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SINGULAR KÄHLER-EINSTEIN METRICS

PHILIPPE EYSSIDIEUX & VINCENT GUEDJ & AHMED ZERIAHI

Abstract. We study degenerate complex Monge-Ampère equations of
the form (ω + ddcϕ)n = etϕµ where ω is a big semi-Kähler form on a
compact Kähler manifold X of dimension n, t ∈ R+, and µ = fωn is
a positive measure with density f ∈ Lp(X,ωn), p > 1. We prove the
existence and unicity of continuous ω-plurisubharmonic solutions.

In case X is projective and ω = ψ∗ω′, where ψ : X → V is a proper
birational morphism to a normal projective variety, [ω′] ∈ NSR(V ) is
an ample class and µ has only algebraic singularities, we prove that the
solution is smooth in the regular locus of the equation.

We use these results to construct singular Kähler-Einstein metrics of
non-positive curvature on projective klt pairs, in particular on canonical
models of algebraic varieties of general type.

2000 Mathematics Subject Classification: 32W20, 32Q20, 32J27, 14J17.

Introduction

Thirty years ago, in a celebrated article [Y], S.T. Yau (and independently
T. Aubin [A]) solved the Calabi conjecture by studying complex Monge-
Ampère equations on a compact Kähler manifold.

Since then, complex Monge-Ampère equations have been extremely useful
in Kähler geometry (see for instance [DP]) and in the dynamical study of
rational mappings (see [S] and references therein).

Two major developments in the theory of complex Monge-Ampère equa-
tions occurred in the last decade. In the local theory, a deeper analysis of
the image of the complex Monge-Ampère operator [C], [K 1] has followed
the pioneering work of E.Bedford and A.Taylor [BT]. In the global theory
a new proof of the C0-estimate [K 1,2] has allowed one to treat complex
Monge-Ampère equations with more degenerate R.H.S.

In [GZ1], [GZ2], two of us revisited and extended the results of [BT],
[C], on complex Monge-Ampère operators to compact Kähler manifolds. In
the present article, we use these methods to study complex Monge-Ampère
equations with degenerate L.H.S. We first define, in the spirit of [C], [GZ 2],
weak solutions to degenerate complex Monge-Ampère equations and then
prove, using ideas of [K 1,2], that these solutions are continous:

Theorem A. Let X be a compact Kähler manifold, ω a semi positive (1,1)-
form such that

∫

X ω
n > 0 and 0 ≤ f ∈ Lp(X,ωn), p > 1, a density such

that
∫

X fω
n =

∫

X ω
n. Then there is a unique continuous function ϕ on X

such that ω + ddcϕ ≥ 0 and

(ω + ddcϕ)n = fωn with sup
X
ϕ = −1.

Furthermore f 7→ ϕ is a continuous map from Lp(X,ωn) to C0(X).
1
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When ω has algebraic singularities, then µ can be assumed to have Lp

density with respect to the Lebesgue measure. With this C0-estimate, it is
possible to adapt classical ideas of [Y] and [Ts] and prove:

Theorem B. Let X be projective algebraic complex manifold, ω a smooth
semi Kähler form that is Kähler outside a complex subvariety S ⊂ X. Let
Ω be a Kähler form on X. Assume furthermore that ωn = DΩn where D−ǫ

is in L1(Ωn) and that [ω], [Ω] ∈ NSR(X).
Let s1, ..., sp (resp. t1, ..., tq) be holomorphic sections of some line bundle.

(resp. of some other line bundle). Assume k, l ∈ R≥0 and F ∈ C∞(X,R)
are fixed so that

∫

X

1

|t1|2l + . . .+ |tq|2l
Ωn <∞ and

∫

X

|s1|2k + . . . + |sp|2k
|t1|2l + . . .+ |tq|2l

eFΩn =

∫

X
Ωn.

Then the unique continuous function ϕ such that ω + ddcϕ ≥ 0 and

(ω + ddcϕ)n =
|s1|2k + . . .+ |sp|2k
|t1|2l + . . .+ |tq|2l

eFΩn, with sup
X
ϕ = −1,

is smooth outside B = S ∪ ∩i{si = 0} ∪ ∩i{ti = 0}.
This result should be compared with [Y], Theorem 8, p. 403. Yau’s

result is stronger in many respects, most notably in the absence of any
projectivity/rationality assumption and a more precise regularity theory. On
the other hand, the condition on the poles of the L.H.S. is less optimal than
here. We expect the projectivity/rationality assumptions to be superfluous.

Observe that the condition on the singularity in the L.H.S. is precisely the
condition that the singular metric associated to l(ti) has a trivial multiplier
ideal sheaf, or if q = 1 that the pair (X, l(t1)) is klt (see definition 6.7).
The possibility of solving complex Monge-Ampère equations with Lp-R.H.S.
was first established by S.Kolodziej [K 1,2], and the connection with the
singularities of the Minimal Model Program (MMP for short) has been a
strong incentive to our work.

¿From an algebraic geometer’s perspective, these results may be viewed
as a version of [Y] for normal Kähler spaces.

As a by-product, S.T.Yau constructed Kähler-Einstein metrics on smooth
canonically polarized manifolds and Ricci-flat metrics on what is now known
as Calabi-Yau manifolds. It had been soon realized [Ko] that this also yields
Kähler-Einstein metrics on Kähler orbifolds hence on the canonical models
of surfaces of general type since they have isolated quotient singularities.

In higher dimension, in spite of the development of the MMP during the
1980s – culminating with [Mo] and the proof of the existence of canonical
models for general type 3-folds [Ka] –, there was no satisfying analog of
these Kähler-Einstein metrics.

For smooth minimal general type projective manifolds, H.Tsuji proved
[Ts] that an appropriate Kähler-Ricci flow starting with an arbitrary Kähler
datum exists in infinite time, converges towards a current representing the
canonical class which is smooth outside the exceptional locus of the map
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to the canonical model, and defines a Kähler-Einstein metric there 1. The
conjecture made there that the current has continuous (or even bounded)
local potentials partly motivated our work.

The article [Ts] has been revisited in two recent preprints, [CN] and [TZ],
we learnt of when finishing the present work, where a very satisfactory proof
of convergence towards a current with bounded potentials is given. The
independent work [TZ] uses a slightly weaker version of Theorem A and does
not give any detail on the proof. On the other hand, the three approaches
tend to emphasize different aspects of the problem and seem to complement
each other nicely.

In this article we give a more general theory of singular Kähler-Einstein
metrics as a consequence of the following result:

Theorem C. Let (V,∆) be a projective klt pair such that KV +∆ is an ample
Q-divisor. Then there is a unique semi-Kähler current in [KV +∆] with con-
tinuous potentials, which satisfies a global degenerate Monge-Ampère equa-
tion on V and defines a smooth Kähler-Einstein metric of negative curvature
on (V − ∆)reg.

Let (V,∆) be a projective klt pair such that KV + ∆ ∼= 0 (Q-linear equiv-
alence of Q-Cartier divisors). Then in every ample class in NSR(V ) there
is a unique semi-Kähler current with continuous potentials, which satisfies
a global degenerate Monge-Ampère equation on V and defines a Ricci flat
metric on (V − ∆)reg.

The precise formulation and Monge-Ampère equations are to be found in
Theorems 7.5 and 7.8 below.

Corollary D. Let X be a projective threefold of general type and V = Xcan

the unique model of X with only canonical singularities and KV ample.
Then KV contains a unique singular Kähler-Einstein metric ωKE of negative
curvature.

Note that we do not assume the singularities to be quotient singularities
nor that X has a smooth minimal model (a strong restriction present in
[Ts], [TZ], [CN]). On the other hand if π : X → Xcan is a resolution of
singularities then [π∗ωKE] ∼= KX + F where F ≥ 0 and = 0 iff π is crepant
and X is a smooth minimal model. If the MMP is confirmed to work in
higher dimension, then Corollary D extends there as well. In dimension 4,
the MMP seems to work [Sho] but few people claim they understand this
deep work in its manifold aspects. There is an active scientific project led by
A.Corti aiming at making Shokurov’s work more accessible [Cor]. In higher
dimension, substantial progress has been recently announced in [HMcK],
Shokurov’s ideas being a major ingredient.

One may also try and construct these singular KE metrics uncondition-
nally in an approach to the finiteness of the canonical ring [Siu 2]. Needless
to say, it is a substantially harder task.

1Although his idea was rather compelling, the details of the proof for convergence were
somewhat hard to follow.
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Notations and organization of the paper

In the whole paper,X will denote a compact Kähler manifold of dimension
n, ω a smooth closed form of bidegree (1, 1) which is non-negative and big,
i.e. the smooth measure ωn is not identical to zero. For convenience we
normalize ω so that

V olω(X) :=

∫

X
ωn = 1.

V will denote a normal complex space. A resolution of V will be a pro-
jective bimeromorphic holomorphic morphism π : X → V , X being smooth,
such that π : π−1(V reg) → V reg is an isomorphism. A resolution π is a
log-resolution iff π−1(V sing) is a divisor with simple normal crossings. As-
sume we have a coherent ideal sheaf I ⊂ OV . A log resolution of (V,I)
is a projective bimeromorphic holomorphic morphism π : X → V X being
smooth, such that π : π−1(V − Z(I))reg) → (V − Z(I))reg is an isomor-
phism with the additional property that the ideal sheaf π−1I.OX

2 satisfies
π−1I.OX = OX(−∑ γEE) ⊂ OX where γE ∈ N is a positive integer at-
tached to any exceptional divisor E of π.

A pair is a pair (V,∆) with V a normal complex space and ∆ a Q-Weil
divisor ∆ =

∑

i diEi where 0 ≤ di ≤ 1 are rational numbers and (Ei)i is a
finite family of pairwise distinct irreducible codimension 1 subvarieties of V .
A log resolution of a pair is a log resolution of the ideal IN∆ where N is an
integer such that Ndi ∈ N. 3

All these flavors of log-resolutions exist by [Hi] if the variety (resp. pair)
under consideration is open in (resp. a restriction to an open subset of) a
compact variety (pair).

The paper is organized as follows. In section 1 we define, following [GZ
2], the set E1(X,ω) of ω-psh functions with finite self-energy, and produce
weak solutions to complex Monge-Ampère equations (ω + ddcϕ)n = µ in
the class E1(X,ω) (see proposition 1.4). This is our first basic observation:
weak solutions are easy to produce in E1(X,ω).

The continuity of the solutions is established in section 2 (see Theorem
2.1), by using ideas from [K 1,2,3] and [GZ 1]. This, together with propo-
sitions 3.1 and 3.3, yields Theorem A. We actually expect the solutions to
be Hölder-continuous, as Theorem 3.5 indicates. We indeed establish fur-
ther regularity results in section 3, especially Theorem 3.6, by using ideas
of [Y],[Ts]. This yields Theorem B.

In section 4 we solve Monge-Ampère equations of the type (ω+ ddcϕ)n =
etϕµ, t > 0 (see Theorems 4.1, 4.4) by a fixed point method. Here again the
use of class E1(X,ω) makes life easier, and allows us to reduce our analysis
to previously studied Monge-Ampère equations (ω + ddcϕ)n = µ′.

2π−1I.OX is locallly the ideal sheaf of OX generated by the family of holomorphic
functions (π∗fI)I , where (fI)I are local generators of I. The set Z(I) is the analytic
subvariety defined by I.

3The MMP is conjectured to work for pairs. This seemingly technical extension of the
MMP is known as log-MMP. log-MMP works in dimension ≤ 3. The philosophy of the
log-MMP is to define the canonical divisor of a pair to be K(V,∆) := KV + ∆ and to try

and prove the same theorems for pairs and for varieties.
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In section 5 we recall some basic facts on some of the singularities encoun-
tered in the MMP, and in section 6 we explain what sort of measures µ we
need to consider in order to produce Kähler-Einstein metrics. An important
observation is lemma 6.4, which shows that it is necessary to restrict to the
case of log terminal singularities (see definition 5.3).

