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Abstract

In the same spirit as Tsybakov [2003], we define the optimality of an aggregation procedure

in the problem of classification. Using an aggregate with exponential weights, we obtain an

optimal rate of convex aggregation for the hinge risk under the margin assumption. Moreover

we obtain an optimal rate of model selection aggregation under the margin assumption for the

excess Bayes risk.
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1 Introduction

Let (X ,A) be a measurable space. We assume that the space X × {−1, 1} is endowed with an

unknown probability measure π. We consider a random variable (X,Y ) with values in X ×{−1, 1},
such that π is the distribution of (X,Y ). We denote by PX the marginal of π on X and η(x) =

P(Y = 1|X = x) the a posteriori probability of Y = 1 knowing that X = x. This setting means

that in each point x of X we play to ”heads or tails” with a biased coin such that ”heads” arise

with probability η(x) and ”tails” arise with probability 1−η(x). In the classification framework we

have n i.i.d. observations of the couple (X,Y ) denoted by Dn = (Xi, Yi)i=1,...,n, where Xi is the

ith realisation of X and Yi the result of the game at Xi (namely, Yi = 1 if ”heads” and Yi = −1 if

”tails”). The aim of classification is to predict the result Y for any X in X . Obviously we have to

make assumptions to be able to construct efficient prediction procedures. First one is on the way

the coin is biased, especially in points of X of high PX probability, one cannot predict a result of a

”heads or tails” better than with probability 1/2 if the coins is not biased. One assumption of this

kind is called ”margin assumption” and has been introduced in Tsybakov [2004].

We recall some usual notation introduced for the classification framework. A prediction rule is
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a measurable function f : X 7−→ {−1, 1}. The misclassification error associated to f is

R(f) = P(Y 6= f(X)).

It is well known (see, e.g., Devroye et al. [1996]) that

min
f
R(f) = R(f∗) = R∗,

where the prediction rule f∗ is called Bayes rule associated to η and is defined by

f∗(x) = sign(2η(x) − 1), ∀x ∈ X .

The minimal risk R∗ is called the Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn), measurable

with respect to Dn and X with values in {−1, 1}, that assigns to the sample Dn a prediction rule

f̂n(., Dn) : X 7−→ {−1, 1}. A key characteristic of f̂n is the generalization error E[R(f̂n)]. Here

R(f̂n) = P(Y 6= f̂n(X)|Dn).

The aim of statistical learning is to construct a classifier f̂n such that E[R(f̂n)] is as close to R∗

as possible. Accuracy of a classifier f̂n is measured by the value E[R(f̂n)−R∗] called excess Bayes

risk of f̂n. We say that the classifier f̂n learns with the convergence rate ψ(n), where (ψ(n))n∈N

is a decreasing sequence, if there exists an absolute constant C > 0 such that for any integer n,

E[R(f̂n) −R∗] ≤ Cψ(n).

The difficulty of classification is closely related to the behavior of the a posteriori probability

η at the level 1/2 (the distance |η(·) − 1/2| is sometimes called the margin). The paper Mammen

and Tsybakov [1999], for the problem of discriminant analysis which is close to our classification

problem, and Tsybakov [2004] have introduced the following assumption on the the margin:

(MA) Margin (or low noise) assumption. The probability distribution π on the space X ×
{−1, 1} satisfies the margin assumption MA(κ) with margin parameter 1 ≤ κ < +∞ if there exists

c0 > 0 such that,

E {|f(X) − f∗(X)|} ≤ c0 (R(f) −R∗)1/κ , (1)

for all measurable functions f with values in {−1, 1}.
Under this assumption, the risk of a minimizer of the empirical risk over some fixed class F of

decision rules can converge to R∗ with fast rates, i.e., with the rates faster than n−1/2. In fact, with

no margin assumption, the convergence rate of the excess risk is not faster than n−1/2 (cf. Devroye

et al. [1996]). Under the margin assumption, it can be as fast as n−1. Many examples of fast rates

can be found in Blanchard et al. [2004], Scovel and Steinwart [2004, 2005], Massart [2000], Massart

and Nédélec [2003], Massart [2004] and Audibert and Tsybakov [2005].

The aim of this paper is the following:

1. We define a notion of optimality for aggregation procedures in classification.

2. We introduce several aggregation procedures in classification and obtain exact oracle inequal-

ities for their risks.
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3. We prove lower bounds and show optimality of the suggested procedures and derive optimal

rates of aggregation under the margin assumption.

The paper is organized as follows. In Section 2 we introduce definitions and the procedures

which are used throughout the paper. Section 3 contains oracle inequalities for our aggregation

procedures w.r.t. the excess hinge risk. Section 4 contains similar results for the excess Bayes risk.

Proofs are given in Section 5.

2 Definitions and procedures

2.1 Loss functions

The quality of a classifier is often measured by a convex surrogate φ for the classification loss

(Cortes and Vapnik [1995], Freund and Schapire [1997], Lugosi and Vayatis [2004], Friedman et al.

[2000], Bühlmann and Yu [2002]).

Definition 1. The real valued convex function φ on R is called convex loss for classification if

φ(0) = 1 and φ(x) = o(x) when x tends to infinity. The risk associated to the loss φ is called the

φ−risk and is defined by

A(φ)(f) = E[φ(Y f(X))],

where f : X 7−→ R a measurable function. The empirical φ−risk is defined by

A(φ)
n (f) =

1

n

n
∑

i=1

φ(Yif(Xi)).

If the minimum over all real valued functions exists, then we introduce A
(φ)
∗ = minf A

(φ)(f).

Classifiers obtained by minimization of the empirical φ−risk, for different convex losses, has

been proved to have very good statistical properties (cf. Lugosi and Vayatis [2004], Blanchard

et al. [2003], Zhang [2004], Scovel and Steinwart [2004, 2005] and Bartlett et al.). A wide variety

of classification methods in machine learning are based on this idea, in particular, on using the

convex loss associated to support vector machines (Cortes and Vapnik [1995], Schölkopf and Smola

[2002]),

φ(x) = (1 − x)+,

called the hinge-loss, where z+ = max(0, z) denotes the positive part of z ∈ R. The corresponding

risk is called the hinge risk and is defined by

A(f) = E[(1 − Y f(X))+],

for all f : X 7−→ R and the optimal hinge risk is defined by

A∗ = inf
f
A(f), (2)
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where the infimum is taken over all measurable functions f . It is easy to check that the Bayes rule

f∗ attains the infimum in (2) and, moreover, Zhang [2004] has shown that,

R(f) −R∗ ≤ A(f) −A∗, (3)

for all measurable functions f with values in R, where we extend the definition of R to the class of

real valued functions by R(f) = R(sign(f)). Thus minimization of the excess hinge risk, A(f)−A∗,

provides a reasonable alternative for minimization of excess Bayes risk, R(f) −R∗.

