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Model reduction methods are usually based on preliminary computations to build the shape function of the reduced 
order model (ROM) before the computation of the reduced state variables. They are a posteriori approaches. Most of 
the time these preliminary computations are as complex as the simulation which we want to simplify by the ROM. The 
reduction method we propose avoids such preliminary computations. It is an a priori approach based on the analysis of 
some state evolutions, such that all the state evolutions needed to perform the model reduction are described by an 
approximate ROM. The ROM and the state evolution are simultaneously improved by the method, thanks to an adap-
tive strategy. Obviously, an initial set of known shape functions can be used to define the ROM to adapt. But it is not 
necessary. The adaptive procedure includes extensions of the subspace spanned by the shape functions of the ROM and 
selections of the most relevant shape functions in order to represent the state evolution. The hyperreduction is achieved 
by selecting a part of the integration points of the finite element model to forecast the evolution of the reduced state 
variables. Hence both the number of degrees of freedom and the number of integration points are reduced. To perform 
the adaptive procedure, different computational strategies can be developed. In this paper, we propose an incremental 
algorithm involving adaptive periods. During these adaptive periods the incremental computation is restarted until a 
quality criterion is satisfied. This approach is compatible with classical formulations of the equations.
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1. Introduction

The purpose of model reduction methods is to provide few shape functions in order to represent the spa-

tially distributed state of a system. The reduced order models (ROMs) are interesting to reduce the cost of

parametric studies on the state evolution of the system [1–4]. Moreover, if we assume that a ROM is con-
venient to perform a simulation and if the same ROM is used for another simulation corresponding to a

modification of the values of the parameter of the system, then the less this modification have influence

on the state evolution of the system the better should be the interest of the ROM. Obviously, the simplest

way to use a ROM for two different simulations is to use the same shape functions during all the state evo-

lution. Thus the shape functions of a ROM should enable to forecast large evolutions of the state variables.

In this paper, we focus on numerical simulations of problems described by a finite element model, which

provides the reference model. The problems we are interested in are non-linear and time dependent ther-

momechanical problems. The purpose of this paper is not to present an extension of the modal superposi-
tion method which is convenient to linear and time independent systems [5]. An analysis of tangent

spectrum methods can be found in [6]. For non-linear time dependent problems two main approaches

are used the Karhunen–Loève expansion and the balance truncation approach. Interesting overviews of

these methods can be found in [7–10]. The main point we want to address is the following: what kind of

model reduction method do we need to enable fast influence analysis corresponding to large variations

of the parameters of the reference model? This is a key point in the frame work of optimization of thermo-

mechanical systems. The answer we propose is an adaptive strategy. The method we are developing pro-

vides an estimated state evolution and builds an adapted ROM to perform this estimation.
The tangent spectrum approaches and the Karhunen–Loève one have a common pattern: they are a

posteriori approaches. The shape function of the ROM is built before the computation of the reduced state

variables thanks to preliminary problems. Moreover, the complexity of these problems and the complexity

of the reference problem are quite the same. In case of modal approaches, an eigenproblem involving all the

degrees of freedom of the reference model has to be solved in order to get the shape functions of the ROM.

In case of the Karhunen–Loève expansion several state evolutions must be forecast thanks to the full ref-

erence model with different values of system parameters. Then a signal processing [11] of all the forecast

state evolutions allows to defined shape functions corresponding to the most significant events involved
in these evolutions.

The adaptive strategy we propose allows to avoid the preliminary construction of the shape functions

before the computation of the reduced state variables. It is an extension of the Karhunen–Loève expansion

to obtain an a priori approach. Obviously, an initial set of known shape functions can be used, but it is not

necessary. All the state evolutions needed to perform the model reduction are described by approximate

ROMs. The adaptive procedure includes extensions of the subspace spanned by the shape functions of

the ROM and selections of the most significant shape functions in order to represent the state evolution.

