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ABSTRACT: Simulation of the forming processes of thin composite structures is
necessary at the design level in order to check the feasibility of the shape and to know
the position of the reinforcements. A finite element analysis of fabric shaping process
needs the knowledge of the mechanical behavior of the woven reinforcement. This
behavior is non linear because of the shape variation of the weaving pattern when it
is loaded. Experimental results are obtained from biaxial tests in the case of balanced
and unbalanced fabric. A constitutive model consistent with the geometry of the
woven pattern is proposed. It is based on experimental results achieved by biaxial
tensile tests. 3D simulations of the unit woven cell submitted to biaxial tensions are
also performed and compared to experiments.

INTRODUCTION

WHEN MANUFACTURING THIN composites, complex shapes can be
formed using a single operation. Both thermoset and thermoplastic

matrices can be used. Thermoset prepreg fabric can be draped before
polymerization of the matrix. The resin transfer molding (RTM) process is
an alternative approach enabling automation. A resin is injected into a
fabric preform previously shaped by a deep drawing operation [1]. Some
advantages of thermoplastic matrices include possible recycling and shorter
process cycle times [2]. Plane plates made of thermoplastic resin and long
fiber reinforcements can be shaped at high temperature [3]. These different
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forming processes are based on the large formability of fabrics. Constitutive
models of fiber fabric are necessary when a finite element approach is
used to simulate the forming process in order to check its feasibility. This is
not the case when fishnet algorithms are used [4]. In these methods
the results do not depend on the fabric behavior and it is a drawback
of such approaches. The objective of this paper is to present a study of the
mechanical behavior of the fiber fabrics used as composite reinforcements.
Mechanics of fiber fabrics is a three-scale problem. At macroscopic scale,
the fabric is considered as a continuous medium neighboring a surface in
the 3D space. Finite element analyses and especially simulations of forming
processes (which are our objective) are made at this scale. At an inter-
mediate scale (mesoscopic), the change of shape of the elementary woven
pattern leads to geometrical nonlinearities. This phenomenon is biaxial
accounting for the weaving of warp and weft yarns. Finally the yarns are
made of single filaments (microscopic scale). The shape of the yarn cross
sections is mainly influenced by the laying out of the filaments and by their
contact and friction during tension of the fabric. The fabric macroscopic
behavior results from these phenomena at a lower scale that lead to a non-
linear behavior.

The first goal of the paper is to present an experimental study of the
mechanical behavior under biaxial tension. Experimental results are
obtained for a set of fiber fabric reinforcements that show the consequences
of undulations and interactions at the mesoscopic scale. From those
experimental results a constitutive model is written and identified. This
model ensures the non-penetration of the yarns during the deformation
contrary to other models [5,6]. This constitutive model can be used in the
formulation of finite elements specific to fiber fabrics [7]. Two forming
simulation examples using such elements are finally presented.

FIBER FABRIC MECHANICAL BEHAVIOR

The present study focuses on the forming stage of the RTM process
(manufacture of the preform), consequently, the fiber fabrics under
consideration are among those used in this process, mainly in the field of
aeronautic applications. They do not include any resin (which is injected
after the forming stage).

Studies about woven composites, i.e., matrix reinforced by fabrics, are
numerous ([9] for example). Generally, they aim at defining the character-
istics of an equivalent homogeneous material [10] and forecasting the matrix
damage under high load [11]. In contrast, the mechanical behavior of dry
fabrics is less studied [5,12]. The deformation modes of a fabric during a
shaping process are very different of those of a metal blank during a sheet
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metal forming process. That is the reason why the numerical codes which
are now very efficient for sheet metal forming, cannot be used in case of
fabric forming. The specific behavior of woven reinforcements is a
consequence of the possible motion between the yarns themselves and
between the numerous small fibers constituting a yarn. The cross section of
these fibers is very small and each fiber has a very weak bending and
compressive stiffness. Consequently, these yarn properties are negligible in
comparison to the tensile stiffness. Due to the possible rotations between
warp and weft yarns, the dry fabric has no in-plane shear stiffness and large
angular variations between warp and weft directions are allowed. Those
variations are large (45� in Figure 1) and can reach 60� in some cases. This
deformation is the principal mode that allows one to obtain doubly curved
shapes. The evolution of a straight line grille drawn on the fabric prior to
shaping is shown in Figure 1. The drawn lines become curved but remain
continuous. Taking into account that these lines have been drawn
alternatively on warp and weft yarns, it can be deduced that two initially
superimposed yarns remain superimposed during the deformation process.
One of the main consequences of this continuous behavior is the possibility
to use a classic Lagrangian finite element approach for the surface domain
of the fabric.

Global equilibrium on the initial configuration is classically written:

Z
�0

S: �Eð�Þ dV0 �
Z
�0

f0 � � dV0 þ
Z
�t0

t0 � � dA0 ¼ 0 ð1Þ

8� virtual displacement equal to zero on �u, part of the frontier with
prescribed displacements. f0 are body loads in �0 and t0 are surface loads on
�t0 , part of the frontier with prescribed efforts. �Eð�Þ is the variation of
the Green-Lagrange deformation tensor E in the virtual displacement �.
S denotes the second Piola-Kirchhoff stress tensor.