2.2 Aggregation procedures

Now, we introduce the problem of aggregation and the aggregation procedures which will be studied

in this paper.

Suppose that we have M ≥ 2 different classifiers f̂1, . . . , f̂M taking values in {−1, 1}. The

problem of model selection type aggregation, as studied in Nemirovski [2000], Yang [2000], Catoni

[1999, 2001], Tsybakov [2003], consists in construction of a new classifier f̃n (called aggregate)

which mimics approximatively the best classifier among f̂1, . . . , f̂M . In most of these papers the

aggregation is based on splitting of the sample in two independent subsamples D1
m and D2

l of sizes

m and l respectively, where m ≫ l and m + l = n. The first subsample D1
m is used to construct

the classifiers f̂1, . . . , f̂M and the second subsample D2
l is used to aggregate them, i.e., to construct

a new classifier that mimics in a certain sense the behavior of the best among the classifiers f̂i.

In this paper we will not consider the sample splitting and concentrate only on the construction

of aggregates (following Juditsky and Nemirovski [2000], Tsybakov [2003], Birgé [2005], Bunea

et al. [2004]). Thus, the first subsample is fixed and instead of classifiers f̂1, . . . , f̂M , we have fixed

prediction rules f1, . . . , fM . Rather than working with a part of the initial sample we will suppose,

for notational simplicity, that the whole sample Dn of size n is used for the aggregation step instead

of a subsample D2
l .

Let F = {f1, . . . , fM} be a finite set of real-valued functions, where M ≥ 2. An aggregate is

a real valued statistic of the form:

f̃n =
∑

f∈F

w(n)(f)f,

where the weights (w(n)(f))f∈F satisfy

w(n)(f) ≥ 0,
∑

f∈F

w(n)(f) = 1.

Let φ be a convex loss for classification. The Empirical Risk Minimization ERM aggregate is

defined by the weights,

∀f ∈ F : w(n)(f) =

{

1 for one f ∈ F such that A
(φ)
n (f) = ming∈F A

(φ)
n (g),

0 for other f ∈ F .

The ERM aggregate is denoted by f̃
(ERM)
n .
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The averaged ERM aggregate is defined by the weights

∀f ∈ F , w(n)(f) =

{

1/N ifA
(φ)
n (f) = ming∈F A

(φ)
n (g),

0 otherwise,

where N is the number of functions in F minimizing the empirical φ−risk. The averaged ERM

aggregate is denoted by f̃
(AERM)
n .

The Aggregation with Exponential Weights (AEW) aggregate is defined by the weights:

w(n)(f) =
exp

(

−nA(φ)
n (f)

)

∑

g∈F exp
(

−nA(φ)
n (g)

) , ∀f ∈ F . (4)

The AEW aggregate is denoted by f̃
(AEW )
n .

The cumulative AEW aggregate is an on-line procedure defined by the weights:

w(n)(f) =
1

n

n
∑

k=1

exp
(

−kA(φ)
k (f)

)

∑

g∈F exp
(

−kA(φ)
k (g)

) , ∀f ∈ F .

The cumulative AEW aggregate is denoted by f̃
(CAEW )
n .

There is a link between ERM, AERM and AEW aggregates. The following proposition states

that the AEW aggregate is almost an ERM aggregate up to the residual term log M
n , and the AERM

aggregate is not worse than the ERM aggregate.

Proposition 1. For any finite set F of real valued functions with cardinality M , and for any

integers M,n ≥ 1,

A(φ)
n (f̃ (AEW )

n ) ≤ A(φ)
n (f̃ (ERM)

n ) +
logM

n
,

and

A(φ)
n (f̃ (AERM)

n ) ≤ A(φ)
n (f̃ (ERM)

n ).

When F is a class of prediction rules, intuitively, the AEW aggregate is more robust than the

ERM aggregate w.r.t. the problem of overfitting. If the classifier with smallest empirical risk is

overfitted, i.e., it fits too much to the observations, then the ERM aggregate will be overfitted. But,

if other classifiers in F are good classifiers, the aggregate with exponential weights will consider

their ”opinions” in the final decision procedure and these opinions can balance with the opinion of

the overfitted classifier in F which can be false because of its overfitting property. The ERM only

considers the ”opinion” of the classifier with the smallest risk, whereas the AEW takes into account

all the opinions of the classifiers in the set F . Moreover, the AEW aggregate does not need any

minimization algorithm contrarily to the ERM aggregate.

The aggregation weights can be found in several situations. First, one can check that the solution

of the following minimization problem

min





M
∑

j=1

λjA
(φ)
n (fj) + ǫ

M
∑

j=1

λj logλj :

M
∑

j=1

λj ≤ 1, λj ≥ 0, j = 1, . . . ,M



 , (5)
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for all ǫ > 0, is

λj =
exp

(

−A(φ)
n (fj)

ǫ

)

∑M
k=1 exp

(

−A
(φ)
n (fk)

ǫ

) , ∀j = 1, . . . ,M.

Thus, for ǫ = 1/n, we find the exponential weights used for the AEW aggregate. Second, these

weights can also be found in the theory of prediction of individual sequences, cf. Vovk [1990].

2.3 Optimal Rates of Aggregation

In the same spirit as in Tsybakov [2003], where the regression problem is treated, we introduce a

notion of optimality for an aggregation procedure and for rates of aggregation, in the classification

framework. Our aim is to prove that the aggregates introduced above are optimal in the following

sense. All the results are given under the margin assumption. We denote by Pκ the set of all

probability measures π on X × {−1, 1} satisfying the margin assumption with margin parameter

κ ≥ 1.