These selections are obtained by the Karhunen–Loève expansion applied on the reduced state variables.
Finally, the classical Galerkin formulation is not the best way to define some governing equations that

the reduced state variables must satisfy. The Garlerkin procedure provides orthogonality conditions that

must be fulfilled by the residuals of the balance conditions of the reference model. But for non-linear time

dependent problems no orthogonal condition has a strong physical meaning. The reason is that there is no

unique definition of an inner product between two state evolutions. Otherwise, in the framework of the con-

trol of complex systems, it is sufficient to observe only few state variables for the automatic control of a

system. The choice of control variables leads to the study of observability criterion [12] and balanced trun-

cation approaches in the framework of model reduction methods [8,9]. The same kind of control variables
are also used to study the correlation between experimental eigenmodes and computed eigenmodes. In such

cases, the inner products are defined only on a part of the state variables of the system. The choice of the

control variables among the state variables of the reference problem and the Galerkin projection leads to
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the hyperreduction. We then obtain a number of governing equation equal to the number of the reduced

state variables. But only the integration points connected to the control variables have a contribution in

these governing equations. So, both the number of degrees of freedom and the number of integration points

are reduced to forecast the state evolution.

Despite the a priori hyperreduction method (APHR method) can be applied to various kind of non-lin-
ear problems we illustrate its implementation with a simple non-linear thermal problem. Different ROM

adaptive strategies can be developed with the APHR method. The common items of such strategies are:

� a ROM always defined over the entire time interval;

� an extension of the subspace spanned by the shape functions of the ROM;

� a selection of shape functions based on a Karhunen–Loève expansion of the evolution of reduced state

variables;

� and a formulation of balance equations restricted to few control variables in order to compute the
reduced state variables.

The simplest way to present the strategy is to consider that no ROM is known to initialize the adaptive

strategy. A general formulation of the non-linear time dependent problems is chosen to describe the APHR

method. An example of such problem, a transient thermal problem, allows to illustrate the capabilities of

the reduction method we proposed. After some examples of profits in terms of floating point operations

(FLOPs), a learning strategy is presented. This strategy corresponds to the previous strategy used with a

previously identified ROM to initialize the adaptive procedure. Other examples of profits illustrate the
interest of this learning strategy.
2. Finite element model and reduced state variables

2.1. The formulation of the reference model

The purpose of this section is to define the equations of the reference model. In the framework of ther-
momechanic simulations, the state variable s could be a displacement field or a temperature field defined

over the structure X. The finite element method allows to describe this state variable thanks to shape func-

tions Ni and nodal degrees of freedom qi such that:
s x; tð Þ ¼
Xi¼en
i¼1

Ni xð ÞqiðtÞ 8x 2 X; 8t: ð1Þ
The physical meaning of the shape function Ni is quite poor. The state evolution is described by the value of

the degrees of freedom at different time instants tj 2{t1,. . .,tm} such that:
qiðtÞ ¼ qi tj
� � tjþ1 � t

tjþ1 � tj
þ qi tjþ1

� � t � tj
tjþ1 � tj

: ð2Þ
A column q
j of state variables at the time instant tj can be define such that the ith component of qj is qi(tj).

Let us assume that a numerical scheme is used for the time integration of the balance equations. Then the

following formulation of the balance conditions is obtained:
q
1
¼ qini; ð3Þ

F int q
jþ1

; q
j

� �
¼ F ext q

jþ1
; q

j
; tjþ1

� �
8j ¼ 1 . . .m� 1; ð4Þ
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Fint corresponds to the Galerkin formulation of the internal generalized forces and Fext corresponds to the

loading and the boundary conditions applied on the structure X. Fint, Fext and q have the same size. Each

line of the system of Eq. (4) corresponds to a local balance condition. A step by step approach is used: we

forecast qj+1 for a known q
j.

Each current ROM considered in this paper is defined over all the time interval. The prediction
ðqðnÞ

j
Þj¼1...m is the one obtained with the nth ROM proposed by the reduction method. If an implicit and iter-

ative algorithm is used to resolve (4), we only consider the last result obtained by this iterative algorithm.