Finally in section 7 we show how our results from sections 2,3,4 allow us
to produce singular Kähler-Einstein metrics (see Theorems 7.5, 7.8, 7.12).
This is where we prove Theorem C.

1. Weak solutions to Monge-Ampère equations

For any Kähler form Ω on X and for all ε > 0, the form ωε := ω + εΩ is
again Kähler on X. We are going to extend several results that are known
to hold true when ω is Kähler to the more general setting of semi-positive
and big forms.

Recall that the set of ω-plurisubharmonic functions (ω-psh for short) is

PSH(X,ω) := {ϕ ∈ L1(X,R ∪ {−∞}) / ddcϕ ≥ −ω and ϕ is u.s.c.}.
We refer the reader to [GZ 1] for basic properties of ω-psh functions. The
following subclass has been extensively studied in [GZ 2]:

Definition 1.1. We let E1(X,ω) denote the set of ω-psh functions with
finite self-energy: this is the set of functions ϕ ∈ PSH(X,ω) for which
there exists a sequence ϕj ∈ PSH(X,ω) ∩ L∞(X) such that

ϕj ց ϕ and sup
j

∫

X
(−ϕj)(ω + ddcϕj)

n < +∞.

This class of functions is studied in [GZ 2] when ω is a Kähler form.
We leave it to the reader to check that the basic properties of this class of
functions proved in [GZ 2] when ω is Kähler apply with no modification to
the case where ω is merely semi-positive and big. In particular the complex
Monge-Ampère operator (ω + ddcϕ)n is well-defined for ϕ ∈ E1(X,ω), and
it is continuous on decreasing sequences of functions in E1(X,ω).

We shall need a slightly more general continuity result, which takes into
account the dependence in ω:

Proposition 1.2. Fix Ω a Kähler form on X, and let (εj) be a sequence
of positive real numbers decreasing to zero. Let ϕj ∈ E1(X,ω + εjΩ) be a
sequence of functions which decrease pointwise towards ϕ, and such that

sup
j≥1

∫

X
|ϕj |(ω + εjΩ + ddcϕj)

n < +∞.

Then ϕ ∈ E1(X,ω), and (ω + εjΩ + ddcϕj)
n → (ω + ddcϕ)n.

Proof. Set ωj := ω + εjΩ. We can assume w.l.o.g. that ϕj ≤ ϕ ≤ 0. Set

ϕK := max(ϕ,−K) ∈ PSH(X,ω) and ϕKj := max(ϕj ,−K) ∈ PSH(X,ωj).

Observe that, K being fixed, (ϕKj )j is uniformly bounded and decreases to-

wards ϕK as j goes to infinity. Therefore (ωj + ddcϕKj )n → (ω + ddcϕK)n,
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by a classical result of E.Bedford and A.Taylor [BT 82]. Moreover the se-
quence of positive measures (−ϕKj )(ωj + ddcϕKj )n has uniformly bounded

mass, since by lemma 7.2 in [GZ 2],

0 ≤
∫

X
(−ϕKj )(ωj + ddcϕKj )n ≤ 2n

∫

X
(−ϕj)(ωj + ddcϕj)

n ≤ 2nM,

where M := supj
∫

X(−ϕj)(ωj + ddcϕj)
n < +∞.

Since ϕj is u.s.c., a standard argument yields that any cluster point ν of

the sequence (−ϕKj )(ωj + ddcϕKj )n satisfies 0 ≤ (−ϕK)(ω + ddcϕK)n ≤ ν.
In particular

0 ≤
∫

X
(−ϕK)(ω + ddcϕK)n ≤ lim inf

j→+∞

∫

(−ϕKj )(ωj + ddcϕKj )n ≤ 2nM

is bounded from above uniformly with respect to K. Since ϕK decreases
towards ϕ, this shows ϕ ∈ E1(X,ω).

It remains to show that (ωj + ddcϕj)
n → (ω + ddcϕ)n. Since (ωj +

ddcϕKj )n → (ω + ddcϕK)n for any fixed K, it is enough to get an upper

bound on the mass of (ωj + ddcϕKj )n in (ϕj ≤ −K) which is uniform in j.
This follows from Chebyshev inequality, namely

∫

(ϕj≤−K)
(ωj + ddcϕj)

n ≤ 1

K

∫

X
(−ϕj)(ωj + ddcϕj)

n ≤ M

K
.

This yields the desired result. �

The Monge-Ampère capacity Capω(·) has been studied in [GZ 1],

Capω(K) := sup

{
∫

K
ωnu /u ∈ PSH(X,ω), 0 ≤ u ≤ 1

}

,

where K is a Borel subset of X. Here – and in the sequel – we use the
notation ωu := ω + ddcu ≥ 0. In this article we are interested in measures
which are dominated by the Monge-Ampère capacity in the following way:

Definition 1.3. A probability measure µ on X satisfies condition H(α,A, ω)
if for all Borel subset K of X,

µ(K) ≤ ACapω(K)1+α.

It has been shown by S.Kolodziej that when ω is Kähler, a probability
measure µ which satisfies H(α,A, ω) can be written as the Monge-Ampère
measure of some continuous ω-psh function. This is still true when ω is
merely semi-positive and big, and the proof will occupy us until the end of
section 2. We start by observing – following [GZ 2] – that µ is the Monge-
Ampère of a function ϕ which is not too singular.

Proposition 1.4. Let µ be a probability measure on X which satisfies con-
dition H(α,A, ω). Then there exists a unique function ϕ ∈ E1(X,ω) s.t.

µ = (ω + ddcϕ)n and sup
X
ϕ = −1.

Proof. Fix Ω a Kähler form on X, and set ωj := ω + εjΩ, where εj > 0
decreases to 0. We start by showing that E1(X,ωj) ⊂ L1(µ).
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Fix ϕ ∈ E1(X,ωj). We can assume without loss of generality that supX ϕ =
−1. It follows from propositions 3.6 and 2.7 in [GZ 1] that there exists a
constant C = C(ω,Ω) > 0 independent of j such that Capωj(ϕ < −t) ≤ C/t
for all t > 0. Since Capω(·) ≤ Capωj(·), the measure µ satisfies H(α,A, ωj).
We infer

(1) 0 ≤
∫

X
(−ϕ)dµ =

∫ +∞

t=1
µ(ϕ < −t)dt ≤ AC1+α

α
< +∞,

with an upper-bound which is independent of j.
The main result in [GZ 2] guarantees in this case that there exists a unique

function ϕj ∈ E1(X,ωj) such that

(ωj + ddcϕj)
n = λjµ and sup

X
ϕj = −1,

where λj =
∫

X(ω + εjΩ)n > 1 decreases to 1 as j goes to infinity.
The normalization supX ϕj = −1 implies that the sequence (ϕj) is rela-

tively compact in L1(X) (see proposition 2.7 in [GZ 1]). Let ϕ be a cluster
point of (ϕj). Relabelling if neccessary, we assume ϕj → ϕ in L1(X). Note
that ϕ ∈ PSH(X,ω) and supX ϕ = −1 (by Hartogs’ lemma, see proposition
2.7, [GZ 1]). We are going to show that ϕ ∈ E1(X,ω) and ωnϕ = µ.

Set Φj := (supl≥j ϕl)
∗, where u∗ denotes the upper-semi-continuous regu-

larization of u. Then Φj ∈ PSH(X,ωj) with Φj ≥ ϕj , hence Φj ∈ E1(X,ωj)
(see proposition 3.2 in [GZ 2]), and Φj decreases towards ϕ. For l ≥ j, we
have

(ωj + ddcϕl)
n ≥ (ωl + ddcϕl)

n = λlµ ≥ µ.

It follows therefore from an inequality due to J.-P.Demailly [Dem 1] that
(ωj + ddcΦj)

n ≥ µ. Now by (1) and lemma 7.2 in [GZ 2],

0 ≤
∫

X
(−Φj)(ωj + ddcΦj)

n ≤ 2n
∫

X
(−ϕj)(ωj + ddcϕj)

n = 2nλj

∫

X
(−ϕj)dµ,

is uniformly bounded with respect to j thanks to (1).
We infer from proposition 1.2 that ϕ ∈ E1(X,ω) and (ωj + ddcΦj)

n →
(ω+ddcϕ)n. Thus (ω+ddcϕ)n ≥ µ, but these are two probability measures,
whence µ = (ω + ddcϕ)n. The uniqueness of ϕ follows from Theorem 7.4,
[GZ 2]. �

Remark 1.5. It follows from the work of S.Kolodziej [K 1,2,3] that the
ϕj ’s are actually continuous functions. Proving however that ϕ = limϕj is
continuous is a difficult task and is the goal of the next section.

2. Continuous solutions

The goal of this section is to prove the following result:

Theorem 2.1. Let µ be a probability measure on X which satisfies condition
H(α,A, ω). Then there exists a unique continuous function ϕ ∈ PSH(X,ω)
such that

µ = (ω + ddcϕ)n and sup
X
ϕ = −1.

Moreover ||ϕ||L∞(X) ≤ C, where C only depends on α,A and ω.
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It follows from proposition 1.4 that we already know the existence of a
unique solution ϕ ∈ E1(X,ω) to this Monge-Ampère equation. We need to
show it is continuous. The following result is the key to everything to follow.

Lemma 2.2. Let ϕ,ψ ∈ E1(X,ω) be two negative functions. Then for all
s > 0 and 0 ≤ t ≤ 1,

tnCapω(ϕ− ψ < −s− t) ≤
∫

(ϕ−ψ<−s−tψ)
ωnϕ.

Proof. Fix u ∈ PSH(X,ω) with 0 ≤ u ≤ 1. For δ > 0 we set t = δ/(1 + δ).
Observe that 0 ≤ t ≤ 1 and

{ϕ − ψ < −s− t} ⊂ {ϕ < ψ + δu

1 + δ
− s− t} ⊂ {ϕ− ψ < −s− tψ}.

Set ϕ̃ := (ψ + δu)/(1 + δ) − s− t ∈ PSH(X,ω). Observe that

tn
∫

(ϕ−ψ<−s−t)
ωnu ≤

∫

(ϕ−ψ<−s−t)

[

1

1 + δ
ωψ +

δ

1 + δ
ωu

]n

≤
∫

(ϕ<ϕ̃)
[ω+ddcϕ̃]n.

It follows from the comparison principle in class E1(X,ω), that
∫

(ϕ<ϕ̃)
[ω + ddcϕ̃]n ≤

∫

(ϕ<ϕ̃)
[ω + ddcϕ]n ≤

∫

(ϕ−ψ<−s−tψ)
[ω + ddcϕ]n.

Taking the supremum over all u’s yields the desired result. �

We will also need the following elementary observation:

Lemma 2.3. Let f : R+ → R+ be a decreasing right-continuous function
such that lim+∞ f = 0. Assume there exists α,B > 0 such that f satisfies

H(α,B) tf(s+ t) ≤ B[f(s)]1+α, ∀s > 0, ∀0 ≤ t ≤ 1.

Then there exists S∞ = S∞(α,B) ∈ R+ such that f(s) = 0 for all s ≥ S∞.

Proof. Fix s0 > 0 large enough so that f(s0)
α < 1/2B. We define a sequence

(sj) ∈ RN
+ by induction in the following way. If f(s0) = 0 we stop here,

otherwise we set

s1 := sup

{

s > s0 / f(s) >
1

2
f(s0)

}

.

Observe that s1 ≤ 1 + s0 thanks to H(α,B) and by definition of s0.
Since f is right-continuous we get f(s1) ≤ f(s0)/2. If f(s1) = 0 we stop

here, otherwise we go on by induction, setting

sj+1 := sup

{

s > sj / f(s) >
1

2
f(sj)

}

.