Definition 2. Let φ be a convex loss for classification. The remainder term γ(n,M, κ,F , π) is called

optimal rate of model selection type aggregation (MS-aggregation) for the φ−risk, if

the two following inequalities hold:

(i) ∀F = {f1, . . . , fM}, there exists a statistic f̃n, depending on F , such that ∀π ∈ Pκ, ∀n ≥ 1,

E

[

A(φ)(f̃n) −A(φ)∗
]

≤ min
f∈F

(

A(φ)(f) −A(φ)∗
)

+ C1γ(n,M, κ,F , π). (6)

(ii) ∃F = {f1, . . . , fM} such that for any statistic f̄n, ∃π ∈ Pκ, ∀n ≥ 1

E

[

A(φ)(f̄n) −A(φ)∗
]

≥ min
f∈F

(

A(φ)(f) −A(φ)∗
)

+ C2γ(n,M, κ,F , π). (7)

Here, C1 and C2 are positive constants. Moreover, when these two inequalities are satisfied, we

say that the procedure f̃n, appearing in (6), is an optimal MS-aggregate for the φ−risk. If C
denotes the convex hull of F and if (6) and (7) are satisfied with minf∈F

(

A(φ)(f) −A(φ)∗
)

replaced

by minf∈C

(

A(φ)(f) −A(φ)∗
)

then, we say that γ(n,M, κ,F , π) is an optimal rate of convex

aggregation type for the φ−risk and f̃n is an optimal convex aggregation procedure for

the φ−risk.

3 Optimal rates of convex aggregation for the hinge-loss.

TakeM real valued functions f1, . . . , fM . Consider the convex hull C = Conv(f1, . . . , fM ). We want

to mimic the best function in C using the hinge risk and working under the margin assumption.

Since we consider the hinge-risk, it suffices to use functions with values in [−1, 1]. In fact, for any

real valued function f , we have (1 − yψ(f(x)))+ ≤ (1 − yf(x))+ for all y ∈ {−1, 1} and x ∈ X , so:

A(ψ(f)) −A∗ ≤ A(f) −A∗,
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where

ψ(x) =











1 if x ≥ 1

x if − 1 ≤ x ≤ 1

−1 if x ≤ −1,

∀x ∈ R. (8)

We first introduce the margin assumption with respect to the hinge-risk.

(MAH) Margin (or low noise) assumption for hinge-risk. The probability distribution π

on the space X × {−1, 1} satisfies the margin assumption for hinge-risk MAH(κ) with parameter

1 ≤ κ < +∞ if there exists c > 0 such that,

E [|f(X) − f∗(X)|] ≤ c (A(f) −A∗)
1/κ

, (9)

for all functions f on X with values in [−1, 1].

Proposition 2. The assumption MAH(κ) is equivalent to the margin assumption MA(κ).

In what follows we will assume that MA(κ) holds and thus also MAH(κ) holds.

The AEW aggregate, introduced in (4) for a general convex loss, has a simple form for the

special case of the hinge-risk:

f̃n =

M
∑

j=1

w(n)(fj)fj , (10)

where

w(n)(fj) =
exp (

∑n
i=1 Yifj(Xi))

∑M
k=1 exp (

∑n
i=1 Yifk(Xi))

, ∀j = 1, . . . ,M, (11)

where f1, . . . , fM are functions with values in [−1, 1].

We want to prove optimality of our aggregates in the sense of Definition 2. Therefore, we need

to show an exact oracle inequality of type (6) for our aggregates and a lower bound inequality of

type (7). These inequalities are given in Theorems 1 and 2.

Theorem 1 (Oracle inequality). Let κ ≥ 1. We assume that π satisfies the margin assumption

MA(κ). We denote by C the convex hull of a finite set of functions with values in [−1, 1], F =

{f1, . . . , fM}. Let f̃n be either of the four aggregates introduced in Section 2.2. Then, for any

integers M ≥ 3, n ≥ 1, f̃n satisfies the following inequality

E

[

A(f̃n) −A∗
]

≤ min
f∈C

(A(f) −A∗) + C





√

minf∈C(A(f) −A∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1



 ,

where C = 32(6 ∨ 537c ∨ 16(2c+ 1/3)) for the ERM, AERM and AEW aggregates with κ ≥ 1 and

c > 0 is the constant in (9) and C = 32(6∨ 537c∨ 16(2c+1/3))(2∨ (2κ−1)/(κ−1) for the CAEW

aggregate with κ > 1. For κ = 1 the CAEW aggregate satisfies

E

[

A(f̃ (CAEW )
n ) −A∗

]

≤ min
f∈C

(A(f) −A∗) + 2C

(
√

minf∈C(A(f) −A∗) logM

n
+

logM logn

n

)

.
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Remark 1. The hinge loss is linear on [−1, 1], thus, MS-aggregation or convex aggregation of

functions with values in [−1, 1] are identical problems if we use the hinge risk. Namely,

min
f∈F

A(f) = min
f∈C

A(f).

Theorem 2 (Lower bound). Let κ ≥ 1, M,n be integer such that logM ≤ n. There exists an

absolute constant C > 0, depending only on κ and c, and a set of prediction rules F = {f1, . . . , fM}
such that for any procedure f̄n with values in R, there exists a probability measure π satisfying the

margin assumption MA(κ) for which

E
[

A(f̄n) −A∗
]

≥ min
f∈C

(A(f) −A∗) + C





√

(minf∈C A(f) −A∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1



 ,

where C = cκ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1) and c > 0 is the constant in (9).

Combining the exact oracle inequality of Theorem 1 and the lower bound of Theorem 2, we see

that the residual
√

(minf∈C A(f) −A∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1

,

is optimal rate of convex aggregation of M functions with values in [−1, 1] for the hinge-loss.

Moreover, by aggregating ψ(f1), . . . , φ(fM ), it is easy to check that

√

(minf∈F A(ψ(f)) −A∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1

,

is optimal rate of model-selection aggregation of M real valued functions w.r.t. the hinge loss. In

both cases, the aggregate with exponential weights as well as ERM and AERM attain these optimal

rates. Learning properties of the AEW procedure can be found in Lecué [2005] and Lecué [2006].

In Theorem 1 the AEW procedure satisfies an exact oracle inequality with an optimal residual

whereas in Lecué [2005] and Lecué [2006] the oracle inequalities satisfied by the AEW procedure

are not exact and in Lecué [2005] the residual is not optimal. The CAEW aggregate attains the

optimal rate if κ > 1. It is interesting to note that these rates depend on both the class F and π.

Namely, in the convex case, the term

min
f∈C

A(f) −A∗

appears in the rate. This is different from the regression problem (cf. Tsybakov [2003]), where

the optimal aggregation rates depends only on M and n. We denote by M(F , π) the minimum

minf∈C(A(f) −A∗). Three cases can be considered:

1. If M(F , π) ≤ a
(

log M
n

)
κ

2κ−1

, for an absolute constant a > 0, then the hinge risk of our

aggregates attains minf∈C A(f)−A∗ with the rate
(

log M
n

)
κ

2κ−1

, which can be logM/n in the

case k = 1.

8



2. If a
(

log M
n

)
κ

2κ−1 ≤ M(F , π) ≤ b, for some absolute constants a, b > 0, then our aggregates

mimics the best prediction rule in C with a rate slower than
(

log M
n

)
κ

2κ−1

but faster than
√

log M
n .

