(M, Sy_1) (see eq. ({9) hereafter for the explicit cocycle law). Its
kernel contains the deformations induced by Aut(My.y1), that is Dgp = 0, for p = Dy fr11-

e We prove first the cocycle property. To a deformation p seen as an equivariant
function fi, we associate the deformation g’ = fi o F;wfl on the deformed frame bundle
My 11, and so the corresponding W =jpob,.

Then, from the point of vue of M}, the curvature is obtained as :

1
Dy, i’ = d(0y + ') + 5100 + 1/, 0, + /] mod by (48)

Next, this curvature form is read on My via the pullback Fk,u*QGV u'. We have :
* * 1
Fry"(Dp,p) = Fiy <d<9u )+ S0+ 10, + u’]) mod by

1
= d0+v+F, w)+ 5[9 +v+ F W0+ v+ Fp, w] mod by
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Now, Fj,,*1/ is the deformation p deformed by v, since (compare with equation (f4))

P, 1 = poFy .
= [/ 00,0 Fj ,x
= fioFL,"0,
— o (0+)
= pt+ip
So, we obtain :
Dy(p-v) = Fi," Dy, 1t/
Then, this last equation can be rewritten thanks to (@) as a cocycle law for Dy (recall
the action of deformations ([4)) :
Dy(p.v) = Fy,,* Do, i/ + Dov (49)

e Now, we prove the nilpotency. For yn = Dy fi.11, we have thanks to the structure equation

* 1 * *
DoDyfrr1 = d(frr170%) + §[fk+1 0%, fre1"0%] mod by_y

frp OF !
=0
|
e All this is summarised in the sequence :
Do ~n Do 2
Aut(Mp41) —= Q" (M, i) — Q*(M, Sj.—1) (50)

We have, as stated in [f]] :

The non linear complex (5Q) is locally evact i.e. on a suitable open cover (U;) of
M, the equation Dgp = 0 on U; implies

p = Do fri1 for fri1,; € Aut(Us pq1)

A proof of this in local coordinate form is given in [[]. Here, we shall indicate another way
to see this, using Cartan geometry [I(]. We work on a chart (U;, ¢;) of M, with (invertible)
maps g; : U; — R™, and U; contractible. Thanks to the ’fundamental theorem of calculus’
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of [[[0], the condition Dyp = 0, written dw + %[w,w] =0 mod hi_1, , w = 0 + u, proves
that there exists locally on U;, a map

Gkt1 : Uigr1 — R

such that

w="0+p= 1,0

where 6 is the frame form on R™;11. Then, equivariance of 6 + p and 5, and evaluation
on frames, proves that ¢;1; is indeed a principal bundle isomorphism, locally defined
above Uj;.

Moreover, the prolongation ¢pi1; : U;x+1 — R"p41, which satisfies by construc-
tion @410 = 6, enables us to define

—1
Jrt1,i = Okt14 © Okt

such that fi11; € Aut(M41). In this way, we obtain :

o= py10—0
= (P41, © fr1,) 0 — 0
= frr1 ore1,0— 0
= fryri0—0
= Dgfrt1,

This means the sequence (5() is locally exact at Q''(M, S;). This construction can be
summarised in the commutative square where each arrow is a principal bundle morphism

Ph41,i
Uik+1 —=R"; 11

lfk+1,i

PEk+1,i
Uikt1 — R4

The map ¢y41; is a development map [[0], here adapted to the diffeomorphism symmetry.
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3.4 Synthesis
3.4.1 Symmetries and deformations

e The study of symmetries and deformations in the language of linear frames reveals that
they have the same structure, as shown in the covariant and commutative diagrams :

Mi 1 My, My My M4
lfkﬂ lfk lfl lfo lf_l
My M, M My M

for the symmetries, and similarly

MkJrl Mk to My MO M_4
\LFk,u lel,u lFo,u lFl,u \Lid
Mk—"lvﬂ/ Mkvﬂ/ e MLM MO,M Mfl

for the deformations. From a gravity point of vue, the similarity between these two
structures is natural as one can understand them in term of a generalised equivalence
principle : the gravitational fields p of the second diagram are ’locally’ equivalent, i.e. in
fact at the level of jets (see section B.3.1)), to the general changes of coordinate frame f11
of the first diagram (see e.g. [[i] for the use of Cartan geometry in gravity). Alternatively,
one can also think of the deformations p as generalised Beltrami differentials [f], the
equation p = Dgfrr1 being then a generalised Beltrami equation, with integrability
conditions Dyp = 0. This fact will be further studied elsewhere. The interesting fact here
is that both symmetries, i.e. Aut(Mj,1), and fields, i.e. deformations Q' (M, Sy), appear
on the same footing.

