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FAST NUMERICAL METHODS FOR BERNOULLI FREE
BOUNDARY PROBLEMS

CHRISTOPHER M. KUSTER∗, PIERRE A. GREMAUD† , AND RACHID TOUZANI‡

Abstract. The numerical solution of the free boundary Bernoulli problem is addressed. An
iterative method based on a level-set formulation and boundary element method is proposed. Issues
related to the implementation, the accuracy and the generality of the method are discussed. The
efficiency of the approach is illustrated by numerical results.
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1. Introduction. Bernoulli free boundary problems find their origin in the de-
scription of free surfaces for ideal fluids [9]. There are, however, numerous other
applications leading to similar formulations, see for instance [8]. For concreteness, we
focus on the exterior Bernoulli problem. Let Ω be a bounded domain in R2. The ex-
terior Bernoulli problem consists in seeking a bounded domain A ⊃ Ω and a function
u defined on Ā \ Ω such that :

∆u = 0 in A \ Ω, (1.1)
u = 1 on ∂Ω (1.2)
u = 0 on ∂A, (1.3)
∂u

∂n
= µ on ∂A, (1.4)

where µ is given. In the previous example, one can think of u as a streamfunction
and of Ω as an obstacle. Taking into account (1.3), condition (1.4) can be written as
|∇u | = |µ | and corresponds, for fluid applications, to Bernoulli’s principle, see for
instance [6].

The above problem has been extensively studied, see [8] for general remarks.
For a convex simply connected bounded domain Ω, it is known that for any negative
constant µ < 0, the above problem admits a unique classical solution. Further, the free
boundary ∂A has regularity C2,α, see [18], Theorem 1.11. The convexity assumption
is necessary for uniqueness as counterexamples show (see [8], Example 13). The study
of the interior Bernoulli problem is more delicate and not even convexity can ensure
uniqueness.

There are roughly two ways of tackling such problems numerically. First, a varia-
tional formulation may be considered and the corresponding cost function minimized
[16, 20, 23]; this requires the calculations of shape gradients. Second, a fixed point
type approach can be set up where a sequence of elliptic problems are solved in a se-
quence of converging domains, those domains being obtained through some updating
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rule at each iteration [5, 8, 21]. The method studied in this paper falls in the latter
category.

More specifically, the strategy consists in solving the potential problem with one
of the conditions on the free boundary omitted and then using the omitted condition
to update the location of the free boundary. Given an initial domain A0 ⊃ Ω̄, the
simplest variant of this type consists in solving the sequence of problems

∆uk = 0 in Ak \ Ω, k = 0, 1, 2, . . . (1.5)
uk = 1 on ∂Ω, (1.6)

∂nuk = µ on ∂Ak. (1.7)

For a given domain Ak, it is well known that problem (1.5–1.7) admits a unique
solution, see for instance [12], Theorem 5.1. The new domain Ak+1 is found by
moving ∂Ak in its normal direction so that uk vanishes there. Let Pk ∈ ∂Ak; to first
order, we have

uk(Pk+1) ≈ uk(Pk) + µdk,

where Pk+1 = Pk +nkdk, nk being the outer unit normal to ∂Ak at Pk. The new point
Pk+1, or similarly the distance dk, is determined by the requirement uk(Pk+1) = 0,
i.e., dk = −uk(Pk)

µ . The free boundary is thus updated according to2

∂Ak+1 = ∂Ak −
uk

µ
nk. (1.8)

The implementation of the above algorithm relies on two important numerical
tools: first, the interface is represented through a level-set formulation, second, the
elliptic problem (1.5–1.7) is solved through a boundary element method. Therefore
the method requires, in principle, only the calculations of quantities being defined
on the interface or close to it. Both level-set and boundary element methods are
introduced and discussed in the present context in Section 2 and 3, respectively. The
feasibility of the method is then tested in Section 4. Brief conclusions are offered in
Section 5.

2. Level-set representation of the interface. In the above iterative process,
the interface ∂Ak has to be updated as long as the residual uk|∂Ak

is not (numerically)
zero. Relation (1.8) indicates that the boundary should be moved in the normal
direction by an amount proportional to the residual.