3. If M(F , π) ≥ a > 0, where a > 0 is a constant, then the rate of aggregation is
√

log M
n , as in

the case of no margin assumption.

We can explain this behavior by the fact that not only κ but also minf∈C A(f) −A∗ measures the

difficulty of classification. For instance, in the extreme case where minf∈C A(f) − A∗ = 0, which

means that C contains the Bayes rule, we have the fastest rate
(

log M
n

)
κ

2κ−1

. In the worst cases,

which are realized when κ tends to ∞ or minf∈C(A(f) − A∗) ≥ a > 0, where a > 0 is a constant,

the optimal rate of aggregation is a slow rate
√

log M
n . Optimal rates of aggregation obtained in

Tsybakov [2003] depends only on M and n.

4 Optimal rates of model selection aggregation for the ex-

cess risk.

Now, we provide oracle inequalities and lower bounds for the excess Bayes risk. First, we can deduce

from Theorem 1 and 2, ”almost optimal rates of aggregation” for the excess Bayes risk achieved by

the AEW aggregate. Second, using the ERM aggregate, we obtain optimal rates of model selection

aggregation for the excess Bayes risk.

Using Zhang’s inequality we can derive from Theorem 1, an oracle inequality for the excess

Bayes risk. The lower bound is obtained using the same proof as in Theorem 2.

Corollary 1. Let F = {f1, . . . , fM} be a finite set of prediction rules for an integer M ≥ 3. Let

κ ≥ 1. We assume that π satisfies MA(κ). Denote by f̃n either the ERM or the AERM or the

AEW aggregate. Then, f̃n satisfies for any number a > 0 and any integer n:

E

[

R(f̃n) −R∗
]

≤ 2(1 + a) min
j=1,...,M

(R(fj) −R∗) +

(

1

a

)
1

2κ−1

C

(

logM

n

)
κ

2κ−1

, (12)

where C = 32(6 ∨ 537c ∨ 16(2c + 1/3)). The CAEW aggregate satisfies the same inequality with

C = 32(6 ∨ 537c ∨ 16(2c+ 1/3))(2 ∨ (2κ− 1)/(κ− 1) when κ > 1. For κ = 1 the CAEW aggregate

satisfies (12) where we need to multiply by logn the residual.

Moreover there exists a finite set of prediction rules F = {f1, . . . , fM} such that for any classifier

f̄n, there exists a probability measure π on X × {−1, 1} satisfying the Margin Assumption with

margin parameter κ, such that for any n ≥ 1, a > 0,

E
[

R(f̄n) −R∗
]

≥ 2(1 + a)min
f∈F

(R(f) −R∗) + C(a)

(

logM

n

)
κ

2κ−1

,

where C(a) > 0 is a constant depending only on a.
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Due to Corollary 1,
(

logM

n

)
κ

2κ−1

is an almost optimal rate of MS-aggregation for the excess risk and the AEW aggregate achieves

this rate. The word ”almost” is here because minf∈F (R(f) −R∗) is multiplied by a constant which

is greater than 1.

Remark 2. Some applications of Corollary 1, can be found in Lecué [2005] and Lecué [2006]. In

particular, adaptive SVM classifiers are constructed by aggregating SVM estimators (this procedure

requires the construction of only (log n)2 SVM estimators).

The last oracle inequality of Theorem 1 is not an exact one since the minimal excess risk over

F is multiplied by the constant 2(1 + a) > 1. This is not the case while using the ERM aggregate

as explained in the following Theorem.

Theorem 3. Let κ ≥ 1. We assume that π satisfies MA(κ). We denote by F = {f1, . . . , fM} a

set of prediction rules. The ERM aggregate over F satisfies for any integer n ≥ 1:

E

[

R(f̃ (ERM)
n ) −R∗

]

≤ min
f∈F

(R(f) −R∗) + C





√

minf∈F (R(f) −R∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1



 ,

where C = 32(6 ∨ 537c0 ∨ 16(2c0 + 1/3)) and c0 is the constant appearing in MA(κ).

Using Lemma 4, we can deduce the results of Herbei and Wegkamp [2005] from Theorem 3.

Oracle inequalities under the margin assumption have already been stated in Massart [2004] (cf.

Boucheron et al. [2005]). But the remainder term obtained is worse than the one obtain here or in

Herbei and Wegkamp [2005].

According to Definition 2, combining Theorem 3 and the following Theorem, the rate
√

minf∈F(R(f) −R∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1

is an optimal rate of MS-aggregation w.r.t. the excess Bayes risk. The ERM aggregate achieves

this rate.

Theorem 4 (Lower bound). Let M ≥ 3 and n be two integers such that logM ≤ n and κ ≥ 1

an integer. There exists an absolute constant C > 0 and a set of prediction rules F = {f1, . . . , fM}
such that for any procedure f̄n with values in R, there exists a probability measure π satisfying the

margin assumption MA(κ) for which

E
[

R(f̄n) −R∗
]

≥ min
f∈F

(R(f) −R∗) + C





√

(minf∈C R(f) −R∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1



 ,

where C = c0
κ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1) and c0 is the constant appearing in the margin

assumption MA(κ).
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5 Proofs

Proof of Proposition 1: We start by showing that the AEW aggregate is almost as good as the

ERM aggregate up to a (logM)/n term.

Since φ is convex we have φ(Y f̃n(X)) ≤∑f∈F w
(n)(f)φ(Y f(X)), thus

A(φ)
n (f̃n) ≤

∑

f∈F

w(n)(f)A(φ)
n (f).

We have for all f ∈ F , A(φ)
n (f) = A

(φ)
n (f̃

(ERM)
n ) + 1

n

(

log(w(n)(f̃
(ERM)
n )) − log(w(n)(f))

)

and by

averaging over the w(n)(f) we get :

A(φ)
n (f̃n) ≤ min

f∈F
A(φ)

n (f) +
log(M)

n
. (13)

Since
∑

f∈F w
(n)(f) log

(

w(n)(f)
1/M

)

= K(w|u) ≥ 0 where K(w|u) denotes the Kullback-Leibler di-

vergence between the weights w = (w(n)(f))f∈F and the uniform weights u = (1/M)f∈F .

The convexity of φ leads directly to the result for the AERM aggregate.

Proof of Proposition 2: Since for any function f from X to {−1, 1} we have 2(R(f)−R∗) =

A(f) −A∗, then, MA(κ) is implied by MAH(κ).