At each step f(sj+1) ≤ f(sj)/2 and sj+1 ≤ 1+sj . However the sequence (sj)
does not grow too fast. It follows indeed from H(α,B) that if s ∈]sj, sj+1[,

(s− sj)f(s) ≤ Bf(sj)
1+α ≤ 2Bf(s)f(sj)

α,

since f(sj)/2 ≤ f(s) ≤ f(sj) on the interval [sj, sj+1]. We infer

sj+1 − sj ≤ 2Bf(sj)
α ≤ 2B2−jαf(s0)

α ≤ 2−jα.
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Thus the sequence (sj) is bounded from above, with limit

S∞ = s0 +
∑

j≥0

(sj+1 − sj) ≤ s0 +
2Bf(s0)

α

1 − 2−α
≤ s0 +

1

1 − 2−α
.

�

Remarks 2.4. Observe that the starting time s0(f, α,B) is invariant under
dilatation f 7→ λf , which transforms B into B/λα. Note also that if f(0)α <
1/2B, then we can take s0 = 0, hence we get in this case

S∞ ≤ 2B

1 − 2−α
[f(0)]α.

To see how previous lemmas can be used, we first prove that the unique
solution ϕ ∈ E1(X,ω) given by proposition 1.4 is bounded.

A uniform bound on the solution. Let ϕ ∈ E1(X,ω) be the unique function
such that µ = (ω + ddcϕ)n and supX ϕ = −1. Set

f(s) := [Capω(ϕ < −s)]1/n.
Observe that f : R+ → R+ is a right-continuous decreasing function with
lim+∞ f = 0. Since µ = ωnϕ satisfies H(α,A, ω), it follows from lemma 2.2

applied to the function ψ ≡ 0 that f satisfies H(α,B) with B = A1/n.
It follows from propositions 2.7 and 3.6 in [GZ 1] that f(s) ≤ C1/s

1/n for
some constant C1 which only depends on ω. We can thus take a starting
time s0 = 2n/αCn1A

1/α (see the proof of lemma 2.3) and get f(s) = 0 for
s ≥ S∞ := s0 + (1 − 2−α)−1: this shows that the sets (ϕ < −s) are empty
if s ≥ S∞, hence

(2) ||ϕ||L∞(X) ≤ 2n/αCn1A
1/α +

1

1 − 2−α
.

We are now going to use a refinement of the previous reasoning in order
to show that ϕ is actually continuous.

Proposition 2.5. Let ϕ,ψ ∈ E1(X,ω) be two negative functions and fix
ε > 0. Assume ωnϕ = µ satisfies H(α,A, ω) and ψ is bounded. There exists
C = C(α,A, ω, ||ψ||L∞(X)) > 0 such that

sup
X

(ψ − ϕ) ≤ ε+ C [Capω(ϕ− ψ < −ε)]α/n .

This inequality can be interpreted as follows. Assume ψ is also a solution
to a Monge-Ampère equation ωnψ = µ′, where µ′ also satisfies H(α,A, ω).
Then we can interchange the roles of ϕ and ψ and get an upper-bound on
||ϕ − ψ||L∞(X). The proposition then tells us that if ϕ and ψ are close in

capacity, they are close in C0-norm.

Proof. Set M := ||ψ||L∞(X). Observe that when t ≥ 0, (ϕ−ψ < −s− tψ) ⊂
(ϕ − ψ < −s + tM), hence it follows from lemma 2.2 that for all s > 0,
0 ≤ t ≤ 1,

(3) tnCapω(ϕ− ψ < −s− t) ≤ (1 +M)n
∫

(ϕ−ψ<−s)
ωnϕ,
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using the obvious substitutions s 7→ s −Mt, t 7→ (1 +M)t. Since µ = ωnϕ
satisfies H(α,A, ω), we infer

tnCapω(ϕ− ψ < −s− t) ≤ A(1 +M)nCapω(ϕ− ψ < −s)1+α.
Consider

f(s) := [Capω(ϕ− ψ < −s− ε)]1/n , s > 0.

Then f satisfies the condition H(α,B) of lemma 2.3 with B = (1+M)A1/n.

Assume f(0) = [Capω(ϕ− ψ < −ε)]1/n < 1
(2B)1/α

. It follows in this case

from Remarks 2.4 that f(s) = 0 for s ≥ S∞, where

S∞ ≤ 2B

1 − 2−α
[Capω(ϕ− ψ < −ε)]α/n

Therefore the sets {ϕ − ψ < −s− ε} are empty for s > S∞, hence

sup
X

(ψ − ϕ) ≤ ε+ S∞ ≤ ε+
2(1 +M)A1/n

1 − 2−α
[Capω(ϕ− ψ < −ε)]α/n .

Thus we can take here C ≥ 2B/(1 − 2−α).

If f(0) = [Capω(ϕ− ψ < −ε)]1/n ≥ (2B)−1/α, then

sup
X

(ψ − ϕ) ≤ − inf
X
ϕ ≤ C2(α,A, ω),

by (2), hence it suffices to take C ≥ 2BC2 to conclude. �

.
Proof of theorem 2.1 Let ϕ ∈ E1(X,ω) be the unique solution to the normal-
ized Monge-Ampère equation µ = (ω+ddcϕ)n, supX ϕ = −1 (see proposition
1.4). It follows from (2) that ϕ is bounded.

Since ω is semi-positive and big, it follows from a result of J.P.Demailly
(see [BK] for an elementary proof) that one can approximate any ω-psh
function by a decreasing sequence of smooth ω-psh functions. Let ϕj be
such an approximating sequence for ϕ. Since supX ϕ = −1, we can assume
ϕj ≤ 0. Since ϕ is bounded and ϕj ≥ ϕ, the functions ϕj are uniformly
bounded on X.

Observe that ϕj converges towards ϕ in capacity (see proposition 3.7 in
[GZ 1]), hence limCapω(ϕ−ϕj < −ε) = 0, for all ε > 0. It follows therefore
from proposition 2.5 (applied with ψ = ϕj) that for all ε > 0,

lim
j→+∞

||ϕ− ϕj ||L∞(X) = lim
j→+∞

sup
X

(ϕj − ϕ) ≤ ε.

Thus (ϕj) converges uniformly towards ϕ, hence ϕ is continuous. �

3. More regularity

3.1. Measures with density. We now turn to the study of the complex
Monge-Ampère equation

(ω + ddcϕ)n = µ, when µ = fωn

is a measure with density 0 ≤ f ∈ Lp(ωn), p > 1.
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Proposition 3.1. Assume µ = fωn is a probability measure with density
0 ≤ f ∈ Lp(X), for some p > 1. Then for any α > 0, there exists Aα > 0
such that µ satisfies H(α,Aα, ω).

Proof. It is enough to establish H(α,Aα, ω) for compact subsets, by regu-
larity of µ and Capω. Let K be a compact subset of X. It follows from
Hölder’s inequality that

0 ≤ µ(K) ≤ ||f ||Lp(ωn) [Volω(K)]1/q ,

where 1/p + 1/q = 1. Note that ||f ||Lp(ωn) = 1 since we assume µ is a
probability measure. We claim that

(4) Volω(K) ≤ Cω exp
[

−(Capω(K))−γω/n
]

,

for some constants Cω, γω > 0 that only depend on ω. We will be done if
we can prove (4) since we can then check by elementary computations that
exp(−x−δ) is dominated from above by Aαx

α, for all x ∈ [0, 1].
The set of functions F0 := {ϕ ∈ PSH(X,ω) / supX ϕ = 0} is compact in

L1(X) (see proposition 2.7, [GZ 1]). These functions have Lelong numbers
ν(ϕ, x) ≤ νω bounded from above by a uniform constant. It follows therefore
from Skoda’s uniform integrability theorem [Z], that

sup
ϕ∈F0

∫

exp

[

− 2ϕ

νω + 1

]

ωn ≤ C2 < +∞.

Set γω := 2/(νω + 1) > 0 and let

V ∗
K,ω(x) := (sup{ϕ(x) /ϕ ∈ PSH(X,ω), ϕ ≤ 0 on K})∗

denote the Siciak extremal function of K (see section 5.1 in [GZ 1]). Then

V olω(K) ≤
∫

X
exp

(

−γωV ∗
K,ω

)

ωn ≤ C2Tω(K)γω ,

where Tω(K) := exp(− supX V
∗
K,ω) denote the Alexander capacity of K (see

section 5.2 in [GZ 2]). It follows now from theorem 7.1 in [GZ 1] that

Tω(K) ≤ e exp
[

−Capω(K)−1/n
]

,

which yields (4). �

It follows therefore from theorem 2.1 that there exists a unique continuous
function ϕ ∈ PSH(X,ω) such that

µ = fωn = (ω + ddcϕ)n, with sup
X
ϕ = −1,

when 0 ≤ f ∈ Lp(ωn), p > 1, with
∫

X fω
n = 1.

Actually we will be interested in measures with Lp-density with respect
to a positive definite volume form dλ, while the smooth measure ωn may
vanish along a divisor. This does not make much difference, as follows from
Hölder’s inequality:

Lemma 3.2. Let V be a n-dimensional compact normal Kähler space and
Ω be a smooth Kähler form on V . Let π : X → V a resolution, ω = π∗Ω,
and let dλ be a positive definite smooth volume form on X.
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If µ = f1dλ, with f1 ∈ Lp(X, dλ) for some p > 1, then there exists p′ > 1

such that µ = fωn and f ∈ Lp
′

(X,ωn).

Proof. Observe that ωn = Edλ for some smooth density E ≥ 0 which van-
ishes along the exceptional divisor of π, thus

µ = f1dλ = fωn, where f = f1/E.

Fix local coordinates (zi)1≤i≤n on a polydisk D ⊂ X and a local em-

bedding F : V → Cm. Note that E is comparable to | ∂F
∂z1

∧ . . . ∧ ∂F
∂z1

|2 ≃
∑r

i=1 |fi|2, fi being holomorphic on D. Therefore E ∈ L∞
loc(D) and E−α ∈

L1
loc(D, dλ) for some 0 < α < 1.

Choose 0 < α′ < α such that 1
p + 1

α = 1
α′ . Then fα

′

= fα
′

1 E−α′

is the

product of a function in Lp/α
′

(dλ) and a function in Lα/α
′

(dλ), hence it
is in L1

loc(D, dλ) by Hölder’s inequality. A second application of Hölder’s
inequality yields

∫

D

f1+εωn =

∫

D

f ǫf1dλ ≤
(
∫

D

f ǫqdλ

)1/q (∫

D

fp1dλ

)1/p

< +∞,

where q denotes the conjugate exponent to p. This shows that f ∈ Lp
′

(ωn)
if p′ = 1 + ε > 1 is chosen so small that εq < α′. �

3.2. Hölder continuity.

Proposition 3.3. Assume ωnϕ = fωn, ωψ = gωn, where ϕ,ψ ∈ PSH(X,ω)
are continuous and f, g ∈ Lp(ωn), p > 1. Then for all 0 < γ < 2/(2 + nq),

||ϕ − ψ||L∞(X) ≤ C||ϕ− ψ||γ
L2(ωn)

,

where q = p/(p− 1) denotes the conjugate exponent to p.

Proof. Fix ε > 0 and α > 0 to be chosen later. It follows from (2) and
propositions 2.5, 3.1 that

||ϕ − ψ||L∞(X) ≤ ε+ C1 [Capω(|ϕ− ψ| > ε)]α/n .

Applying the refined version of lemma 2.2 which involves the uniform bound
on ||ϕ||L∞(X), ||ψ||L∞(X) (see inequality (3)), we obtain

Capω(|ϕ− ψ| > ε) ≤ C2

εn+2/q

∫

X
|ϕ− ψ|2/q(f + g)ωn.