If the residual is considered as a normal speed, a time dependent problem can be
set up for the “evolution” (or correction) of the domain Ak. We denote the domain
so generated Ak(t) with Ak(0) = Ak. Let F : R2 → R be an extension of the residual
away from Ak (see subsection 2.3 below). We want the interface Γ(t) = ∂Ak(t) to be
characterized by

Γ(0) = ∂Ak, Γ(t) = {(x(t), t);x(0) = x0, x0 ∈ ∂Ak} for t > 0,

where
dx

dt
= Fn, x(0) = x0,

2The present iterative process can be modified by imposing the Neumann condition (1.7) on the
“next” boundary ∂Ak+1 instead of ∂Ak [8, 10]. However, in the formulation adopted here, those
modifications are of little use as they require information such as curvature which complicates the
calculation of the “evolution” of the interface.
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n being the unit outer normal to ∂Ak(t). A level-set approach, as pioneered in [25]
(see also [24, 28]), consists in representing the interface {Γ(t)}t≥0 as the zero level-set
of family of level set functions {φ(·, t)}t≥0 with the property

Ak(t) = {x ∈ R2;φ(x, t) < 0}, Γ(t) = ∂Ak(t) = {x ∈ R2;φ(x, t) = 0},

where Ak(t) denotes the domain stemming from the evolution of Ak through the
above process. By taking the time derivative of the relation φ(x(t), t) = 0, the level-
set equation is obtained

∂tφ + F |∇φ| = 0, (2.1)
φ(·, 0) = φ0, (2.2)

where φ0 is a level-set function corresponding to ∂Ak.
Several points related to the implementation of the above method have now to

be considered. The fixed boundary ∂Ω is approximated by a piecewise linear curve
∂Ωh with N elements. The size of the smallest element of ∂Ωh is denoted ∆x. Let
B ⊂ R2 be a square domain of size M∆x×M∆x where M is chosen large enough so
that B contains A. We associate to B, in a natural way, a uniform Cartesian mesh
Bh of size ∆x. In the following, the level-set functions are characterized by their
nodal values on the mesh Bh. Two kinds of interpolation operators are considered on
Bh. In the Contouring step (subsection 2.1), a classical P1 interpolation is used: each
square cell is divided into two triangular elements3 and on each of those triangles,
the unique polynomial of degree 1 agreeing with the values of the level-set function at
the vertices is constructed. For a given level-set function φ on Bh, the P1 interpolant
of φ is denoted IPφ. In the Projection step (subsection 2.2), a classical local Q2

interpolation is considered: to each node xi, we associate its eight closest neighbors
and construct on this set of nine nodes the unique polynomial of degree 2 in each
variable agreeing with the values of φ there. This local Q2 interpolant is denoted
IQ,xiφ.

2.1. Contouring. In many applications of the level-set method, the actual re-
construction of the interfaces is not needed. This is not the case here as the elliptic
problem (1.5–1.7) has to be solved in a family of successive domains defined by those
interfaces. Let φ be a given level-set function and IPφ its P1-interpolant on Bh.
By contouring, we mean the operation that associates to the nodal values of φ the
zero level-set of IPφ. This construction yields an outward normal to Ak(t) since the
gradient of IPφ is piecewise constant.

If IPφ is uniformly equal to zero on a given triangle, then the problem is under-
resolved (∆x is too large) and the algorithm fails.

2.2. Projection. As mentioned above, some quantities such as the normal speed
need to be extended away from the interface. The first step in this process consists
again in an accurate reconstruction of the boundary. A loop through the mesh is done
to determine which nodes are “close to” the interface. Here, a node is close to the
interface if it has a primary neighbor where φ has opposite sign.