Figure 1. Deformation of the fabric [8].
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Considering an elementary pattern in its initial position and denoting
h10 and h20 the unit vectors in the warp and weft directions, respectively
(Figure 2), and considering that the yarns have only tensile stiffness, the
Lagrangian tensile tensor of second order T is defined by:

T ¼ T11h10 � h10 þ T22h20 � h20 ðT11 andT22 � 0Þ ð2Þ
with

T11 ¼
Z
A10

S11dA0, T22 ¼
Z
A20

S22dA0

where A10 and A20 are the cross sections of yarns directed by h10 and h20. T
11

and T22 are the moduli of the efforts along warp and weft yarns. n cell
denotes the number of elementary cells of the structure. We note W the
lagrangian tensor of second order like:

pW ¼ pW11 ph10 � ph10 þ pW22 ph20 � ph20 ð3Þ

with

pW11 ¼ pT11 pL01 ,
pW22 ¼ pT22 pL02

The global equilibrium on the initial configuration can be written in the
following simplified form [13]:

Xn cell

p¼1

p�E11ð�Þ pW11þ p�E22ð�Þ pW22 �
Z
�0

f0 � � dV0 �
Z
�t0

t0 � � dA0 ¼ 0 ð4Þ

8�=� ¼ 0 on �u where h�0 � h�0 ¼ ��� and p�Eð�Þ ¼ p�E��ð�Þ ph�0 � ph�0

Figure 2. Elementary woven pattern.
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BIAXIAL TENSILE TESTS

In the previous approach the mechanical behavior of the fabric is defined
by the biaxial relation between the weft and warp tension and strains.
Consequently, a biaxial tensile device is used in order to analyze and identify
the fabric behavior [6,14]. Presented in Figure 3, the device is made of two
deformable parallelograms. When the system is compressed, it generates
tensile deformation in each direction of the cross specimen put in the middle
of the device. One of the parallelograms has adjustable dimensions, in order
to set various deformation rates (the ratio is denoted by k). As stated
previously, the major mechanism of deformation consists of the angular
variation between the two weaving directions. So, a special system is
adapted on the device to adjust the tensile angle between warp and weft
yarns, in order to represent the real behavior of the fabric during the
shaping process.

The cross shaped specimen is well adapted to the biaxial test of fabrics
because of the lack of in-plane shear stiffness. Captors, set close to the
specimen, are able to give tension and deformation in both directions. Strain
measures are done by optical methods or by mechanical extensometers.
The optical measurements check the homogeneity of the strain field within
the active part of the specimen [15]. Both methods give equivalent global
results. The load-strain curves deduced from biaxial tests are presented in
Figure 4 for carbon fiber twill weave. This fabric is used in aeronautic
applications. A single set of curves is shown because this fabric is balanced
and the behaviors in warp and weft directions are equivalent. Due to
undulation variations, a nonlinear behavior is observed at the beginning of
the tensile test although the single carbon yarn has a linear response to
a tensile loading. Moreover, this nonlinear characteristic is biaxial because

Figure 3. Biaxial tensile device and cross specimen.
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it depends on the deformation rate. Thus, the behavior of yarns in one
direction is mainly influenced by the behavior of the yarns in the other
direction. The test has been continued until the fracture for k¼ 1. That
permits one to notice that the nonlinear part of the behavior (0.3% for the
carbon twill) is important in comparison to the strain at fracture (0.8%). A
second experimental result is given Figure 5 in case of a glass plain weave
fabric (also used in the field of aeronautic applications). This fabric is very
unbalanced and the curves in warp and weft are very different. Because the
stiffness of the yarn is much larger, the load/strain response in the warp
direction is not much modified by the strain in weft direction. Nevertheless,
the tensile behavior in the warp direction is much more non linear than
those of the warp yarn. In the weft direction, the behavior of the fabric is
mainly influenced by the warp strain ratio.

CONSTITUTIVE MESO-MACRO MODEL CONSISTENT
WITH THE GEOMETRY

The aim of this model is to simulate the behavior of fabrics in a finite
element code. It must therefore provide at the elementary yarn level the
nonlinear behavior rules between weft and warp tensions according to weft

Figure 4. Results for a twill of carbon (k is the warp/weft strain ratio).
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Figure 5. Biaxial tensile test on an unbalanced plain weave glass fiber fabric.
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and warp strains. The objective of the geometrically consistent model
presented hereafter is to take into account the geometrical nonlinearities,
which are mostly caused by undulation changes in the fabric at the local
level, so that the meso-macro behavior rules can be identified. The thread is
represented by its average line, which is described by a yarn type model.
Each fiber is considered as a tube, the transverse section of which is
described by two arcs with different radius. The geometrical parameters of
this second model are given on Figure 6. The static equilibrium of the yarn
gives tensions in the fibers directions as :

T1
f ¼ �pR12R11’12 T2

f ¼ �pR11R12’11 ð5a, bÞ

In the fabric directions tensions are then defined as: T�� ¼ T�
f cos ’1�

The thread distortions being light, the measure of the thread distortion is:

"�f ¼ ðL� � L�0Þ
L�0

"�� ¼ 1

2

a2� � a2�0
a2�0

� �
ð6a, bÞ

Experiments [6,16], as well as the finite element models at the thread level
[17] have shown the key role of fibers transverse strain in the undulation
changes of the fabric. This confirms that the transverse behavior rule is
crucial for the models under development. Experimental results also show
that the compression rule depends on at least two parameters: the
compression force undergone by the thread and the tension in the thread.
This behavior rule is extremely difficult to verify experimentally, but various
studies lead to an expression of the fabric transverse compression rule with
three parameters [17]:

� ¼ jz1 � z2j ¼ A ð2� e�BSp � e
� ~BB=ðT1

f
þT2

f
Þ=2Þ, z� displacement of M�

0 ð7Þ

Figure 6. Transverse cut of the model.
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The traction response rules are given by the biaxial trials.

T�
f ¼ g�ð"�f Þ ð8Þ

The model geometry provides the last equations defining the model [6].

z� ¼ Y� þYG0 � 1

S1� þ S2�
S1�R1�

2 sin3ð’1�Þ
3ðsin ð’1�Þ cos ð’1�Þ � ’1�Þ þ cos ð’1�Þ

� �� �

þ S2�R2�
2 sin3ð’2�Þ

3ð� sinð’2�Þ cosð’2�Þ þ ’2�
� cos ð’2�Þ

� �

ð9Þ

L� ¼ ’1�a�ðX�0 þ 1=2Þ
’1� cos ð’1�Þ þ 2X�0 sin ð’1�Þ ð10Þ

with

X�0 ¼ R1�0’1�0 cosð’1�0Þ
a�0 � c�0

Where Si�, Ri�, ’2�, Y� are current geometrical parameters (Figure 6) that
can be expressed according to ’1�, X�0 and a�.

The previous equations can be brought to the resolution of a two nonlinear
equation system, using a Newton method. Results obtained with this model
are consistent with the experimental results. They are very good at low
strains. These results are presented in Figure 7. A simpler model adapted
from Kawabatta’s has also been developed [5]. Results are once again
consistent with experimental results [6,16] but this simplified model
nevertheless shows its limits. More specifically, the interpolation of the
middle thread by the articulated straight segments does not prevent

Figure 7. Comparison model/experiment for a balanced plane weave.
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geometric penetration of the thread networks. Moreover, the identification
of the transverse behavior rule leads to parameters whose values are not
consistent with physics.

NUMERICAL SIMULATIONS AT MESO SCALE

Local information is difficult to be obtained experimentally. The 3D
simulations at mesh scale have two aims. First, it goals at analyzing the
micro and meso nonlinear phenomena influencing global behavior.
Moreover, it can allow defining the characteristics of a fabric prior to
design, from its components and weaving.

Because of the nature of the yarn, made of many fibers, and the resulting
lack of most stiffness, the problem is not classic. Calculations are carried out
in the field of great deformations. The chosen law is hypoelastic type. In
order to take into account the absence of some stiffness (in bending, shear
and compression), it was shown that shear moduli and Poisson’s ratios must
be equal to zero, and that transverse tensile moduli are negligible front of
tensile modulus in the yarn direction. But nil or nearly nil values of some
mechanical coefficients leads to numerical difficulties when used in
simulations. This is a phenomenon similar to the hourglass modes problems
encountered in the building of reduced-integration elements. Those modes
are, here, controlled by adding artificial stiffness that doesn’t influence the
solution. To take into account the possible displacement between the yarns,
the contact with friction is introduced with a master-slave approach.
Otherwise, Young’s moduli in transverse direction being very different of
the one in yarn direction, directions of anisotropy have to remain strictly in
material directions (the ones of yarns). This condition is fulfilled thanks to
reinforcements fixed to the elements in the yarn direction. The longitudinal
modulus is identified from a tensile test on a yarn. The transverse modulus is
given by the crushing law of the following form [17]:

E3 ¼ E" þ E0j"n33j"n11 ð11Þ

E0, m and n are three material parameters identified with a biaxial test k¼ 1,
using an inverse method. Simulations carried out on a plain weave fabric
pattern with symmetry boundary conditions made of glass fibers (Figure 8)
show a good agreement with experiments (Figure 9). Two local phenomena
can be observed:

. important undulation changes,

. a crucial role played by the transverse compressive behavior: the yarn
flattening can reach, values up to 40% (Figure 8).
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The study has been performed for other weaving patterns. It is also possible
to see the influence of some geometrical and mechanical parameters [17].

CONCLUSION

The specific constitution of fabrics and yarns implies any other stiffness
be negligibly compared to the tensile one. The mechanical behavior of
fabrics is then represented by the relation between the weft and warp
tensions and strains. A biaxial tensile device has been designed and allows to
determine experimentally this biaxial tensile law for any fabric. Two
numerical models of the biaxial behavior of fabrics can then be identified: a
3D finite element model of the pattern, that gave a lot of interesting local
data, and a meso/macro consistent model, the aim of which is to simulate
the behavior of the fabric in a finite element code. Both of them show results
that are consistent with the experimental results.
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