It follows thus from Hölder’s inequality that

Capω(|ϕ− ψ| > ε) ≤ C3||f + g||Lp
εn+2/q

[

||ϕ − ψ||L2(ωn)

]2/q
.

Choose now ε := ||ϕ − ψ||ωL2 where 0 < γ < 2/(2 + nq). Then

Capω(|ϕ− ψ| > ε) ≤ C4 [||ϕ − ψ||L2 ]2/q−γ(n+2/q) .

We infer

||ϕ−ψ||L∞(X) ≤ ||ϕ−ψ||γ
L2+C5||ϕ−ψ||γ

′

L2 , where γ′ =
α

n
[2/q − γ(n+ 2/q)] .

We finally choose α > 0 so large that γ ≤ γ′ and adjust the value of the
constant C: this yields the desired estimate. �
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Being able to control the L∞-norm of ϕ−ψ by its L2-norm is a powerful
tool. If for instance ψ = ϕj , ϕ satisfy the assumptions of proposition 3.2
– with ϕj being uniformly bounded –, and ϕj → ϕ in L1, then ϕj → ϕ in
L2(ωn), hence (ϕj) actually uniformly converges towards ϕ. This yields the
continuity of the map

f ∈ Lp(ωn) 7→ ϕ ∈ C0(X),

where ϕ is the unique ω-psh solution to (ω + ddcϕ)n = fωn, supX ϕ = −1.
Thus Theorem A is proved.

We now give an application of this estimate, which is new even when the
form ω is Kähler, but requires the manifold X to be homogeneous, i.e. such
that its group of holomorphic automorphisms acts transitively on it.4.

Theorem 3.4. Assume X is a homogeneous manifold. If µ = fωn is a
probability measure with density 0 ≤ f ∈ Lp(ωn), p > 1, then the unique so-
lution ϕ ∈ PSH(X,ω) ∈ C0(X) to the normalized Monge-Ampère equation

(ω + ddcϕ)n = µ = fωn, sup
X
ϕ = −1,

is Hölder continuous of exponent γ > 0, for all γ < 2/(2 + nq), where
q = p/(p− 1) is the conjugate exponent to p.

Proof. When Aut(X), the group of holomorphic automorphisms of X, acts
transitively on X, one can regularize ω-psh functions by averaging over the
Haar measure of the connected component of the identity of Aut(X). This
is very similar to the way one regularizes psh functions in Cn by using con-
volutions with an approximation of the identity for the convolution product.
We refer the reader to [Hu] and the Appendix of [G] for more details.

Let ϕh be the ω-psh function which is the translate of ϕ by an auto-
morphism which is at distance h from identity. We use the notation ϕh by
analogy with the Cn-situation, where ϕh(x) = ϕ(x+h). Since ϕ is bounded,
it has gradient in L2, hence

||ϕh − ϕ||L2 ≤ C|h|,
by using Cauchy-Schwarz inequality in a local chart. We can thus apply
proposition 3.2 to obtain that

||ϕh − ϕ||L∞ ≤ C ′|h|γ ,
for all γ < 2/(2+nq). Since ϕh(x) ≃ ϕ(x+h) in a local chart, this precisely
means that ϕ is Hölder-continuous of exponent γ. �

3.3. Regularity on the smooth locus.

Theorem 3.5. Let X be projective algebraic complex manifold, ω0 a smooth
semi Kähler form that is Kähler outside a complex subvariety S ⊂ X, and
fix Ω be a Kähler form on X. Assume that ωno = DΩn, where D−ε is in
L1(Ωn), and that [ω0], [Ω] ∈ NSR(X).

4In particular, the cohomology class of ω is Kähler and ω itself can be supposed to be
Kähler without loss of generality.
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Let s1, ..., sp (resp. t1, ..., tq) be holomorphic sections of some line bundle
L (resp L′) on X. Fix k ∈ R≥0, l ∈ R≥0 and F ∈ C∞(X,R). Assume that
∫

X

1

|t1|2l + . . .+ |tq|2l
Ωn <∞ and

∫

X

|s1|2k + . . . + |sp|2k
|t1|2l + . . .+ |tq|2l

eFΩn =

∫

X
Ωn.

Then the unique continuous function ϕ ∈ PSH(X,ω0) such that

(ω0 + ddcϕ)n =
|s1|2k + . . .+ |sp|2k
|t1|2l + . . . + |tq|2l

eFΩn and sup
X
ϕ = −1

is smooth outside B = S ∪ ∩i{si = 0} ∪ ∩i{ti = 0}.
Remark 3.6. This result should be compared with [Y], Theorem 8. Yau’s
result is stronger in many respects (there is no projectivity/rationality as-
sumption and it gives a more precise regularity theory); on the other hand
the conditions on the poles of the L.H.S. is less optimal than here.

We expect the projectivity/rationality assumptions to be superfluous. We
also expect that a finer regularity theory might be developed for singular KE
metrics depending on a finer analysis of the klt singularities involved.

The rest of this subsection will be devoted to the proof of Theorem 3.5.
For the reader’s convenience, we will treat two special cases before tackling
the general case 5

Preliminary considerations. Thanks to Lemma 3.2 – here we use that D−ε ∈
L1 – and Theorem 2.1, for every t ∈ [0, 1] there is a unique continuous
function ϕt ∈ PSH(X,ω0 + tΩ) such that

(ωo + tΩ + ddcϕt)
n = Ct

|s1|2k + . . .+ |sp|2k
|t1|2l + . . .+ |tq|2l

eFΩn and sup
X
ϕt = −1,

where Ct > 0 is an adequate normalisation constant and ‖ϕt‖C0(X) is uni-
formly bounded by a constant independant of t ≥ 0.

We cannot use right away [Y], Theorem 8 p. 403, to ensure that (ϕt)
be smooth outside B for t > 0, since our integral condition is stronger
than his. However we can use [Y], Thm 3, p 365 to conclude that, in
case ∩i{ti = 0} = ∅, (ϕt) is smooth outside B and ddcϕt is a form whose
coefficients are globally bounded on X, hence ϕt ∈ C1,1(X) for t > 0. Since
this does not imply ellipticity if ∩i{si = 0} 6= ∅, this does not imply higher
regularity on the whole of X.

The required uniformity in t > 0 is not proved in [Y]. To deal with this
case, we use a nice trick due to H.Tsuji [Ts].

The simplest case. First, assume ∩i{si = 0} ∪ ∩i{ti = 0} = ∅. Hence the
family of equations under consideration can be rewritten as:

(ωo + tΩ + ddcϕt)
n = Cte

FΩn,

F being smooth.
Tsuji’s trick is as follows. By Kodaira’s lemma, there exists E an effective

Cartier divisor of X such that [ωo] = [κε] + ε[E] where [κε] is ample, hence

5Notice that apart from the C0-estimate with degenerate L.H.S., the methods used here
are standard and in [Y], [Ts] and [Ko]. Higher regularity in [TZ] is treated along similar
lines given the L∞-estimate the authors announce.
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we may choose a representative κε which is a Kähler form for every ε > 0
small enough. We may actually assume E contains B and use a family of E
such that ∩Supp(E) = B, by Nakamaye’s theorem on base loci [Na].

Actually, despite the notation, it will NOT be necessary to let ε decrease
to 0 6 and we will fix once for all such an ε > 0.

Let σ ∈ H0(X,OX (E)) be the canonical section vanishing on E with the
appropriate multiplicity. We can fix a smooth hermitian metric on this line
bundle such that the Poincaré Lelong equation holds,

ωo = κε + ε[E] − εddc log |σ|2.
The function ϕt := ϕt − ε log |σ|2 is smooth in X \ E and is a classical

solution to the PDE

(κε + tΩ + ddcϕt)
n = eFε,t(κε + tΩ)n,

where (Fε,t)1≥t>0 is uniformly bounded in the C∞(X)-topology of functions
and κt = κε + tΩ is uniformly bounded in the C∞-topology of Kähler forms
on X.

We can use the result of the calculation in [Y], section 2. The important
formula is (2.22) p. 351 and in a subsidiary fashion (2.21). In these formulae,
at each point p ∈ X − E, an adequate system of normal coordinates for κt
is constructed and comparing the notations here and there, we substitute n
for m, κt for gij̄, κt + ddcϕt for g′

ij̄
, ϕt for ϕ and Fε,t for F . The operator ∆

is the Laplace operator (with the analyst’s sign) of κt and ∆′ the Laplace
operator of κt + ddcϕt. Also Rīill̄ = Rt

īill̄
is the holomorphic bissectional

curvature of κt expressed in the above system of normal coordinates.
Since κt is uniformly bounded in the C2 topology of Kähler forms then

certainly there is constant C = Cε independent of t such that (2.21) holds
and C ′ also independent of t such that C ′ > inf Rt

īill̄
.

After these substitutions are made, (2.22) p. 351 reads:

eCϕt∆′(e−Cϕt(n+∆ϕt)) ≥ ∆(Fε,t)−n2C ′−Cn(n+∆ϕt)+e
−
Fε,t
n−1 (n+∆ϕt)

n
n−1

We can fix constants Ci independent of t such that

∆Fε,t ≥ C1 and e−Fε,t/n−1 ≥ C3 > 0.

Thus setting y = n+ ∆ϕt yields

eCϕt∆′(e−Cϕt(n+ ∆ϕt)) ≥ C5 + C6y + eC7y
m
m−1 .

Now by definition

e−Cϕt(n+ ∆ϕt) = |σ|+Cεe−Cϕt(n+ ∆ϕt + ε∆ log |σ|2).
For each t > 0 the functions ϕt, ε∆ log |σ|2 and ∆ϕt are bounded on X.

Hence the positive function e−Cϕt(n+∆ϕt) is continuous on X, vanishes on
E and is smooth on X −E. Its maximum is achieved at some point pt 6∈ E.
It follows from the maximum principle that

0 ≥ C5 + C6y + eC7y
n
n−1 at point y = y(pt).

Therefore y ≤ C8 with a constant independent of t > 0. Now e−Cϕt(pt) =
|σ(pt)|+Cεe−Cϕt(pt). Using the uniform C0 estimate for ϕt, we get 0 ≤ (n +

6This technical device could be useful to study finer regularity results
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∆tϕt) ≤ C9e
+Cϕt . Since |ϕt| and ε∆ log |σ|2 are uniformly bounded by a

constant independent of t > 0, we infer

(n+ ∆tϕt) ≤ C10|σ|−Cε = C10|σ|−Cεε.
This yields a t-independent C0- estimate of ddcϕt on the compact subsets of
X −E 7 .

Standard arguments of the theory of complex Monge-Ampère equations

give an interior estimate of ϕt in Ck,αloc (X − E) for every k ≥ 2, α ∈]0, 1[
which is independent of t > 0 (see for instance Theorem 5.1, p. 15 in [Bl2]).

Hence the family (ϕt)t>0 is precompact in every Ck,αloc (X − E). Its cluster

values are cluster values in CO(X − E) hence they are all equal to ϕ|X−E .

This implies ϕ ∈ Ck,αloc (X − E), hence that ϕ ∈ C∞(X −E).

Case where ∩i{ti = 0} = ∅. 8 We study here the equation

(ωo + tΩ + ddcϕt)
n = Ct(|s1|2k + . . .+ |sp|2k)eFΩn

The first few steps of the preceding argument can be repeated without
changes. Next we apply formula (2.22) in [Y] as earlier, except that we set

F = Fε,t + log ||s||(2k), where ||s||(2k) := |s1|2k + . . .+ |sp|2k. This yields

eCϕt∆′(e−Cϕt(n+ ∆ϕt)) ≥ ∆Fε,t + ∆ log ||s||(2k) − n2C ′ − Cn(n+ ∆ϕt)

+

(

e−Fε,t

||s||(2k)
)1/(n−1)

(n+ ∆ϕt)
n
n−1

We recall the two preceding inequalities and observe two new ones that
are available:

∆Fε,t ≥ C1 and e−Fε,t/n−1 ≥ C3 > 0;

∆ log ||s||(2k) ≥ C2 and C4 ≥ ||s||(2k).
Setting as earlier y = n+ ∆ϕt, we get

eCϕt∆′(e−Cϕt(n+ ∆ϕt)) ≥ C5 + C6y + eC7y
m
m−1 .