Assume that MA(κ) holds. We first explore the case κ > 1, then, MA(κ) implies that there

exist a constant c1 > 0 such that P (|2η(X) − 1| ≤ t) ≤ c1t
1/(κ−1) for any t > 0. Let f from X to

[−1, 1]. We have for any 0 ≤ t:

A(f) −A∗ = E [|2η(X) − 1||f(X) − f∗(X)|] ≥ tE
[

|f(X) − f∗(X)|1I|2η(X)−1|≥t

]

≥ t (E [|f(X)− f∗(X)|] − 2P (|2η(X) − 1| ≤ t)) ≥ t
(

E [|f(X) − f∗(X)|] − 2c1t
1/(κ−1)

)

.

For t0 = ((κ− 1)/(2c1κ))
κ−1

E [|f(X) − f∗(X)|]κ−1
, we obtain:

A(f) −A∗ ≥ ((κ− 1)/(2c1κ))
κ−1κ−1

E [|f(X) − f∗(X)|]κ .

For the case κ = 1, assumption MA(κ) implies that there exists h > 0 such that |2η(X)−1| ≥ h

a.s.. Indeed, if for any N ∈ N
∗, there exists AN ∈ A such that PX(AN ) > 0 and |2η(x) − 1| ≤

1/N, ∀x ∈ AN , then, for

fN (x) =

{

−f∗(x) if x ∈ AN

f∗(x) otherwise,

we obtain R(fN) − R∗ ≤ 2PX(AN )/N and E [|fN(X) − f∗(X)|] = 2PX(AN ), and there is no

constant c0 > 0 such that PX(AN ) ≤ c0P
X(AN )/N for all N ∈ N

∗. So, assumption MA(1) does

not hold if no h > 0 satisfies |2η(X) − 1| ≥ h a.s.. Thus, for any f from X to [−1, 1], we have

A(f) −A∗ = E [|2η(X) − 1||f(X) − f∗(X)|] ≥ hE [|f(X) − f∗(X)|] .
Proof of Theorem 1: Let f̃n be either the ERM or the AERM or the AEW aggregate for the

class F = {f1, . . . , fM}. We have in all the cases:

An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)

n
. (14)
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Let ǫ > 0. We consider D = {f ∈ C : A(f) > AC + 2ǫ}, where AC = minf∈C A(f). Let x > 0. If

sup
f∈D

A(f) −A∗ − (An(f) −An(f∗))

A(f) −A∗ + x
≤ ǫ

AC −A∗ + 2ǫ+ x
,

then for any f ∈ D, we have

An(f) −An(f∗) ≥ A(f) −A∗ − ǫ(A(f) −A∗ + x)

(AC −A∗ + 2ǫ+ x)
≥ AC −A∗ + ǫ,

because A(f) −A∗ ≥ AC −A∗ + 2ǫ. Hence,

P

[

inf
f∈D

(An(f) −An(f∗)) < AC −A∗ + ǫ

]

≤ P

[

sup
f∈D

A(f) −A∗ − (An(f) −An(f∗))

A(f) −A∗ + x
>

ǫ

AC −A∗ + 2ǫ+ x

]

.

Take f ′ ∈ {f1, . . . , fM} such that A(f ′) = minj=1,...,M A(fj). Observe that a linear function

achieves its maximum over a convex polygon at one of the vertices of the polygon. Thus, since

we are working in the linear part of the hinge-loss (fj ’s take their values in [−1, 1]), we have

AC = inff∈C A(f) = inff∈{f1,..,fM}A(f) = A(f ′). If A(f̃n) > AC + 2ǫ then f̃n ∈ D. On the other

hand, A(f̃n) ≤ minj=1,...,M An(fj)+ log(M)
n ≤ An(f ′)+ log(M)

n . Hence, there exists f ∈ D such that

An(f) −An(f∗) ≤ An(f ′) −An(f∗) + log M
n . We have:

P

[

A(f̃n) > AC + 2ǫ
]

≤ P

[

inf
f∈D

An(f) −An(f∗) ≤ An(f ′) −An(f∗) +
logM

n

]

≤ P

[

inf
f∈D

An(f) −An(f∗) ≤ AC −A∗ + ǫ

]

+ P

[

An(f ′) −An(f∗) ≥ AC −A∗ + ǫ− logM

n

]

≤ P

[

sup
f∈C

A(f) −A∗ − (An(f) −An(f∗))

A(f) −A∗ + x
>

ǫ

AC −A∗ + 2ǫ+ x

]

+P

[

An(f ′) −An(f∗) ≥ AC −A∗ + ǫ− logM

n

]

.

If we assume that

sup
f∈C

A(f) −A∗ − (An(f) −An(f∗))

A(f) −A∗ + x
>

ǫ

AC −A∗ + 2ǫ+ x
,

then, there exists f =
∑M

j=1 wjfj ∈ C (where wj ≥ 0 and
∑

wj = 1), such that

A(f) −A∗ − (An(f) −An(f∗))

A(f) −A∗ + x
>

ǫ

AC −A∗ + 2ǫ+ x
.

The linearity of the hinge loss on [−1, 1] leads to

A(f) −A∗ − (An(f) −An(f∗))

A(f) −A∗ + x
=

∑M
j=1 wj [A(fj) −A∗ − (An(fj) −An(f∗))

∑M
j=1 wj [A(fj) −A∗ + x]

12



and according to Lemma 3, we have

max
j=1,...,M

A(fj) −A∗ − (An(fj) −An(f∗))

A(fj) −A∗ + x
>

ǫ

AC −A∗ + 2ǫ+ x
.

We now use the relative concentration inequality of Lemma 1 to obtain:

P

[

max
j=1,...,M

A(fj) −A∗ − (An(fj) −An(f∗))

A(fj) −A∗ + x
>

ǫ

AC −A∗ + 2ǫ+ x

]

≤ M

(

1 +
8c(AC −A∗ + 2ǫ+ x)2x1/κ

n(ǫx)2

)

exp

(

− n(ǫx)2

8c(AC −A∗ + 2ǫ+ x)2x1/κ

)

+M

(

1 +
16(AC −A∗ + 2ǫ+ x)

3nǫx

)

exp

(

− 3nǫx

16(AC −A∗ + 2ǫ+ x)

)

.