For each node xi close to the interface, the closest point x? to xi on the zero
level-set of IQ,xi

φ is computed. The square of the Cartesian distance, i.e., |x− xi|2 is
minimized subject to the constraint IQ,xiφ = 0. The Lagrangian for this problem is

L(x, λ) = |x− xi|2 + λ IQ,xiφ(x). (2.3)

3Any such decomposition is acceptable.
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To find the point x?, the system

∇x,λL(x, λ) = 0, (2.4)

is solved by Newton’s method with Armijo line search [22]. This projection method
was introduced and discussed in [14]. This projection step could potentially be used to
reconstruct the interface, i.e., as another Contouring step. However, while it is locally
more accurate than the above contouring algorithm (and is thus ideal when used in
conjunction with the Extension step described below), it has several disadvantages as
a contouring tool (local character, non constant element-wise gradient).

2.3. Extension. This step extends the speed F away from the interface, so
that (2.1, 2.2) can be solved. Let Γ be the interface obtained from the Contouring
step. By construction, Γ is a closed (for the problems considered here), possibly
multi-connected, piecewise linear (on the triangular mesh derived from Bh) curve in
B. The boundary nodes corresponding to Γ are denoted {ξj}, i.e., the ξj ’s are the
end points of the line segments that form Γ. Further, through the elliptic step (see
Section 3), the value of F at the center point of each linear segment of Γ is known;
the center point nodes are denoted {ξ̄j}.

First, the values of F at the midpoint boundary nodes {ξ̄j} are extended to the
set of Cartesian nodes {xi} that form the vertices of the triangles containing the nodes
{ξ̄j}.

ξ

ξ

i

j

j

x

ξ j−1

ξ

ξ

j

j

ξ j−1

xi

α β

Fig. 2.1. Left: general view of the geometry involved in the local Extension step and corre-
sponding “domains of influence”, dark grey area: shock-like domain, light grey area: rarefaction-like
domain; right: definition of the local angles α and β.

More precisely, consider the node ξ̄j in Figure 2.1, left. This local extension step
is based on the analysis of the “domain of influence” of the nodes {ξ̄j}. This domain
of influence is taken here as the set of all the points in B whose orthogonal projection
on the line containing the segment through ξ̄j belongs to that segment. If a node xi

belongs to the domain of influence of ξ̄j , then F is extended at xi by the value F (ξ̄j)
as in Figure 2.1, left. If instead the node xi is in the domain of influence of more than
one midpoint boundary node, as would be the case in the dark grey area in Figure 2.1,
left, then the value at the midpoint of the closest segment to xi is retained. Finally,
if xi does not belong to the domain of influence of any midpoint boundary node, as
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in the light grey area in Figure 2.1, right, then the value of F at xi is taken as

F (xj) =
β

α + β
Fj−1 +

α

α + β
Fj ,

where Fj−1 and Fj are the values of F at the midpoint boundary nodes ξ̄j−1 and ξ̄j

respectively and where the angles α and β are defined as in Figure 2.1, right. This
way of defining the local extension of F is compatible with the global extension (2.7).

Second, a renormalized function φ̃ is initialized as a signed distance function at
the same Cartesian nodes at which F has just been extended. The Projection step is
used to do this.

We emphasize that both of those local extension steps for F and φ̃ only take place
on the nodes adjacent to the interface; the corresponding values are then used as start-
ing points for the extension to the rest of the Cartesian nodes. This is accomplished
using the Fast Marching method [2] to solve

|∇φ̃ | = 1 in B, (2.5)
φ̃ = 0 on Γ, (2.6)

∇F̃ · ∇φ̃ = 0 in B, (2.7)
F̃ = F on Γ. (2.8)

A fully upwind mixed first/second order discretization of the above equations is ap-
plied on the mesh Bh, see [15, 29, 30] for more details.

2.4. Updating the interface. The interface is moved by updating the corre-
sponding level-set function through (2.1, 2.2). More precisely, after the Extension
step, the level-set function φ̃ corresponding to the current interface Γ is a signed
distance function and in particular, |∇φ̃| = 1. Therefore, (2.1, 2.2) reads here

∂tφ + F̃ = 0,
φ(·, 0) = φ̃.

The update is then trivially computed by taking one forward Euler step

φnew = φ̃−∆t F̃ , (2.9)

where ∆t = − 1
2µ . Note that this corresponds to half the optimal time step given by

(1.8); taking the “optimal” value from (1.8) may lead to overshoots in the position
of the interface and may in fact result in slowing down the convergence of the global
iterative process.