e Alternatively, as Aut(Myyq) acts on QY(M,S;) ~ TI'(By), and as Q1 (M,S;) is a
group, we can consider the group semi-direct product

Qll(M, Sk) X Aut(Mpyq) (51)

as encoding the preceding two diagrams in a unified manner. The group law is explicitly
given by

(1 fr1)-(Ws i) = (-(fon-t)s frgn © frtn) (52)
In this equation, f.u' = fri1"1' + Dgfra1 is the (right) action of friq on y/, and p.v with
v = fry1-.4' denotes the composition of deformations. We have f; ., o fyy1 on the r.h.s.
because of pull-back law.
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This structure is roughly speaking some non linear analogue to the one in [f] used
for treating diffeomorphisms. Maybe one could use this to derive, as in [§], some
cohomological structure related to the BRS one. In this respect, as it is natural to view
the space Q"1 (M, S;,) as a classifying space for Aut(Mp 1) by analogy with gauge theory,
we can also view the product (Fll) as giving rise to the equivariant cohomology type
quotient :

Aut(Mpy1) — Aut(Myi1) x Q1 (M, Sp.) — Aut(Miy1) X aue(vyr) (M, Sk)

where Aut(Mjy1) acts on both sides of the product as in (52) with u = 0.

3.4.2 Non linear Spencer sequences

e The two sequences (Rg) and (B0)) enable us to construct the non linear Spencer sequence

of [g) as :

id — Aut(M) 2 Aut(Mys1) —2 Q' (M, ) —2= Q2(M, Sg_1) ——=0  (53)
This sequence is then globally exact at Aut(M) and Aut(Mjy41), and locally exact at
Q'Y(M, Sy). This sequence embodies all the structure necessary for gravity theories : from
left to right, we have the base space symmetry, then the frame space symmetry, then the
gravity potentials (deformations), and finally the gravity field strenghts (curvatures).
For any deformation u, we also have Bianchi type identities in the form

dG-I—MDGM = d6+ud6+u(9+:u)
=0

This fact indicates that if we want to prolongate the non linear Spencer sequence
(bJ) we have to intertwine the differential operators involved with pu fields, such as
doyp O%(M,Sy_1) — Q3(M, S)_3) here. This means one cannot extend the non linear
Spencer sequence to forms of degree > 2 without introducing more fields, in analogy
with the fact that one cannot extend non abelian Cech sequences (see section B.4.3) to
cochains of degree > 2 without introducing, e.g., gerbes.

We now study the covariance properties of the subsequences (§) and (p0), this
will give rise to a refined version of (§J), called second Spencer sequence in [f].

e First, we study the covariance of (R§) with respect to the structure group GLpiq
of the principal bundle

GLikr1 — Aut(Myy1) — Aut(My)
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For a gauge transformation gx11 € GLr+1 (k > —1 otherwise we get nothing), we have

Dy(fr+1°9k+1) = Gr+1 Dofer1 + Dogri1

= Ad(Ge!)Dofrrr +Ad(gy),)o* — 6"

= Ad(G 1) Do frs1 + fix 0 6"

= Dpfis1 + fir 0 fra1*0" (54)
where gr41 is the equivariant function corresponding to gx11, and fix is the section of
My 1 Xad8lg 1 C© Myg1 xzg0lg 1 such that at each point egy1 (see sections [.3 and B.3.1)):
Ad(Grr1)X = X — jixgX_1 (the minus sign is taken because the gauge transformation
Gkt is the particular deformation (1 + fig)~™! = 1 — jig for k > —1), with dfip = 0 i.e.
fik|ey,, € Olg+1 = GLgy1. The covariance law (B4), which is just the composition of the

deformations Dy fr+1 and fig, is rewritten from the equivariant viewpoint as :

Do(frr10gre1) = Dofri1 + fn o (1 + Do fri1) (55)

where all quantities are evaluated at the same ey, contrary to equation (BZ). This
suggests to define the quotient bundle

Bj = B/ (My11 X ad 9lp41) ~ Myt Xxg (Be/9lky1)

where GLF*! acts naturally on By./gli 11, and denote by Q''(M, Sy) its space of sections,
which satisfies B
QN (M,Sy) = YN (M, Sk) /T (Mys1 X ad 8l 11)

Note that, at the fiber level we have By /gly.; ~ Br_1 % (gl 1/8l;+1). The calculations
above then show that the operator

Dy : Aut(My) — Q1(M,Sy)

fi = Dofr = Dofryr0 (14 Dofiy1) ' 06 mod I'(Myy1 Xaq glyi1)
is well defined for any fr41 above fi.
Note that the projection map Y (M, Sy) — VY(M,S}) is, in relation with the definition
of Dy,
fi— (14 3)~" mod gl

as we have (see section B.3.1) i = [D@fk+1], and the action of 7y, € I'(Mj41 X ad glg 1) on
Q'1(M, Si) defining the quotient is :
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which keeps invariant the class of pu.
We can summarise this construction in the exact commutative diagram