Using the assumption MAH(κ) (which is implied by MA(κ) to upper bound the variance term and

applying Bernstein’s inequality we get

P

[

An(f ′) −An(f∗) ≥ AC −A∗ + ǫ− logM

n

]

≤ exp

(

− n(ǫ− (logM)/n)2

4c(AC −A∗)1/κ + (8/3)(ǫ− (logM)/n)

)

,

for any ǫ > (logM)/n. We take x = AC −A∗ + 2ǫ, then, for any (logM)/n < ǫ < 1, we have:

P

(

A(f̃n) > AC + 2ǫ
)

≤ exp

(

− n(ǫ− logM/n)2

4c(AC −A∗)1/κ + (8/3)(ǫ− (logM)/n)

)

+M

(

1 +
32c(AC −A∗ + 2ǫ)1/κ

nǫ2

)

exp

(

− nǫ2

32c(AC −A∗ + 2ǫ)1/κ

)

+M

(

1 +
32

3nǫ

)

exp

(

−3nǫ

32

)

.

Thus, for 2(logM)/n < u < 1, we have:

E

[

A(f̃n) −AC

]

≤ 2u+ 2

∫ 1

u/2

[T1(ǫ) +M(T2(ǫ) + T3(ǫ))] dǫ, (15)

where

T1(ǫ) = exp

(

− n(ǫ− (logM)/n)2

4c((AC −A∗)/2)1/κ + (8/3)(ǫ− (logM)/n)

)

,

T2(ǫ) =

(

1 +
64c(AC −A∗ + 2ǫ)1/κ

21/κnǫ2

)

exp

(

− 21/κnǫ2

64c(AC −A∗ + 2ǫ)1/κ

)

and

T3(ǫ) =

(

1 +
16

3nǫ

)

exp

(

−3nǫ

16

)

.

Set β1 = min(32−1, (2148c)−1, (64(2c+ 1/3))−1) where the constant c > 0 appears in MAH(κ).

We recall that AC = minf∈C A(f). Consider separately the following cases (1) and (2).

(1) The case AC −A∗ ≥ (logM/(β1n))κ/(2κ−1).

Denote by µ(M) the unique solution of X0 = 3M exp(−X0). Then, clearly logM/2 ≤ µ(M) ≤
logM . Take u such that (nβ1u

2)/(AC − A∗)1/κ = µ(M). Using the definition of case (1) and of

µ(M) we get u ≤ AC −A∗. Moreover, u ≥ 4 logM/n. Then

∫ 1

u
2

T1(ǫ)dǫ ≤
∫

AC−A∗

2

u
2

exp

(

− n(ǫ/2)2

(4c+ 4/3)(AC −A∗)1/κ

)

dǫ+

∫ 1

AC−A∗

2

exp

(

− n(ǫ/2)2

(8c+ 4/3)ǫ1/κ

)

dǫ.
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Using Lemma 2 and the inequality u ≤ AC −A∗, we obtain

∫ 1

u/2

T1(ǫ)dǫ ≤
64(2c+ 1/3)(AC −A∗)1/κ

nu
exp

(

− nu2

64(2c+ 1/3)(AC −A∗)1/κ

)

. (16)

We have 128c(AC −A∗ + u) ≤ nu2 thus, using Lemma 2, we get

∫ 1

u/2

T2(ǫ)dǫ ≤ 2

∫ (AC−A∗)/2

u/2

exp

(

− nǫ2

64c(AC −A∗)1/κ

)

dǫ+ 2

∫ 1

(AC−A∗)/2

exp

(

−nǫ
2−1/κ

128c

)

dǫ

≤ 2148c(AC −A∗)1/κ

nu
exp

(

− nu2

2148c(AC −A∗)1/κ

)

. (17)

We have u ≥ 32(3n)−1 so

∫ 1

u/2

T3(ǫ) ≤
64

3n
exp

(

−3nu

64

)

≤ 64(AC −A∗)1/κ

3nu
exp

(

− 3nu2

64(AC −A∗)1/κ

)

. (18)

From (16), (17), (18) and (15) we obtain

E

[

A(f̃n) −AC

]

≤ 2u+ 6M
(AC −A∗)1/κ

nβ1u
exp

(

− nβ1u

(AC −A∗)1/κ

)

.

The definition of u leads to E

[

A(f̃n) −AC

]

≤ 3
√

(AC−A∗)1/κ log M
nβ1

.

(2)The case AC −A∗ ≤ (logM/(β1n))κ/(2κ−1).

We choose now u such that nβ2u
(2κ−1)/κ = µ(M). Where β2 = min(3(32(6c+1))−1, (256c)−1, 3/64).

Using the definition of case (2) and of µ(M) we get u ≥ AC −A∗.

Using the fact that u > 4 logM/n and Lemma 2, we have

∫ 1

u/2

T1(ǫ)dǫ ≤
32(6c+ 1)

3nu
exp

(

− 3nu2−1/κ

32(6c+ 1)

)

. (19)

We have u ≥ 2(32c/n)κ/(2κ−1) and using Lemma 2, we obtain:

∫ 1

u/2

T2(ǫ)dǫ ≤
128c

nu1−1/κ
exp

(

−nu
2−1/κ

128c

)

. (20)

Since u > 32/(3n) we have

∫ 1

u/2

T3(ǫ)dǫ ≤
64

3nu1−1/κ
exp

(

−3nu2−1/κ

64

)

. (21)

From (19), (20), (21) and (15) we obtain

E

[

A(f̃n) −AC

]

≤ 2u+ 6M
exp

(

−nβ2u
(2κ−1)/κ

)

nβ2u1−1/κ
.

The definition of u yields E

[

A(f̃n) −AC

]

≤ 3
(

log M
nβ2

)
κ

2κ−1

.
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To conclude, for β0 = β1 ∧ β2 = β1 we obtain

E

[

A(f̃n) −AC

]

≤ 3







(

log M
nβ0

)
κ

2κ−1

if AC −A∗ ≤
(

log(M)
nβ1

)
κ

2κ−1

√

(AC−A∗)1/κ log M
nβ0

otherwise,

Thus, for C = 32(6 ∨ 537c ∨ 16(2c+ 1/3), the estimator f̃n satisfies:

E

[

A(f̃n) −A∗
]

≤ min
f∈C

(A(f) −A∗) + C





√

minf∈C(A(f) −A∗)
1
κ logM

n
+

(

logM

n

)
κ

2κ−1



 .

For the CAEW aggregate we have:

E

[

A(f̃ (CAEW )
n ) −A∗

]

≤ 1

n

n
∑

k=1

E

[

A(f̃
(AEW )
k ) −A∗

]

≤ min
f∈C

A(f) −A∗ + C

{

√

(AC −A∗)
1
κ logM

(

1

n

n
∑

k=1

1√
k

)

+ (logM)κ/(2κ−1) 1

n

n
∑

k=1

1

k
κ

2κ−1

}

,

and, by upper bounding the sums by integrals we get the result.