After this point, the proof is entirely the same as before.

Remark 3.7. In order to carry out the second order a priori estimate, one
needs information that only depend on supX F and infX ∆F . This is pointed
out in [Y], p. 351, and it is the basis for the proof of [Y], Thm 3.

3.4. Formal reduction of the general case to the second case using

smooth orbifolds. In order to carry out the present argument, which in
essence is just a change of variables z  ζ = z1/m, we need to use analysis
on certain smooth orbifolds. We will not give complete definitions since they
are in the recent reference [BGK], section 2 pp. 560-564, see also [MO] and
the references therein.

Let (X,∆) be a smooth orbifold pair. By this we mean that we have the
prime decomposition ∆ =

∑

i(1−m−1
i )Ei where mi ∈ N∗ is an integer. We

assume that supp(∆) is a simple normal crossing divisor. Then, a classical

7Note that C = Cε and that εCε might blow up as ε goes to 0.
8It suffices to consider this case for constructing singular KE metrics on algebraic

varieties with canonical singularities
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construction surveyed in [BGK] enables to construct an orbifold [X,∆] with
a 1-morphism of orbifolds c : [X,∆] → X with the following properties:

• c is the reduction to the coarse moduli space of [X,∆].
• cX−Supp(∆) : U := [X,∆]×X → X − Supp(∆) is an isomorphism.

Hence U is an open suborbifold of [X,∆] which is an old-fashioned
manifold).

• For every open polydisk D ⊂ X with local coordinates z1, . . . , zn
such that Supp(∆) = {∏p

j=1 zj = 0} [X,∆] ×X D = [D′/Gloc].

In this formula, the local isotropy group is Gloc =
∏p
j=1 Z/mjZ,

mj is the integer multiplicity of the divisor Eij such that Eij ∩ D =
{zj = 0}, Gloc acts on the polydisk D′ by (ζ1, ..., ζp).(z

′
1, ..., z

′
n) =

(ζ1z
′
1, ..., ζpz

′
p, z

′
p+1, ...)

9.

The orbifold 1-morphism [D′/Gloc] → D is induced by κloc :
(z′1, .., z

′
n) 7→ ((z′1)

m1 , ...).
• For sufficiently divisible s, c∗O[X,∆](sK[X,∆]) = OX(s(KX + ∆)).

It is possible to define all the basic concepts of Kähler geometry on orb-
ifolds such as smooth functions, Kähler metrics, etc... The principle is to
think of κ−1

loc as a (multivalued) smooth coordinate chart.
A continuous function on [X,∆] is a continuous function on X. A Radon

measure on [X,∆] is a Radon measure on X.
A smooth function f on [X,∆] is a continuous function on X such that

for every local chart κ∗
locf is smooth. In particular f is Hölder continuous.

A Kähler metric Ω[X,∆] on [X,∆] is a Kähler metric ΩX−Supp(∆) on X −
Supp(∆) with the property that κ∗

locΩ extends to a smooth Kähler metric
on D′. In particular, it also extends as a closed Kähler current on X with
Hölder potentials.

The pull back of a Kähler form on X to [X,∆] is a semi-Kähler form that
is actually cohomologous to a Kähler class10.

Observe that κ∗
locdzl = mil(z

′
l)
mil−1dz′l, hence a smooth volume form on

[X,∆] can be interpreted as a volume form v on X − Supp(∆) such that

v is comparable to

∏n
l=1(

√
−1dzl ∧ dz̄l)

∏p
l=1 |zl|2(1−1/mil )

.

In case the pair (X, l−1(t1)) is an orbifold pair, the equation

(5) (ωo + ddcϕt)
n = Ct

|s1|2k + . . .+ |sp|2k
|t1|2l

eFΩn
X

can be interpreted on [X,∆] as an equation of the form

(c∗ωo + ddcϕt)
n = Ct(|s1|2k + . . .+ |sp|2k)eFΩn

[X,∆].

The method used to analyze the case where ∩i{ti = 0} = ∅ extends
with almost no changes to the orbifold case. Hence the unique continuous
solution of equation (5) is smooth outside its singular locus if (X, 1

l (t1)) is
an orbifold pair.

9The usual isomorphism of Z/mZ with the group of m-th root of unity is used.
10Here no reference can be given. But it is easy to extend the gluing methods for

Kähler forms developed in [Dem 3] and [Pa] to orbifolds. Hence [DP] extends to Kähler
orbifolds.
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Under the more general hypothesis that
∫

X |t1|−2l < ∞ and 1
l (t1) is a

divisor with simple normal crossings, then we can construct an orbifold pair
(X,∆) with 0 ≤ 1

l (t1) ≤ ∆ and we are back to the previous case.
For the most general case, consider the ideal I generated by the ti and

fix µ : X ′ → X a log resolution of (X,I). Then we are back to the previous
case, with an equation on X ′ . This ends the proof of Theorem 3.6.

In certain rare circumstances, there is a finite smooth covering Y → X
such that Y/G = X and [Y/G] = [X,∆] and the argument we use here
reduces to a G-equivariant argument on Y .

Remarks 3.8. If we start with ωo Kähler, and the log-resolution is non
trivial, µ∗ωo is not Kähler anymore.

This method that dates back to [Ko] can be used to prove a variant of
[Y], Theorem 7 p. 399 where the divisor of s2 is a simple normal crossing
divisor, under the sole assumption that

∫

M |s2|−2k2 <∞.
Now, it could not have been used to prove Theorem 8 p. 403 in 1978

since log-resolutions force the use of Monge-Ampère equations with degener-
ate L.H.S, for which the C0-estimate proved here was not available then.

4. More Monge-Ampère equations

As we aim at constructing singular Kähler-Einstein metrics, it is impor-
tant to consider Monge-Ampère equations of the following type,

(ω + ddcϕ)n = etϕµ,

where µ is a probability measure which satisfies condition H(α,A, ω) (see
definition 1.3), and t is a real parameter. The case t = 0, treated in Theorem
2.1, will correspond to Ricci-flat metrics (see section 6). We focus here on
case t > 0.

Theorem 4.1. Let µ be a probability measure which satisfies condition
H(α,A, ω) and fix t > 0. There exists a unique function ϕt ∈ PSH(X,ω)∩
C0(X) such that

(ω + ddcϕt)
n = etϕµ.

Proof. The uniqueness easily follows from the comparison principle as we
explain in proposition 4.3 below. We are going to prove the existence by a
fixed point method.

Fix ψ ∈ E1(X,ω) such that
∫

X ψdµ = 0, and let us consider the equation

MA(ψ) (ω + ddcϕ)n = etψ−cψµ,

where the constant cψ := log[
∫

X e
tψdµ] is chosen so that

1 =

∫

X
(ω + ddcϕ)n = e−cψ

∫

X
etψdµ.

Observe that µψ := etψ−cψµ satisfies condition H(α,Aψ , ω), where Aψ =
exp(t supX ψ − cψ). It follows therefore from Theorem 2.1 that there exists
a unique continuous function ϕ ∈ PSH(X,ω) solution to MA(ψ) and nor-
malized by

∫

X ϕdµ = 0. We use here this linear normalization rather than
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the non-linear sup-normalization: they are comparable thanks to proposi-
tion 2.7 in [GZ 1], which shows that

−Mµ ≤
∫

X
udµ− sup

X
u ≤ 0,

for all functions u ∈ PSH(X,ω) and for some uniform constant Mµ > 0.
Since

∫

X ψdµ = 0, we infer

(6) 0 ≤ Eω(ϕ) :=

∫

X
|ϕ|ωnϕ = e−cψ

∫

X
|ϕ|etψdµ ≤ 2Mµe

tMµ ,

by observing that cψ ≥ 0 since t ≥ 0, and
∫

X
|ϕ|dµ ≤

∫

X
|ϕ− sup

X
ϕ|dµ + sup

X
ϕ ≤ 2Mµ,

since
∫

X ϕdµ = 0.
The important fact here is that the energy Eω(ϕ) of ϕ is bounded from

above by a constant M0 := 2Mµe
tMµ which is independent of ψ. We have

thus defined an operator

T : ψ ∈ CM 7→ ϕ ∈ CM0

which associates to ψ ∈ CM the unique solution ϕ ∈ CM0 to MA(ψ), where

CM :=

{

ψ ∈ E1(X,ω) /

∫

X
ψdµ = 0 and Eω(ψ) ≤M

}

.

It follows from proposition 3.2.3 in [GZ 2] that E1(X,ω) is convex. So is
the subset of functions ψ ∈ E1(X,ω) such that

∫

X ψdµ = 0. The set CM is

not convex, but it is relatively compact in L1(X) and its closed convex hull

ĈM is contained in CκnM for some uniform constant κn which only depends
on the dimension of X: this follows from easy computations (see lemma 7.2
and the proof of proposition 3.2 in [GZ 2]). Therefore T maps the compact

convex set ĈM into itself if M is large enough.
We claim that T is continuous. Let (ψj) ∈ CN

M be a sequence of functions
which converges in L1(X) towards ψ ∈ CM . We need to show that ϕj :=
T (ψj) converges in L1(X) towards T (ψ). Since the set {u ∈ PSH(X,ω) /
∫

X udµ = 0} is relatively compact in L1(X) (see proposition 2.7 in [GZ 1]),

we can assume – relabelling if necessary – that (ϕj) converges in L1(X)
towards a function ϕ ∈ PSH(X,ω). We show in lemma 4.2 below that (ϕj)
converges in L1(µ) towards ϕ. In particular

∫

X ϕdµ = 0 and, passing to a

subsequence if necessary, we can assume that etψj(x) → etψ(x) for µ almost
every point x. Set

ϕ̂j :=

(

sup
l≥j

ϕl

)∗

and ψ̌j := inf
l≥j

ψl.

Observe that (ϕ̂j) decreases towards ϕ, while (etψ̌j ) increases towards etψ

at µ almost every point. The energy of ϕ̂j is controlled by that of ϕj since
ϕ̂j ≥ ϕj (see lemma 7.2 in [GZ 2]), and Eω(ϕj) ≤ M0 by (5), therefore
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ϕ ∈ E1(X,ω) and (ω+ddcϕ̂j)
n → (ω+ddcϕ)n. It follows from an inequality

of J.-P.Demailly [Dem 1] that

(ω + ddcϕ̂j)
n ≥ etψ̌j−ĉjµ,

where ĉj := supl≥j cψl . Observe that ĉj → cψ, thus

(ω + ddcϕ)n ≥ etψ−cψµ.

Since these are two probability measures, there is actually equality hence
ϕ = T (ψ): this shows that T is continuous.

We can now invoke Schauder fixed point theorem, which yields a fixed
point ϕ = T (ϕ), ϕ ∈ CM . The function ϕ is automatically continuous (by
Theorem 2.1, since etϕ−cϕµ satisfies H(α,A′, ω)), hence Φ := ϕ − t−1cϕ is
the solution we were looking for. �

Lemma 4.2. The functions ϕj = T (ψj) (respectively etψj ) converge in

L1(µ) towards ϕ (respectively etψ).