Dy~Ad
id ———GLp1 —— T (My1 Xaq 8l11)

] |

Aut(M) 22 Aut(My4 1) —22 = Q'L (M, Sy)

o

Aut(M) —2 > Aut(My) — 22— Q"'(M,S))

where the first line corresponds to the covariance law under GLF! and the central row
encodes the symmetry we started from. This results in the sequence of the last line, which
is the projected version of (R§). By construction, we then end with the exact sequence :

id —= Aut(M) 2= Aut(My) —2= Q" (M, 5y

e Second, we study the covariance of (5(]) with respect to the structure group I'(My41 X aq
gl 1) of the principal bundle (which is the third row of the preceding diagram):

D(Myq1 Xad 8l y1) —= QY(M, Sp) — Q'Y(M, Sy)

and more generally under the group I'(Mj 41 x5380.1) C (M, S;) ~ I'(By). Inspired by
the preceding point, the action of a maximal degree deformation vy, € T'(Mjy1 X757 9l;1)
for £k > —1 is given by :
ﬁ—>ﬁ+ﬁko(1+ﬂ)
that is
e U Y M

in form language. Next, a direct calculation gives (this is another version of the cocycle

law (D)

Dy(p+ vk +ipvk) = Dop+ [0+ p, 0o (0 +p)] mod by
—  Dyu+ 0y o (6 + ) (56)

From the equivariant viewpoint, the covariance law (bf]) reads (compare with equation

(E3))

Dy(pvg) = Dop+ 0o (14 fi) (57)
= Dgp+ 0o (14 fi_1)
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This suggests to define the quotient bundle
AQ(Ma Sk—1)/(Mj, XAd (99[k,1) ~ My Xxq (9[71,2 DD 9[k71,2)/89[k,1
whose space of sections, denoted Q2(M, Sj_1), satisfies :
Q*(M,Sp_1) = Q*(M, Sk—1)/T (M x57 99l 1)

The preceding calculations then proves that if v, is a deformation in the structure group
I'(Mpgy1 Xad glgy1), ie. 00 =0, then Dyp is left invariant under its action, and that the
operator

Eg : QII(M,gk) — Q2(M,§k,1)
fi — Dgfi = Dgpio (1+ i)' 00 mod I'(Mj, 57 9gl 1)

is well defined for any p above 1 € Q"' (M, Sy).

The construction is summarised in the commutative diagram

Dy~Ad Dg~0
GLy1 ——= D(Mjqq X ad 8l 1) ——= T(My X34 08l 1)

! l |

Aut(Mips ) ——2—= (M, S),) ——2— Q2(M, Sp_1)

T

Aut(My,) —22—~ (M, 5y O%(M,Si_1)

where the first line corresponds to the covariance under maximal degree deformations, and
the second row encodes the symmetry we started from. This gives the projected version
of (BQ), that is the sequence :

Aut(My) 2% QL (M, §g) 2 02(M, Sy_1)

e Putting things altogether, we obtain thus the non linear second Spencer sequence :

id—— Aut(M) i> Aut(Mk) &> ot (M, gk) i QQ(M, gk—l)

This is the projected form of (5J).
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e Finally, note that the linearised version of the first Spencer sequence (F3) is (we
still denote jj1 the linearised version)

] d d
0 — aut(M) 255 aut(Myy ) —> QL(M, Si,) —> Q2(M, Sy_1)
aut(M) ~ T'(T'M) is the Lie algebra of Aut(M) i.e. the vector fields on M which satisfies
aut(M) ~ Q°(M,S_)

aut(Mpy.1) is the Lie algebra of Aut(My,q) i.e. the right invariant vector fields on M1
which satisfies :
aut(Mpyq) ~ QO(M, Sk+1)

So, this linearised sequence contains the beginning of the linear sequence (23). Putting
these together, we obtain the linear Spencer sequence :

QO(M, Sp11) —2= QL(M, S),) —2

Jk+1
—_—

00— QO(Ma Sfl)

d,
= QUM Sjp1-p) —2> 0

This sequence is locally exact [d].

3.4.3 Lagrangian and Cech formulations

e On the differentiable n-manifold M, we consider the lagrangian

L(B,1) = tr A Dgp (58)

for u € Q" (M, Sy,), and 3 € Q" 2(M, Si_1). tris the coupling between gl_; @ --- ® gl
and its dual, and S;_, is the dual vector bundle of Sj_;. This lagrangian is analogue to
the be models of 2D CFT and to the BF models of gauge theory [H].