Proof of Theorem 2. The linearity of the hinge loss on [−1, 1] yields

min
f∈F

A(f) −A∗ = min
f∈C

A(f) −A∗.

Let a > 0. For all prediction rules f1, . . . , fM , we have

sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(

E

[

A(f̂n) −A∗
]

− (1 + a) min
j=1,...,M

(A(fj) −A∗)

)

≥ inf
f̂n

sup
π∈Pκ

f∗∈{f1,...,fM}

E

[

A(f̂n) −A∗
]

.

Let N be an integer such that 2N−1 ≤M . Let x1, . . . , xN be N distinct points of X . Let 0 < w <

1/N . Denote by PX the probability measure on X such that PX({xj}) = w for j = 1, . . . , N − 1

and PX({xN}) = 1 − (N − 1)w. We consider the cube Ω = {−1, 1}N−1. Let 0 < h < 1. For all

σ = (σ1, . . . , σN−1) ∈ Ω we consider

ησ(x) =

{

(1 + σjh)/2 if x = x1, . . . , xN−1,

1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X ×{−1, 1} defined by its marginal PX

on X and its conditional probability function P(Y = 1|X = x) = ησ(x), ∀x ∈ X .

Assume that κ > 1. We have P (|2ησ(X) − 1| ≤ t) = (N − 1)w1Ih≤t for any 0 ≤ t < 1. Thus, if

we assume that (N − 1)w ≤ h1/(κ−1) then P (|2ησ(X) − 1| ≤ t) ≤ t1/(κ−1) for all 0 ≤ t < 1. Thus,

according to Tsybakov [2004], πσ belongs to MA(κ).

We denote by ρ the Hamming distance on Ω. Let σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1. Then, the

Hellinger’s distance between the measures π⊗n
σ and π⊗n

σ′ satisfies

H2
(

π⊗n
σ , π⊗n

σ′

)

= 2
(

1 − (1 − w(1 −
√

1 − h2))n
)

.
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Take w and h such that w(1 −
√

1 − h2) ≤ 1
n . Then, H2

(

π⊗n
σ , π⊗n

σ′

)

≤ β = 2(1 − e−1) < 2 for any

integer n.

Let f̂n be a real-valued statistic. Consider the estimatorf̂∗
n with values in [−1, 1] defined by

f̂∗
n(x) = ψ(f̂n(x)), where ψ is given in (8). For any underlying probability measure π, we have

A(f̂n) − A∗ ≥ A(f̂∗
n) − A∗. Thus to obtain minimax lower bound it is enough to consider only

estimators taking values in [−1, 1].

Let f̂n be an estimator with values in [−1, 1] and σ ∈ Ω. Using the margin assumption MA(κ),

we have, conditionally to the observations Dn and under πσ:

A(f̂n) −A∗ ≥
(

cEπσ

[

|f̂n(X) − f∗(X)|
])κ

≥ (cw)κ





N−1
∑

j=1

|f̂n(xj) − σj |





κ

.

Taking here the expectations, we find Eπσ

[

A(f̂n) −A∗
]

≥ (cw)κ
Eπσ

[(

∑N−1
i=1 |f̂n(xi) − σi|

)κ]

.

Using Jensen’s inequality and Lemma 5, we obtain:

inf
f̂n

sup
π∈Pκ,f∗∈{fσ :σ∈Ω}

(

Eπσ

[

A(f̂n) −A∗
])

≥ (cw)κ

(

N − 1

4
(1 − β/2)2

)κ

.

Take now w = (nh2)−1, N = ⌈logM/ log 2⌉, h =
(

n−1⌈logM/ log 2⌉
)(κ−1)/(2κ−1)

. We can

establish that there exists f1, . . . , fM (the 2N−1 first ones are sign(2ησ−1) for σ ∈ Ω and any choice

for the M−2N−1 remaining ones) such that for any procedure f̄n, there exists a probability measure

π satisfying MA(κ), such that E

[

A(f̂n) −A∗
]

−(1+a)minj=1,...,M (A(fj)−A∗) ≥ C0

(

log M
n

)
κ

2κ−1

,

where C0 = cκ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1).

Moreover, according to Lemma 4, we have:

amin
f∈C

(A(f) −A∗) +
C0

2

(

logM

n

)
κ

2κ−1

≥ C1

√

(minf∈C A(f) −A∗)
1
κ logM

n
.

Thus,

E

[

A(f̂n) −A∗
]

≥ min
f∈C

(A(f) −A∗) +
C0

2

(

logM

n

)
κ

2κ−1

+ C1

√

(AC −A∗)
1
κ logM

n
.

For κ = 1, we take h = 1/2. Then |2ησ(X) − 1| ≥ 1/2 a.s. so πσ ∈MA(1). It suffices then to

take w = 4/n and N = ⌈logM/ log 2⌉ to obtain the result.

Proof of Corollary 1: The result follows from Theorems 1 and 2. In fact, for any prediction

rule f we have A(f)−A∗ = 2(R(f)−R∗) and from Zhang’s inequality A(f)−A∗ ≥ (R(f)−R∗) for

all f : X 7−→ R. Moreover, using Lemma 4, for all a > 0, we have aX + (1/a)1/(2κ−1)Y κ/(2κ−1) ≥√
X1/κA, where X = AC −A∗ and Y = logM/n.

Proof of Theorem 3: Denote by f̃n the ERM aggregate over F . Let ǫ > 0. Denote by Fǫ the

set {f ∈ F : R(f) > RF + 2ǫ} where RF = minf∈F R(f).

Let x > 0. If

sup
f∈Fǫ

R(f) −R∗ − (Rn(f) −Rn(f∗))

R(f) −R∗ + x
≤ ǫ

RF −R∗ + 2ǫ
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then, the same argument as in Theorem 1 yields Rn(f) − Rn(f∗) ≥ RF − R∗ + ǫ, for any f ∈ Fǫ.

So, we have:

P

[

inf
f∈Fǫ

Rn(f) −Rn(f∗) < RF −R∗ + ǫ

]

≤ P

[

sup
f∈Fǫ

R(f) −R∗ − (Rn(f) −Rn(f∗))

R(f) −R∗ + x
>

ǫ

RF −R∗ + 2ǫ+ x

]

.