Proof. We first show that (ϕj) converges to ϕ in L1(µ). Observe that the
sequence (ϕj) is uniformly bounded: this follows from Theorem 2.1 since

(ω + ddcϕj)
n satisfies H(α,Aj , ω), where Aj = e

t supX ψj−cψjA ≤ etMµA
is bounded from above. It follows then from standard arguments that
∫

X ϕjdµ →
∫

X ϕdµ (see e.g. the proof of lemma 5.2 in [Ce]).
Fix ε > 0 and let G be an open set of X such that ϕ is continuous on

X \G and Capω(G) ≤ ε (see corollary 3.8 in [GZ 1]). By Hartogs’ lemma,
ϕj ≤ ϕ+ ε on the compact set X \G, if j ≥ jε. Observe that

∫

X\G
|ϕ− ϕj |dµ ≤ 2ε+

∫

X\G
[ϕ− ϕj ]dµ ≤ 3ε,

if j ≥ j′ε. O the other hand since µ satisfies H(α,A, ω), we get
∫

G
|ϕ− ϕj |dµ ≤ 2Mµ(G) ≤ 2MAε1+α,

where M = supj ||ϕj ||L∞(X). This shows that ||ϕ− ϕj ||L1(µ) → 0.

The proof for (etψj ) is similar: it suffices to note that the functions uj :=

etψj−t supX ψj are ω-psh and uniformly bounded. One can then apply the
rest of the argument. �

Proposition 4.3. Let ϕ,ψ ∈ E1(X,ω) and t > 0 be such that

(ω + ddcϕ)ne−tϕ = (ω + ddcψ)ne−tψ.

Then ϕ ≡ ψ.

Proof. It follows from the comparison principle (see [GZ 2]) that
∫

(ϕ<ψ)
(ω + ddcψ)n ≤

∫

(ϕ<ψ)
(ω + ddcϕ)n =

∫

(ϕ<ψ)
et(ϕ−ψ)(ω + ddcψ)n.

Since et(ϕ−ψ) < 1 on (ϕ < ψ), we infer ϕ ≥ ψ for ν almost every point, where
ν = (ω+ddcψ)n. Reversing the roles of ϕ,ψ yields ϕ = ψ for ν almost every
point. Therefore (ω + ddcϕ)n = (ω + ddcψ)n, hence ϕ − ψ = c is constant
by Theorem 3.4 in [GZ 2]. Finally c = 0 since etc = 1 and t > 0. �
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When KX is nef and big, H.Tsuji constructed in [Ts] – using Kähler-Ricci
flow techniques – a function ψ ∈ PSH(X,ω) such that

∫

X
etψdµ = 1, ψ ∈ C∞(X \E) and (ω + ddcψ)n = etψµ in X \ E,

where E is some exceptional divisor, ψ is smooth outside the exceptionnal
divisor of map associated to the base point free linear sustem |NKX |, N ∈ N

big enough and the current TKE = ω+ddcψ defines a Kähler-Einstein metric.
This function coincides with our solution thanks to the following unicity
result.

Proposition 4.4. Let µ be a probability measure and t > 0. Let ϕ,ψ ∈
PSH(X,ω) be such that

∫

X e
tϕdµ =

∫

X e
tψdµ = 1. Assume ϕ ∈ E1(X,ω) is

a global solution to the complex Monge-Ampère equation (ω+ddcϕ)n = etϕµ,
while ψ ∈ C0(X \ E) satisfies (ω + ddcψ)n = etψµ only in X \ E.

Then ψ ∈ E1(X,ω) and ψ ≡ ϕ.

Proof. Set ψj := max(ψ,−j) ∈ PSH(X,ω) ∩ L∞(X). Observe that the
probability measures (ω + ddcψj)

n converge in X \ E towards the measure

ν = etψµ. Since ν(X) = ν(X \E) = 1, it follows that (ω+ddcϕj)
n converges

to ν on all of X.
Fix ε > 0 and set vε := (ψ + εv)/(1 + ε) ∈ PSH(X,ω), where v ∈

PSH(X,ω), v ≤ 0, is such that ev is continuous and (v = −∞) = E. It
follows from lemma 2.2 that for all s > 0,

Capω(ψj < −s− 1) ≤
∫

(ψj<−s)
(ω + ddcψj)

n ≤
∫

(vε≤−s/(1+ε))
(ω + ddcψj)

n.

Observe that evε is continuous on X, hence the sublevel sets (vε ≤ c) are
compact. We infer, letting j → +∞,

Capω(ψ < −s− 1) ≤
∫

(vε≤−s/(1+ε))
etψdµ.

Letting ε go to zero and using that µ(X) = 1 yields

Capω(ψ < −s− 1) ≤
∫

(ψ<−s)
etψdµ ≤ e−s.

Therefore the capacity of the sublevel sets of ψ decreases fast as s → +∞,
hence by lemma 6.2 in [GZ 2] we get ψ ∈ E1(X,ω). Since e−tϕ(ω+ddcϕ)n ≡
e−tψ(ω + ddcψ)n, it follows from proposition 4.3 that ϕ ≡ ψ. �

Theorem 4.5. Let X be projective algebraic complex manifold, ω0 a smooth
semi Kähler form that is Kähler outside a complex subvariety S ⊂ X, and
fix Ω be a Kähler form on X. Assume that ωno = DΩn, where D−ε is in
L1(Ωn), and that [ω0], [Ω] ∈ NSR(X).

Let s1, ..., sp (resp. t1, ..., tq) be holomorphic sections of some line bundle
L (resp L′) on X. Fix k ∈ R≥0, l ∈ R≥0 and F ∈ C∞(X,R). Assume that
∫

X

1

|t1|2l + . . .+ |tq|2l
Ωn <∞ and

∫

X

|s1|2k + . . . + |sp|2k
|t1|2l + . . .+ |tq|2l

eFΩn =

∫

X
Ωn.
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For each t > 0, the unique function ϕ ∈ PSH(X,ω0) ∩ C0(X) such that

(ω0 + ddcϕ)n =
|s1|2k + . . .+ |sp|2k
|t1|2l + . . .+ |tq|2l

eF+tϕΩn

is smooth outside B = S ∪ ∩i{si = 0} ∪ ∩i{ti = 0}.
Proof. The proof of Theorem 3.5 applies here almost verbatim. �

Remark 4.6. We will apply Theorem 4.1 in section 6 to construct singular
Kähler-Einstein metrics on manifolds of general type. This will follow from
the resolution of (ω + ddcϕ)n = etϕµ for large enough values of t > 0. The
Monge-Ampère equations

(ω + ddcϕ)n = e−tϕµ, t > 0,

can also be solved with a similar method, but only for small values of t < tX .
The critical exponent tX depends on the manifold X, and may be too small to
produce Kähler-Einstein metrics when c1(X) > 0: even smooth manifolds of
positive scalar curvature do not necessarily admit Kähler-Einstein metrics
(see [T]). Since technical details are much more involved in this case, we
postpone this study to a forthcoming article.

5. Singularities in Mori theory

The singular locus of the normal complex space of pure dimension n is a
codimension ≥ 2 analytic subvariety denoted by V sing. Let V reg = V −V sing

and j : V reg → V be the natural open immersion.

5.1. Log terminal singularities. Since this material may not be familiar
to complex analysts or differential geometers, we briefly recall some basic
facts on some of the singularities encountered in the Minimal Model Program
(MMP for short). See [KM] for a detailled account in the algebraic case, the
analytic theory being also surveyed there in less detail.

The sheaf of holomorphic functions OV is the subsheaf of the sheaf of con-
tinuous functions on V consisting of the functions whose restriction to V reg

is holomorphic. Actually, by Hartogs’ theorem, any holomorphic function
on V reg extends to V , which means that j∗OV reg = OV .

Every meromorphic n-form α on V reg extends to V , i.e. let π : X → V
be a resolution of singularities of V , then the meromorphic n-form π∗α
defined on π−1V reg extends to a meromorphic n-form on X. Let ωV reg be
the canonical sheaf of the smooth variety V reg. The sheaf ωV = j∗ωV reg is
a coherent analytic sheaf on V .

More generally every meromorphic pluricanonical form on V reg extends

to V and ω
[q]
V = j∗ω

q
V reg , q > 0 is a coherent analytic sheaf on V .

Definition 5.1. Say V is 1-Gorenstein iff one of the following equivalent
conditions holds:

(1) Every x ∈ V has an open neighborhood U such that U reg carries an
holomorphic n-form with an empty zero divisor.

(2) ωV is a rank one locally free sheaf.
(3) Every x ∈ V has an open neighborhood U such that ωUreg is isomor-

phic to OV reg |U .
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A local section of ωV defining an holomorphic n-form without zeroes on V reg

will be called a local generator of ωV . If furthermore V is Cohen-Macaulay,
V is said to be Gorenstein.

Say V is Q-Gorenstein iff one of the following equivalent conditions is
satisfied:

(1) Every x ∈ V has an open neighborhood U such that U reg carries an
holomorphic pluricanonical form with an empty zero divisor.

(2) For every x ∈ V , there exists Nx ∈ N and an open neighborhood U

of x such that ω
[Nx]
U is a rank one locally free sheaf.

(3) For every x ∈ V there is Nx ∈ N and an open neighborhood U of x

such that ωNxUreg is isomorphic to OV reg |U .

A local section of ω
[N ]
V defining an holomorphic pluricanonical form with-

out zeroes on V reg will be called a local generator of ω
[N ]
V .

For every x ∈ V , the smallest Nx fulfilling condition 3 near x is called
the local index of V at x. The l.c.m. of all local indices, if finite, is called
the index of V .

Definition 5.2. Say V has only canonical singularities iff V is Q-Gorenstein,
of finite index N and one of the following equivalent conditions is fulfilled:

(1) Let π : X → V be a resolution. Let α be a local generator of ω
[N ]
V .

The meromorphic pluricanonical form π∗α is holomorphic.

(2) Let π : X → V be a resolution. For every m ∈ N, π∗ω
[Nm]
X = ω

[Nm]
V .

(3) (Assuming V is an algebraic variety) Let π : X → V be a resolu-

tion. Then KX
∼= π∗KV +

∑

aEE with aE ≥ 0 where ∼= means

numerical equivalence of Q-Cartier divisors and the sum runs over
the exceptional divisors of π.

Observe that it is enough to check the first two conditions for some res-
olution. In the third condition NaE is the order of vanishing of π∗α along
the divisor E.

Definition 5.3. Say V has only log-terminal singularities iff V is Q-
Gorenstein, of finite index N and the following holds: let π : X → V be a

log-resolution and let α be a local generator of ω
[N ]
V : then the pole along any

component E of exc(π) of the meromorphic N -canonical form π∗α on X is
of order ≤ N − 1.

When V is algebraic an equivalent formulation is: let π : X → V be a

log-resolution. Then KX
∼= π∗KV +

∑

E

aEE with aE > −1.

The importance of the class of canonical singularities comes from a theo-
rem due to M. Reid [R 1] (see also [Deb], p. 174):

Theorem 5.4. Let X be a projective algebraic manifold of general type
whose canonical ring R = ⊕n∈NH

0(X,ωnX ) is of finite type. Then the
canonical model of X, Xcan := Proj(R) has only canonical singularities.

If N = Index(Xcan) then ω
[N ]
Xcan

is ample.

The finiteness of the canonical ring for varieties of general type is known
in dimension 3 [Ka]. In higher dimension, Y.Kawamata has proved that it
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is a consequence of the existence of minimal models. Xcan is a uniquely
defined singular birational model of X. The minimal models of X in the
sense of the MMP are crepant terminalizations of Xcan and do not enjoy the
above unicity since they may be related by non trivial flops.

Examples 5.5. Let S be a normal algebraic surface. The following are
equivalent:

(1) S has only canonical singularities.
(2) S is locally analytically isomorphic to X = C2/G, G ⊂ SL2(C) a

finite subgroup.
(3) The exceptional divisors of the minimal resolution πmin of S, have

simple normal crossings, their components are (-2) smooth rational
curves, their incidence graphs are of type A-D-E (Du Val singulari-
ties).