2.5. Initial interface. An initial guess of the interface’s position, ∂A0, needs
to be provided. This can be done in an ad hoc way. In Section 4, ∂A0 is taken as a
curve of constant distance to Ω.

3. Boundary element method. Consider again the problem (1.5-1.7). For the
sake of simplicity, the subscript k is dropped in this section. We assume both ∂A and
∂Ω to be simple closed curves and let Γ = ∂A ∪ ∂Ω. The region of interest A \ Ω̄
being interior to ∂A and exterior to ∂Ω, ∂A is oriented counterclockwise while ∂Ω is
clockwise.

Multiplying (1.5) by the fundamental solution G(x, y) := − 1
2π log |x − y| and

integrating twice by parts leads to

u(x) =
∫

Γ

G(x, y)
∂u

∂ny
(y) ds(y)−

∫
Γ

∂G

∂ny
(x, y)u(y) ds(y), (3.1)
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where n is the unit outer normal to A \ Ω̄ at y. The above integral representation
is valid for x ∈ A \ Ω̄. To treat the case x ∈ Γ, we define the linear operator
L : L2(Γ) → L2(Γ) by

Lv(x) =

{
v(x)

2 +
∫

∂A
∂G
∂ny

(x, y) v(y) ds(y)−
∫

∂Ω
G(x, y) v(y) ds(y) for x ∈ ∂A,∫

∂A
∂G
∂ny

(x, y) v(y) ds(y)−
∫

∂Ω
G(x, y) v(y) ds(y) for x ∈ ∂Ω,

and the function F ∈ L2(Γ)

F(x) =

{
µ

∫
∂A

G(x, y) ds(y)−
∫

∂Ω
∂G
∂ny

(x, y) ds(y) for x ∈ ∂A,

µ
∫

∂A
G(x, y) ds(y)−

∫
∂Ω

∂G
∂ny

(x, y) ds(y)− 1
2 for x ∈ ∂Ω.

Taking into account the boundary conditions (1.6) and (1.7), it is then standard to
check that if

w(x) =
{

u(x) for x ∈ ∂A,
∂u
∂n (x) for x ∈ ∂Ω,

where u is the solution to (1.5-1.7) then

Lw(x) = F(x), ∀x ∈ Γ. (3.2)

Problem (3.2) is discretized as follows. The interface ∂A = ∂Ah is obtained
through contouring of a given level-set function, see Section 2 and piecewise constant
elements are considered. The function w solution to (3.2) is approximated by wh such
that

wh(x) = we ∀x ∈ e,

where e is an edge of either ∂Ah or ∂Ωh. Equation (3.2) is then collocated at the
midpoints of the edges. In other words, for a generic piecewise constant function vh,
we define

Lhvh(ξ̄e) =

{
ve

2 +
∫

∂Ah

∂G
∂ny

(ξ̄e, y) vh(y) ds(y)−
∫

∂Ωh
G(ξ̄e, y) vh(y) ds(y) for ξ̄e ∈ ∂Ah,∫

∂Ah

∂G
∂ny

(ξ̄e, y) vh(y) ds(y)−
∫

∂Ωh
G(ξ̄e, y) vh(y) ds(y) for ξ̄e ∈ ∂Ωh,

where ξ̄e is the midpoint of the edge e. Similarly, we also have

Fh(ξ̄e) =

{
µ

∫
∂Ah

G(ξ̄e, y) ds(y)−
∫

∂Ωh

∂G
∂ny

(ξ̄e, y) ds(y) for ξ̄e ∈ ∂Ah,

µ
∫

∂Ah
G(ξ̄e, y) ds(y)−

∫
∂Ωh

∂G
∂ny

(ξ̄e, y) ds(y)− 1
2 for ξ̄e ∈ ∂Ωh.

The approximate solution wh is the solution to

Lhwh(ξ̄e) = Fh(ξ̄e), ∀ξ̄e ∈ ∂Ah ∪ ∂Ωh. (3.3)

The above integrals are computed exactly in the present implementation.
Both the integral equation (3.2) and the linear problem (3.3) are well conditioned.