The lagrangian £ has Aut(Mj1) symmetry :

= fer1" 1+ Dofryr, B— fuix1™8 = fuimi ™ L=L (59)

since Doy — fr41" Do under the action of fi11 € Aut(My41). The equations of motions
are :
Dot =0, djy,0=0 (60)

Here the dual d, of d,,, w = 0 + p, is defined by

dtr BAa=tr &3 Ao+ (=1)""*tr B Ad,a
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for all a € QY(M, Sy,).

We see that (p(J) corresponds to the fact that the lagrangian £ computes non lin-
ear Spencer cocycles and (@) corresponds to the covariance property of the non linear
Spencer sequence under Aut(My1). Both combined proves that £ is indeed computing
non linear Spencer cohomology at the Q''(M,S;) level. Of course, one can similarly
define a lagrangian model relative to the linear Spencer sequence.

e Now, we shall end by a calculation emphasizing the analogy between £ and BF
gauge theory models [[], that is between k-frames and gauge theory.
Either from the lagrangian, or from the Spencer sequence point of vue, the equation of
motion for the deformation

Dgu =0

is locally solved by
p= Do fri1 (61)

for fri1,; € Aut(U; 1) above a open subset U; C M. The U;’s are chosen as in section
B-3.q. As u is globally defined, equation () implies that, above U;; = U; N Uj, we have
Dgfrt1,; = Dofrt1j, so the element fii1,; = fos1,0 frr1; + € Aut(Usjpi1) satisfies,
thanks to the cocycle property of Dy :

Do fi+1,i = Do(frt1,ij © fer15) = frv1,; Dofrsr,ij + Dofur1; = Dofryi1,ij =0

so we have fi1145 = jr41(f-1,ij) (exactness of (b)) where f_1:; = fij is a diffeomorphism
of Uj;. Next, we also have

Jrt1,i5 © fret1,5k © g =1id , above Uy, = U; NU; N Uy
S0, as jr+1 is a morphism,
Je+1(fij o fir o fri) = id , above Usjy
Now, as ji41 is injective (exactness of (b3)) again), this last equality is equivalent to
fijo fiko fri =1id , on Usj

Consequently we have associated to u a Cech 1-cocycle (fi;) with values in the diffeomor-
phisms of M.

Note that the same type of calculation proves that fiyi; is defined up to the
transformation

frvri = gk (fla) © feyra 5 for fLy; € Aut(U)
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because of the cocycle property :
Do(jrr1(f214) © frv14) = frrri" Do(rr1(fL14) + Dofrrri = Dofrrisi
Under such a transformation, the Cech cochains transform as

. . —1
frerrig = Jena(fl1) o frerrgg o gk (Flay )

-1
f-145 — fl—l,iof—l,ijofl—l,j

These covariance properties are the Cech version of the covariance under Aut(M) of the
non linear Spencer sequence, or alternatively of the space (B1)).

e All these facts suggest that the (differential) cohomology of the non linear Spencer
sequence is related to the (combinatorial and non abelian) cohomology of diffeomorphisms
Cech type sequences. Recall what are the Cech cochains for the diffeomorphisms.
0-cochains are (f;) € CO(Aut(M)) where f; is a diffeomorphism of U;, 1-cochains are
(fij) € C*(Aut(M)) where f;; is a diffeomorphism of U;; with f;; = f;; ', and 2-cochains
are (fijr) € C?(Aut(M)) where fiji is a diffeomorphism of Ujj;. The Cech differential &
is defined as usual, respectively on 0-cochains and 1-cochains by :

0f); = fiofi™
(0f)ije = fijo firo fri

With this, using holonomy/homotopy type arguments, we expect that the cohomology of
the Cech sequence (the second arrow being the restriction map)

id — Aut(M) —= CO(Aut(M)) ——= CL(Aut(M)) —>= C2(Aut(M))
is isomorphic to the Spencer non linear cohomology.

e Of course, the interest in the lagrangian £ is as limited as those of BF type in
gauge theory : it only encodes topological information on the space M equiped with a
background differential structure. Nevertheless, we formally expect, as in [{] for gauge
theory, that the quantum theory corresponding to L is encoded in some sort of non
abelian intersection theory between 1-cycles (sources of the pu field) and (n — 2)-cycles
(sources of the 3 field) in M, the cycles being here understood in the sense of some non
abelian singular homology.

e The theory of linear frames, in all the aspects described here, as well as another
ones like e.g. flag structures [f], can be modified (reduction of frame bundles) or extended
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(definition of graded type frames) to embody all kind of gravitational type structures.
The gravitationnal field is then a Cartan connection, [E, A, [, E], which can be thought
as a p field, or the inverse of some k-frame, with k = 2 for Riemannian gravity, k = 3 for
conformal [[] or projective gravity, k = oo for Kodaira-Spencer gravity [H).
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