The log terminal surface singularities are precisely the singularities of the
form X = C2/G, G ⊂ GL2(C) a finite subgroup.

Examples 5.6. In higher dimension, quotient singularities are still log ter-
minal. Fix n > 0 and let H ⊂ CPn+1 be a smooth degree d hypersurface.
The affine cone over H has only canonical singularities iff d ≤ n+ 1.

In particular, the ordinary double point x2 + y2 + z2 + t2 = 0 has only
canonical singularities but it is not a quotient singularity.

The hypersurface singularities of type A−D − E are canonical.

5.2. Normal Kähler spaces.

Plurisubharmonic functions. Let V be a normal analytic space of pure di-
mension n. A plurisubharmonic (psh) function ϕ on V is an upper semi-
continuous function on V with values in R ∪ {−∞}, which is not locally
−∞, and extends to a psh function in some local embedding V → CN . The
function ϕ is strongly psh (resp. C0, resp. C∞) iff it extends to a strongly
psh function (resp. C0, resp. C∞) in some local embedding. A continuous
function is psh iff its restriction to V reg is so [FN]. A bounded psh function
on V reg extends to V .

A pluriharmonic function on V is a real valued continuous function on V
f on V such that one of the following equivalent conditions holds:

• f is locally the real part of a holomorphic function.
• Given a local embedding V → CN , f extends locally to a plurihar-

monic function on CN .
• f |V reg is pluriharmonic.

Semi-Kähler currents.

Definition 5.7. A semi-Kähler, resp. Kähler, resp. smooth Kähler, poten-
tial on V is a family (Ui, ϕi)i∈I where (Ui) is an open covering of V and ϕi
a psh function, resp. a strongly psh function, resp. a C∞-smooth strongly
psh function, on Ui such that ϕi − ϕj is pluriharmonic on Ui ∩ Uj .

Define an equivalence relation on semi-kähler potentials requiring that
(Ui, ϕi) ∼ (Vj , ψj) iff ϕi − ψj is pluriharmonic on Ui ∩ Vj.
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Definition 5.8. A smooth Kähler metric Ω on V is a ∼-equivalence class
of smooth Kähler potentials. A semi-Kähler (resp. Kähler) current on V is
a ∼-equivalence class of semi-Kähler (resp. Kähler) potentials.

A semi-Kähler current Ω = (Ui, ϕi)i∈I mod ∼ is said to have L∞
loc (resp.

C0, resp. Hölder continuous) potentials iff each ϕi is L∞
loc (resp. C0, resp.

Hölder continuous).

We will on occasion drop the requirement that the local potentials of Ω
are psh, replacing it by the requirement that they are locally the sum of
a smooth and a psh function. The current Ω will then be called a quasi
positive closed current on V .

If it has locally bounded potentials, Ω is fully determined by the closed
(1, 1) form Ωreg on Vreg defined on Ui by Ωreg = ddcϕi.

Let Ω be a smooth Kähler metric on V with Kähler potential (Ui, ϕi). An
upper semi-continuous function ϕ : X → R ∪ −∞ is said to be Ω-psh iff ∀i
ϕi+ϕ is psh on Ui. The semi-Kähler current whose potential is (Ui, ϕ+ϕi)
is denoted by Ω + ddcϕ.

Example 5.9. Let V = C2/±1. Let (x, y) be the usual affine coordinates
on C2, (u, v,w) those on C3. The formulas u = x2, v = y2, w = xy realize
V as the closed subscheme of C3 whose equation is uv − w2 = 0. We have
two ‘natural’Kähler metrics on V , the first one is smooth with potential
ϕ1 = |u|2 + |v|2 + |w|2, induced by the euclidean Kähler metric of C3, the
second one is the Kähler current whose potential is ϕ2 = |u| + |v|. On V reg

it is the quotient of the euclidean metric restricted to C2 − {0}. Near 0,
ddcϕ2 ≫ ddcϕ1.

The metric ddcϕ2 is an example of an orbifold Kähler metric on V . The
results of [Y] extend without major modifications to Kähler orbifolds. For
instance, in each Kähler class of a nodal K3 surface there is a unique Ricci
flat orbifold metric.

Chern-Weil forms and hermitian metrics. Let PHV be the sheaf of real-
valued pluriharmonic functions on V . By definition, a closed (1,1)-form on
V is a section of the sheaf C∞

V /PHV . We have the exact sequence:

C∞(V ) → Γ(V, C∞
V /PHV )

[ . ]−→ H1(V,PHV ) → 0.

A class in H1(X,PHX) will be called Kähler, if it is in the [ . ] image
of a smooth Kähler metric.

Remark 5.10. Assume X is smooth. A class [ω] in H1(X,PHX) will be
called numerically base point free iff there exists a proper surjective holomor-
phic mapping X → Y , Y normal, such that [ω] is the pull back of a Kähler
class on Y . This is a stronger condition than being semi-Kähler.

In the non-big case (i.e.:
∫

X ω
n = 0), it is straightforward to construct

semi-Kähler classes that are not numerically base point free (e.g. on complex
tori). On the other hand, it is still unknown whether there exists a smooth
projective variety X and a semi-Kähler form ω which is big without being
numerically base point free.
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Let L be a holomorphic line bundle on V . The notion of smooth hermitian
metric on (V,L) is defined as in the smooth case. Let h be such a metric on
(V,L).

Let s ∈ H0(U,L) be a nowhere zero local holomorphic section of L (a local
generator of L) defined over the open subset U ⊂ V . Set e−ϕs := ||s||2h, where
ϕs is a C∞-smooth function on U . The current ddcϕs is a smooth closed
(1,1)-form on V which does not depend on s; it is a semi-Kähler current if
ϕs is psh.

More generally, let (Ui)i be an open covering of V and si ∈ H0(Ui,OV (L))
a local generator of L. Let ϕi = ϕsi . The datum (Ui, ϕi) defines a smooth
closed (1,1)-form on V .

Definition 5.11. The Chern-Weil form of (V,L, h) (or of h) is the ∼-
equivalence class of the data (Ui, ϕi) constructed above. We will denote it
by c1(L, h).

It is immediate that [c1(L, h)] is independent of h. Hence there is a linear
map c1 : Pic(V ) → H1(V,PHV ). The connection with the more widely
known smooth case is made by the observation that, if X is a compact
Kähler manifold, H1,1(X,R) = H1(X,PHX).

Proposition 5.12. Let V a compact normal complex analytic variety.
The space H1(V,PHV ) is finite dimensional.
Let L a holomorphic line bundle on V . Every representative of c1(L) in

H1(V,PHV ) is the Chern-Weil form of a smooth hermitian on L.
If there exists a smooth hermitian metric h such that c1(L, h) is Kähler,

then V is projective-algebraic and L is ample.

Proof. The most difficult task is to show that, in the last assertion, V is
Moishezon. This follows from Siu’s solution of the Grauert-Riemenschneider
conjecture [Siu]. �

A singular metric on L is an expression h = e−ϕhsm, ϕ being a locally
smooth + psh function and hsm a smooth hermitian metric. Its Chern-Weil
form is the quasi-positive current c1(L, hsm) + ddcϕ.

6. Adapted volume forms

6.1. Monge-Ampère equations on normal Kähler spaces. Let Ω be
a smooth Kähler metric on V . A classical result of P. Lelong states that if
U is relatively compact in V , then U reg is of finite volume with respect to
the smooth volume form Ωn

reg.
This has been generalized by E.Bedford and A.Taylor in [BT], where the

authors study Monge-Ampère measures for locally bounded psh functions.
Since these measures do not charge proper analytic subsets, we obtain:

Proposition 6.1. Let Ω be a semi-Kähler current with L∞
loc potentials on

V . The Monge-Ampère measure Ωn
reg is well defined on Vreg and satisfies

∫

Ureg Ωn
reg <∞, for all relatively compact subset U ⊂ V.

For any resolution π : X → V , the Monge-Ampère measure (π∗Ω)n is
well defined on X and satisfies π∗(π

∗Ω)n = j∗Ω
n
reg. Moreover if π̄ : X̄ → V

is a resolution dominating π (i.e. π̄ = π ◦ψ for some bimeromorphic proper
holomorphic map ψ : X̄ ′ → X ′), then ψ∗(π̄

∗Ω)n = (π∗Ω)n.
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The measure π∗(π
∗Ω)n is thus well defined on V and independent of the

choice of resolution. We will call it the Monge-Ampère measure of Ω and
denote it by Ωn. The mass of this measure only depends on the cohomology
class of Ω, as follows again from [BT]:

Lemma 6.2. Assume V is compact. Let Ω1,Ω2 two semi Kähler currents
with L∞

loc potentiel on V . If they are cohomologous, i.e. Ω1 = Ω2 + ddcϕ for
some ϕ ∈ L∞(X), then

∫

V Ωn
1 =

∫

V Ωn
2 .

We can now reformulate some of our previous results.

Theorem 6.3. Let V be a n-dimensional compact normal Kähler space and
Ω be a smooth Kähler form on V . Then for every f ∈ Lp(V,Ωn), p > 1,
such that

∫

V fΩn =
∫

X Ωn, there is a unique ϕ ∈ C0(V ) such that

(Ω + ddcϕ)n = fΩn and sup
V
ϕ = −1.

Proof. Let π : X → V be a resolution of V . We may define a semipositive
big smooth form on X by ω = π∗Ω. By Theorem 2.1 and Proposition
3.1 we can solve uniquely (ω + ddcϕ̄)n = f ◦ πωn where ϕ̄ is a continuous
function on X such that ω+ ddcϕ̄ is semipositive. Let F be a fiber of π and
i : F → X the inclusion map. F is connected by Zariski’s main theorem.
Furthermore i∗ω + ddci∗ϕ̄ is semipositive on F . Since i∗ω = 0, it follows
that i∗ϕ is a continuous psh function on F . Hence i∗ϕ̄ is constant. This
implies that ϕ̄ = ϕ ◦ π where ϕ is a continuous function on V . We do have
(Ω + ddcϕ)n = fΩn. �

6.2. Adapted measures on log terminal Kähler spaces. Let V be a
n-dimensional Gorenstein Kähler space and Ω be a smooth Kähler form on
V . Fix x ∈ V and let α be a local generator of ωV defined over an open
subset x ∈ U ; then v = cnα ∧ ᾱ is a positive definite volume form on U reg,

for an appropriate choice of the constant cn =
√
−1

n
(−1)

n(n+1)
2 .

When V is merely Q-Gorenstein of finite index N , we choose β a local

generator of ω
[N ]
V defined over an open subset x ∈ U and we set

v = vβ =
(√

−1
Nn

(−1)N
n(n+1)

2 β ∧ β̄
)

1
N
.

This is a positive definite volume form on U reg.
Our next observation is that log terminal singularities are the worst sin-

gularities we can allow in order to globally solve Monge-Ampère equations
associated to volume forms on V .

Lemma 6.4. For every U1 ⊂⊂ U ,
∫

Ureg1
v <∞ iff X is log terminal.

If V is log terminal, then the Radon measure µ = j∗v satisfies µ = fΩn

with f ∈ L1+ε(U1,Ω
n) for some ε > 0.

Proof. Let π : X → V be a log resolution. Write KX
∼= π∗KV +

∑

aEE.

Since exc(π) has simple normal crossings, at every P ∈ E = exc(π) there
are local coordinates (zi)i=1,...,n such that E is described by the equation

z1 . . . zq = 0. Let Ej be the divisor zj = 0. We have: π∗v =
∏q
j=1 |zj |

2aEj dλ
where dλ is a Lebesgue measure on X, hence the measure π∗v has finite
mass near P iff ∀j, aEj > −1. Thus

∫

Ureg1
v <∞ iff ∀E, aE > −1.
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Let f1 be the density of π∗v with respect to dλ. Since f1 is comparable

to
∏q
j=1 |zj |

2aEj near P , it follows that f1 belongs actually to Lp(X, dλ) for
some p > 1 when X is log terminal.