It can be verified that Lh admits eigenvalues and singular values that are bounded
independent of the mesh, see e.g. [17] or [26] for explicit expressions of the eigenvalues
in some specific cases. Further, in spite of the fact that the elements of ∂Ah are allowed
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to be arbitrarily small, the condition number of Lh has been numerically verified to
be of order N which would correspond to the uniform mesh case [3]. The condition
number of the matrices corresponding to the numerical tests of Section 4 are on the
order of 100. The resulting linear system is solved by GMRES [22, 27] which is
consequently expected to perform well here even without preconditioning. GMRES
is restarted after 20 steps (i.e., the solver is GMRES(20)) and is stopped on small
relative residuals, more precisely the stopping criterion is

‖Fh − Lhw‖2 ≤ 10−10‖Fh‖2,

where w denotes the current iterate. With the above parameters, GMRES has been
observed to perform slightly better than other CG-like methods such as QMR and
Bi-CGSTAB [22] on the test problems of Section 4.

4. Numerical results.

4.1. Algorithm. To solve the External Bernoulli problem, we use the following
algorithm:

Input: a discretization of the boundary ∂Ω, ∂Ωh, µ
Create the underlying Cartesian grid Bh

Create a level set function φ on Bh corresponding to ∂A0

k = 0
R−1 = 1010 (initial residual)
loop

Contour φ (subsection 2.1) to find ∂Ak

Solve (3.3) to get u
Rk = max of |u| on ∂Ak

if (Rk−1−Rk)/Rk < 10−3 (small residual decrease) then
STOP

end if
Set F = u on ∂Ak

Extend φ and F (subsections 2.2 and 2.3)
Move boundary (subsection 2.4)
k = k + 1

end loop

Several remarks are in order.
• Progressive mesh refinement can be considered, i.e., a coarse mesh solution

can be used as starting point. A strategy of this type is for instance used in
[20] for a similar type of problems but for a different numerical approach.

• In solving (3.3), the “missing” condition (1.3) can be used when choosing the
initial iterate for GMRES. This results in faster convergence (less GMRES
iterates) as the algorithm progresses.

• The extension step through Fast Marching (Subsection 2.3) is done in the
whole computational domain B. The corresponding complexity isO(M2 log M)
where M2 is the total number of nodes in the Cartesian grid Bh. A narrow
band implementation [2, 31] could be considered to speed up the algorithm.
However, the global complexity of the problem would not change since, if the
width of the band is a constant multiple of ∆x, say n∆x, then by (2.9), ∆t
should be reduced from −1

2µ to a value less than n∆x
|F̃ | since the band has to con-
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tain the boundary. Fast summation techniques can also be implemented [13]
to bring down the cost of solving the linear system (3.3), which accounts for
most of the computational cost, from O(N2) with the present implementation
to O(N), where N is the number of elements of ∂Ωh. A quasi-optimal global
complexity of O(M2) = O(N2) is computationally observed in Section 4.

• Higher order boundary element methods can be used [4]. Second order con-
vergence is observed in Section 4 (partially as a result of the solution being
constant on the outer free boundary). To the authors’ knowledge, the present
work is one of very few published results regarding the accuracy of a combined
level-set boundary element method, see for instance [11].

4.2. Example 1. Following [8], a quick look at the radial case is instructive. Let
Ω be the unit ball. We consider the problem (1.1-1.4) with Ω as above and µ = −2.
The solution to (1.1-1.3) with A being the ball of radius R centered at the origin is

u(r) = −2 R log r + 1,

expressed in polar coordinates. An iterative process similar to the one above can then
be considered. Taking (1.8) into account, the k-th step of the algorithm reads

Rk+1 = Rk −Rk log Rk +
1
2
, k = 1, 2, . . .