We consider f ′ ∈ F such that minf∈F R(f) = R(f ′). If R(f̃n) > RF + 2ǫ then f̃n ∈ Fǫ, so there

exists g ∈ Fǫ such that Rn(g) ≤ Rn(f ′). Hence, using the same argument as in Theorem 1, we

obtain

P

[

R(f̃n) > RF + 2ǫ
]

≤ P

[

sup
f∈F

R(f) −R∗ − (Rn(f) −Rn(f∗))

R(f) −R∗ + x
≥ ǫ

RF −R∗ + 2ǫ+ x

]

+P [Rn(f ′) −Rn(f∗) > RF −R∗ + ǫ] .

Using the fact that for any f from X to {−1, 1} we have 2(R(f)−R∗) = A(f) −A∗, Lemma 1

and the same discussion as at the end of the proof of Theorem 1, we get the result.

Proof of Theorem 4. For all prediction rules f1, . . . , fM , we have

sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(

E

[

R(f̂n) −R∗
]

− (1 + a) min
j=1,...,M

(R(fj) −R∗)

)

≥ inf
f̂n

sup
π∈Pκ

f∗∈{f1,...,fM}

E

[

R(f̂n) −R∗
]

.

Consider the set of probability measures {πσ, σ ∈ Ω} introduced in the proof of Theorem 2. Assume

that κ > 1. Since for any σ ∈ Ω and any classifier f̂n, we have, by using MA(κ),

Eπσ

[

R(f̂n) −R∗
]

≥ (c0w)κ
Eπσ

[(

N−1
∑

i=1

|f̂n(xi) − σi|
)κ]

,

using Jensen’s inequality and Lemma (5) we obtain

inf
f̂n

sup
π∈Pκ,f∗∈{fσ :σ∈Ω}

(

Eπσ

[

R(f̂n) −R∗
])

≥ (c0w)κ

(

N − 1

4
(1 − β/2)2

)κ

.

By taking w = (nh2)−1, N = ⌈logM/ log 2⌉, h =
(

(n)−1⌈logM/ log 2⌉
)

κ−1
2κ−1 and α = (κ− 1)−1,

there exists f1, . . . , fM (the 2N−1 first ones are sign(2ησ − 1) for σ ∈ Ω and any choice for the

M − 2N−1 remaining ones) such that for any procedure f̄n, there exists a probability measure π

satisfying MA(κ), such that E

[

R(f̂n) −R∗
]

− (1 + a)minj=1,...,M (R(fj) −R∗) ≥ C0

(

log M
n

)
κ

2κ−1

,

where C0 = c0
κ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1).

Moreover, according to Lemma 4, we have:

amin
f∈C

(R(f) −R∗) +
C0

2

(

logM

n

)
κ

2κ−1

≥ C1

√

(minf∈C R(f) −R∗)
1
κ logM

n
.

The case κ = 1 is treated in the same way as in the proof of Theorem 2.
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Appendix

Lemma 1. Let F = {f1, . . . , fM} a finite class of functions from X to [−1, 1]. We assume that π

satisfies MA(κ), for a κ ≥ 1. We have for any positive numbers t, x and any integer n:

P

[

max
f∈F

A(f) −An(f) − (A(f∗) −An(f∗))

A(f) −A∗ + x
> t

]

≤M

((

1 +
8cx1/κ

n(tx)2

)

exp

(

−n(tx)2

8cx1/κ

)

+

(

1 +
16

3ntx

)

exp

(

−3ntx

16

))

,

where the constant c > 0 is the constant of MAH(κ).

Proof. We use a ”peeling device”. Let x > 0. For all integer j, we consider

Fj = {f ∈ F : jx ≤ A(f) −A∗ < (j + 1)x} .

Define the empirical process

Zx(f) =
A(f) −An(f) − (A(f∗) −An(f∗))

A(f) −A∗ + x
.

Using Bernstein’s inequality and Proposition 2 to upper bound the variance term, we have:

P

[

max
f∈F

Zx(f) > t

]

≤
+∞
∑

j=0

P

[

max
f∈Fj

Zx(f) > t

]

≤
+∞
∑

j=0

P

[

max
f∈Fj

A(f) −An(f) − (A(f∗) −An(f∗)) > t(j + 1)x

]

≤ M

+∞
∑

j=0

exp

(

− n[t(j + 1)x]2

4c((j + 1)x)1/κ + (8/3)t(j + 1)x

)

≤ M





+∞
∑

j=0

exp

(

−n(tx)2(j + 1)2−1/κ

8cx1/κ

)

+ exp

(

−(j + 1)
3ntx

16

)





≤ M

(

exp

(

−nt
2x2−1/κ

8c

)

+ exp

(

−3ntx

16

))

+M

∫ +∞

1

(

exp

(

−nt
2x2−1/κ

8c
X2−1/κ

)

+ exp

(

−3ntx

16
X

))

dX.

Lemma 2 leads to the result.

Lemma 2. Let α ≥ 1 and a, b > 0. An integration by part yields
∫ +∞

a

exp (−btα) dt ≤ exp(−baα)

αbaα−1

Lemma 3. Let b1, . . . , bM be M positive numbers and a1, . . . , aM some numbers. We have:
∑M

j=1 aj
∑M

j=1 bj
≤ max

j=1,...,M

(

aj

bj

)

.
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Lemma 4. For all positive v, t and all κ ≥ 1

t+ v ≥ v
2κ−1
2κ t

1
2κ .

Proof. Since log is concave, we have log(ab) = (1/x) log(ax)+(1/y) log(by) ≤ log (ax/x+ by/y)

for all positive numbers a, b and x, y such that 1/x + 1/y = 1, thus ab ≤ ax/x + by/y. Lemma 4

follows by applying this relation with a = t1/(2κ), x = 2κ and b = v(2κ−1)/(2κ).

We use the following version of Assouad’s lemma to establish the minimax lower bound.

Lemma 5. Let {Pω/ω ∈ Ω} a statistical experience on a measurable space (X ,A) indexed by the

cube Ω = {0, 1}m . Denote by Eω the expectation under Pω. Assume that:

∀ω, ω′ ∈ Ω/ρ(ω, ω′) = 1, H2(Pω, Pω′) ≤ α < 2,

then

inf
ŵ∈[0,1]m

max
ω∈Ω

Eω





m
∑

j=1

|ŵj − wj |



 ≥ m

4

(

1 − α

2

)2

.

Proof: Obviously, we can replace infŵ∈[0,1]m by (1/2) infŵ∈{0,1}m since for all w ∈ {0, 1} and

ŵ ∈ [0, 1] there exists w̃ ∈ {0, 1} (for instance the projection of ŵ on {0, 1}) such that |ŵ − w| ≥
(1/2)|w̃ − w|. Then, we use Theorem 2.10 p.103 of Tsybakov [2003].
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