LetD = 1/f be the density of Ωn with respect to v. We will see here below
that D is bounded but it might have zeroes on E, hence f is unbounded
in general. However we will show that f ◦ π ∈ Lα(X, dλ) for α > 0 small
enough, hence it follows from Hölder’s inequality (as in the proof of lemma
3.2) that

∫

Ureg1

f1+εΩn =

∫

π−1Ureg1

f εf1dλ < +∞

if ε > 0 is small enough.
Fix x ∈ V and let i : Ux → Cm be a local embedding of a neighborhood Ux

of x. We consider the

(

m
n

)

n-forms on U regx duI = dui1 ∧ . . . duin , where

(ui) is a set of affine coordinates on Cm. Observe that Ωn is comparable to
∑

I vduI
11. Since β is a local generator at x of ω

[N ]
V , we have (duI)N = fIβ

where fI ∈ OV,x is the germ of an holomorphic function at x. Therefore Ωn

is comparable to
∑

I |fI |
2
N v, hence D is comparable to [

∑

I |fI |
2
N ]−1 near x.

The functions (fI) generate an ideal Ix ⊂ OV,x. Actually, the construction
can be globalized to provide a coherent ideal sheaf I ⊂ OV cosupported on
V sing.

We may assume [Hi] that π : X → V is a log resolution of (V,I), namely a
log resolution of V with the additional property that the ideal sheaf π−1I.OX

which is the ideal sheaf of OX generated by the family of holomorphic func-
tions (π∗fI)I , satisfies π−1I.OX = OX(−∑NbEE) ⊂ OX where N.bE ∈ N

is a positive multiplicity attached to any exceptional divisor of π.

In local coordinates near P ∈ X, π∗D is comparable to
∏

j |zj |
2bEj , hence

π∗(f1D
−ε) is comparable to

∏

j |zj |
2(aEj−εbEj ). It follows that for every rel-

atively compact subset U1 ⊂⊂ U, f ∈ L1+ε(U1,Ω
n) iff ∀E, π(E) ∩ U 6=

∅ ⇒ aE − εbE > −1. �

Definition 6.5. Assume V has only log terminal singularities. A positive
definite adapted measure on V is a positive Radon measure locally of the
form ef .v where f is a bounded measurable function. A positive definite
adapted measure has C0, Cα, C∞ density if so is f .

Remark 6.6. It follows from lemma 6.4 that if V is Q-Gorenstein but has
non log terminal singularities, v is a volume form on V reg but does not
extend to a measure on V .

6.3. Adapted volume forms for klt Kähler pairs. We will be briefer
since pairs are mainly of interest to MMP practitioners. The key definition
for us will be:

Definition 6.7. A pair (V,∆) is klt iff KV + ∆ is Q-Cartier and if for any
log-resolution π : X → V of (V,∆), we have the numerical equivalence of

11Note that the formula for vβ makes sense even if β is not a local generator.
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Cartier divisors:

N(KX + ∆′) ∼= π∗N(KV + ∆) +
∑

E exc.

NaEE

with aE > −1, ∆′ the proper transform of ∆ in X (same multiplicities) and
N is an integer such that N(KV + ∆) is Cartier.

Thus a variety V has only klt singularities iff (X, ∅) is klt.
Let β be a local generator of OV (N(KV +∆)). Then βV reg can be viewed

as a meromorphic N-canonical form with a pole of order Ndi on Ei where
∆ =

∑

i diEi is the decomposition of ∆ into prime divisors. Thus vβV reg
defines a volume form with poles on V reg, namely vβV reg is comparable to
∏

i |si|−2didλ, where si denotes the canonical section of O(Ei). If vβV reg is
a finite measure then di < 1, but the converse is not true. We have the
following staightforward extension of lemma 6.4:

Lemma 6.8. Let j′ : V − ∪iEi → V be the canonical inclusion. j′∗vβ is a
well defined Radon measure on V iff (X,∆) is klt.

The definition of an adapted measure for a klt pair is left to the reader.

7. Singular Kähler-Einstein metrics

7.1. Singular Ricci curvature.

The smooth case. The link between Monge-Ampère equations and Kähler-
Einstein metrics is provided by the following classical

Lemma 7.1. Let X be complex manifold, let h be a smooth hermitian metric
on ωX and Ω a Kähler form such that Ωn = v(h). The Ricci curvature
divided by 2π of Ω is the Chern-Weil form −c1(KX , h).

Adapted measures and hermitian metrics on the canonical sheaf. Assume V
is compact with only log terminal singularities, has index N and let hN be

a smooth hermitian metric on ω
[N ]
V . Let β be a local generator local of ω

[N ]
V .

Define vβ(h) to be the volume form on V reg:

vβ(h) =

(

√
−1

Nn
(−1)N

n(n+1)
2

β ∧ β̄
‖β‖2

hN

)
1
N

Since vβ(h) is independent of β, this expression defines an adapted mea-
sure v(h) with C∞ density on V .

Now, let hNsing = e−NχhN be a singular metric on ω
[N ]
V . The Chern-Weil

form c1(ω
N
X , h

N
sing) is then well defined as a quasipositive current. Since hNsing

has locally C∞+psh potentials χ is locally bounded above and the above

formula defines a measure v(hsing) = eχv(h) on V such that
v(hsing)
v(h) ∈ L∞

loc.

In particular

v(hsing)

Ωn
∈ L1+ε(V,Ωn) for ε > 0 small enough.

We have c1(KX , hsing) = c1(KX , h)+dd
cχ, where c1(KX , h) := 1

N c1(ω
N
X , h

N ).
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Definition 7.2. Assume V has only log terminal singularities. An adapted
measure on V is a positive Radon measure locally of the form ef .v where f
is locally given as the sum of a psh and a smooth function on V . An adapted
measure is C0, Cα, C∞ density if so is ef .

The definition has the virtue of generalizing the usual equivalence between
smooth metrics on the canonical sheaf of a manifold and positive definite
volume forms to singular metrics and log terminal spaces. This suggests the
following ad hoc:

Definition 7.3. Let V be a Q-Gorenstein Kähler normal n-dimensional
complex space with only log terminal singularities. Let Ω be a semi-Kähler
current with L∞

loc potential and adapted Monge-Ampère measure. Let h be
the singular metric on the canonical sheaf such that Ωn = v(h). We define

Ric(Ω) := −c1(KV , h),

where the equality is to be taken in the sense of currents.
The metric Ω will be called a singular Kähler-Einstein metric if Ric(Ω) =

cΩ for some c ∈ R.

7.2. Singular Ricci flat metrics.

Definition 7.4. Let V be a Kähler space with only log terminal singularities.
V is said to be Q-CY, iff there is some multiple N ′ of index(X) such that

H0(V, ω
[N ′]
V ) = Cα, where α is a global generator of ω

[N ′]
V .

Theorem 7.5. Assume V is a compact Q-CY Kähler space. Let Ω be a
smooth Kähler metric on V . Then there is a unique semi-Kähler current
with continuous potential and adapted Monge-Ampère measure Ω′ = Ω +
ddcϕ, such that

(Ω + ddcϕ)n = Cvα and sup
V
ϕ = −1,

where
∫

V Ωn = C
∫

V (−1)nvα.
Furthermore, if V is projective-algebraic and [Ω] ∈ NSR(V ), then Ω+ddcϕ

is smooth on V reg where it defines a bona fide Ricci flat metric.

Corollary 7.6. In each cohomology class of a smooth Kähler form, there is
a unique singular Ricci flat metric..

Proof. This follows straighforwardly from Theorems 6.3, 3.6, Lemma 6.4
and Definition 7.3. �

Example 7.7. A nodal quintic threefold is Q-CY and has not quotient sin-
gularities, so the orbifold method of [Ko] does not work.

7.3. Singular Kähler-Einstein metrics of negative curvature.

Theorem 7.8. Let V be a general type projective algebraic variety with only
canonical singularities such that KV is ample. Let hN a smooth hermitian
metric on ωNV such that Ω = c1(KV , h) is a smooth Kähler form on V .

There is a unique ϕ ∈ C0(V,R) such that:

(1) ϕ is Ω-psh.
(2) Ω + ddcϕ semi Kähler current with C0 potential.
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(3) (Ω + ddcϕ)n = eϕv(h).

Consequently Ω + ddcϕ is the unique singular KE metric on V of negative
curvature in the canonical class of V . The current Ω + ddcϕ has continuous
potentials and is smooth on V reg where it defines a bona fide KE metric.

Proof. This is a consequence of Theorems 4.1, 4.4, and Definition 7.3. �

Remark 7.9. Thanks to Theorem 5.4, for X a projective algebraic manifold
of general type such that R(X) := ⊕n∈NH

0(X,OX (nKX)) is finitely gener-
ated, X has a unique birational model V such that the above hypotheses hold.
Thus we have a birational map π : X 99K V which is well defined outside an
indeterminacy locus S of codimension ≤ 2. In particular π∗(ω + ddcϕ) is a
closed positive current on X − S that extends to a closed positive current T
on X itself. The current T defines a KE metric on X−S. It needs not be a
singular KE metric on X though, since its potentials may have logarithmic
poles on S, in fact algebraic singularities of the form α log(

∑ |fi|2) + O(1)
fi holomorphic and α ∈ Q>0. Moreover, T lies in the canonical class of X
iff X is a smooth minimal model as in [Ts].

Connection with [Ts]. Let X be a complex projective manifold such that
KX is nef and big. Let Ω be a smooth Kähler metric on X and consider the
Kähler-Ricci flow

∂Ωt

∂t
= −Ric(Ωt) − Ωt, Ω0 = Ω.

In [Ts], it was proved that this flow has a global solution for all time
t ∈ [0,∞[, and an argument was given, recently fully completed in [TZ], to
the effect that Ωt converges to a closed positive current TKE, independent
of Ω, which defines a smooth Kähler-Einstein metric outside the exceptional
divisor E of the holomorphic bimeromorphic map X → Xcan. Its potential
satisfies the Monge Ampère équation considered in Theorem 7.8 outside
E. It follows from proposition 4.4 that the current TKE coincides with the
solution produced by Theorem 7.8.

The notes [ST], [TZ] announce a proof of the following properties, already
conjectured by [Ts], that TKE has locally bounded potential and satisfies
the degenerate Monge-Ampère equation considered in Theorem 7.8. Our
Theorem 7.8 in this case gives the precision that TKE has continuous po-
tentials.

Example 7.10. A nodal sextic threefold is of general type, Gorenstein, ter-
minal, is its own canonical model, has no smooth minimal model and does
not have quotient singularities. Therefore the orbifold method of [Ko] does
not work and [Ts] does not apply.

7.4. Singular KE metrics on klt pairs. Let us now state the immediate
generalization to klt pairs.

Definition 7.11. Let (V,∆) be a klt compact Kähler pair.
The pair (V,∆) is said to be Q-CY, iff there is some multiple N ′ of

index(X,∆) such that H0(V,OV (N ′(KV + ∆))) = Cα where α is a global
generator of OV (N ′(KV + ∆)).

The pair (V,∆) is canonically polarized iff KV + ∆ is ample.
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Theorem 7.12. Let (V,∆) be a klt compact Kähler pair.
If (V,∆) is Q-CY it carries a singular Ricci flat metric with adapted

volume form in any Kähler class of V , this current being smooth outside
∆ ∪ V sing if V projective and the Kähler class is rational.

If it is canonically polarized it carries a unique singular KE metric in the
cohomology class of KV + ∆, regular outside ∆ ∪ V sing.

Proof. For regularity on the smooth locus, we need the full statement of
Theorems 3.5 and 4.5, poles included. �
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