Therefore in the fully radial case, the problem amounts to finding a fixed point to the
function f(R) = R−R log R + 1

2 . The function f has a unique fixed point R̄ where

R̄ =
1

2 W ( 1
2 )

,

the function W being the Lambert W function4 [7].
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Fig. 4.1. Convergence history of the iterations: maximum value of |u| on the current interface
as a function of the iteration number; left: example 1, right: example 2. The convergence curves are
in the obvious order: from top to bottom, N = 25, 50, 100, 200, 400, 800.

Table 4.1 shows second order convergence in the L∞ norm. Full second order
convergence is obtained even though the elliptic solver is based on a piecewise constant
discretization. This is due to the fact that the exact solution is constant on both the
inner and outer boundaries. Further, when measured with respect to runtime, the
complexity is also second order.

4The Lambert W function is the inverse of W 7→ z = W eW .
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N max |u| on Γ Rate L∞ Error Rate k Time Rate
25 1.64(-2) – 1.53(-2) – 6 0.71 –
50 5.07(-3) 1.7 4.40(-3) 1.8 8 4.1 2.5
100 1.30(-3) 2.0 1.12(-3) 2.0 10 19 2.2
200 3.34(-4) 2.0 2.85(-4) 2.0 11 76 2.0
400 8.18(-5) 2.0 7.10(-5) 2.0 12 372 2.1
800 1.92(-5) 2.1 1.74(-5) 2.0 14 1465 2.0

Table 4.1
Convergence and complexity rates for Example 1 (radial case); N : number of elements on ∂Ωh,

L∞ Error refers to the Hausdorff distance between exact and computed boundaries, k is the number
of nonlinear iterations (see Section 4.1), Time is the runtime in seconds.

The convergence history is instructive. Figure 4.1, left, displays the error (max-
imum of |u| on the free boundary) through the iterations. The behavior of the first
iterates is governed by the geometry, see (2.9), and is only weakly dependent on the
mesh size ∆x. The later iterations during which the fine structure of the boundary is
determined do depend on ∆x. This explains the mesh dependency of the number of
iterations observed in Table 4.1.

4.3. Example 2. We consider here the problem (1.1-1.4) with Ω consisting of
two disks of radius 1, one centered at (-2,2), the one at (2,-2); further, µ = −1/4. The
initial boundary is taken as two circles of radius 1.1, one around each of the inner
disks. Note that for this choice of µ, the exact boundary is simply connected. A
couple of iterates are displayed in Figure 4.2. One can note that after the first step
already the correct topology of the interface has been achieved.

No exact solution is available for the present example. In Table 4.2, the maximum
of u on the boundary is reported. By construction, this maximum should vanish for the
converged solution. The complexity, as measured from the runtimes, is also reported.
In both cases, the rates are about two.

N max |u| on Γ Rate k Time Rate
26 3.43(-3) – 11 4.4 –
50 9.16(-4) 2.0 13 19 2.2
100 1.64(-4) 2.5 15 85 2.2
200 5.31(-5) 1.6 18 573 2.8
400 1.71(-5) 1.6 19 1678 1.6
800 4.25(-6) 2.0 21 7613 2.2

Table 4.2
Convergence and complexity rates for Example 2; N : number of elements on ∂Ωh, k is the

number of nonlinear iterations (see Section 4.1), Time is the runtime in seconds.

Convergence history is displayed in Figure 4.1, right; a behavior similar as that
of Example 1 is observed.

5. Conclusion. Solutions of the Bernoulli free boundary problem can be effi-
ciently computed by the method presented here. Providing a Green’s function is avail-
able, the method can be used to solve other free boundary problems. For instance, it
can be applied with only minor modifications to the Prandtl-Batchelor problem (see
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Fig. 4.2. Evolution of the interface for Example 2 at the initial step and after steps 1, 2 and 15
(N = 100).

[1] and the references therein) which consists in looking for a domain A which is now
interior to the fixed domain Ω such that for a given function σ

|∇uA|2 − |∇uΩ|2 = σ, on ∂A,

where uA and uΩ solve{
∆uA = −ω in A,
uA = 0 on ∂A,

 ∆uΩ = 0 in Ω,
uΩ = 0 on ∂A,
uΩ = µ on ∂Ω,

µ and ω being positive constants.
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