This iterative algorithm could be a fixed point algorithm, a Newton algorithm, an Usawa algorithm or a

LATIN one. The way the balance conditions are fulfilled can be checked with the residual Rjþ1ðqðnÞjþ1
Þ defined

by:
Rjþ1 qðnÞ
jþ1

� �
¼ F int qðnÞ

jþ1
; qðnÞ

j

� �
� F ext qðnÞ

jþ1
; qðnÞ

j
; tjþ1

� �
: ð5Þ
An estimated state evolution ðqðnÞ
j
Þj¼1...m is convenient if the following quality criterion is satisfied:
Rjþ1 qðnÞ
jþ1

� ���� ��� < �R max
p�j

F ext qðnÞ
jþ1

; qðnÞ
j
; tjþ1

� ���� ���� �
8j ¼ 1 . . .m� 1; ð6Þ
where the norm iÆi is the euclidian norm such that iqi2 = qTq. If a tangent matrix Kj+1 can be defined the

following property is fulfilled:
lim
�!0

Rjþ1 qðnÞ
jþ1

þ � dq
� �

¼ Rjþ1 qðnÞ
jþ1

� �
þ �K

jþ1
dq 8dq: ð7Þ
The shape functions ð/ðnÞ
k Þk¼1...r of the nth ROM are deduced from the shape functions of the reference

model thanks to a basis reduction matrix A(n). The kth shape function /ðnÞ
k is a field of the same kind as s

and it is defined by the kth column of A(n) such that:
/ðnÞ
k ðxÞ ¼

Xi¼en
i¼1

NiðxÞAðnÞ
i k : ð8Þ
The variables aðnÞk ðtÞ are the reduced state variables of the reduced problem such that:
qðnÞi ðtÞ ¼
Xk¼r

k¼1

AðnÞ
i k a

ðnÞ
k ðtÞ; ð9Þ
which leads to:
qðnÞ
j

¼ AðnÞ aðnÞj 8j: ð10Þ
Since the current ROM is always defined over the entire time interval it is easy to define a prediction over

the entire time interval even if the incremental computation of the state evolution has been done only over

the time interval [t1,tj+1]. To do so we can choose:
aðnÞp ¼ aðnÞjþ1 8p > jþ 1: ð11Þ
Obviously it is not the best estimation of the state evolution.
2.2. A simple transient thermal problem

To illustrate the implementation of the APHR method, a simple transient thermal problem is studied.

The temperature is the state variable. We consider a bar with a fiber inside (Fig. 1). On the face Cc of

the bar (Fig. 1) the heat transfer is governed by conductivity coefficient h = 800 and a given temperature
4
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Fig. 1. Transient thermal problem: a bar with a fiber (7840 FE degrees of freedom and 6691 elements).
Tc(t). On the other faces of the bar the heat flux is equal to zero. Around the fiber the material has prop-

erties close to the properties of steel 42CrMo4. The thermal capacity C and the conductivity k are temper-

ature dependent.

The time interval is regularly split into 50 time steps. The time integration scheme is the implicit forward

Euler scheme. The elements chosen for the mesh are hexagonal ones with eight nodes and one integration
point. The column q contains the nodal temperatures of the considered mesh.

Thanks to a classical Galerkin projection we can define Fint and Fext such that:
q� T F int q
jþ1

; q
j

� �
¼

Z
X
T � qCðT Þ _T dXþ

Z
X
Grad
���!ðT �Þ kðT ÞGrad���!ðT Þ dX 8q�; ð12Þ

q� T F ext q
jþ1

; q
j
; tjþ1

� �
¼ �

Z
Cc

T � h T � T cð ÞdC 8q� ð13Þ
with t = tj+1, T ðx; tÞ ¼
Pi¼n

i¼1NiðxÞqiðtÞ and T �ðxÞ ¼
Pi¼n

i¼1NiðxÞq�i .
3. An adaptive strategy

3.1. From the mesh adaptivity to the ROM adaptivity

The adaptive strategy must precise when the state variables should be computed, when the quality of the

forecast state should be checked and when the model should be adapted. The ROM adaptation is a shape

function adaptation as well as a mesh adaptation. There are various adaptive strategies proposed in the

framework of mesh adaptivity in order to master the quality of the finite element shape functions Ni(x).

The same strategies can be applied to perform the ROM adaptivity in order to master the quality of the

shape functions /k. Since the finite element model remains unchanged during the reduction procedure,
we only adapt the basis reduction matrix A.

In the framework of adaptive strategies, only a posteriori approaches are used to check the quality of

shape functions. This means that the quality criterion is applied on a known state evolution. This state evo-

lution can be forecast over several time steps [ta,ta+b] before the quality is checked. If the quality of the esti-

mation of the state evolution is convenient the step by step computation of the state variables can be

pursued without any adaptation. But, if it is not the case, ta is the beginning of an adaptation period

and different decisions are possible. Each choice leads to define an adaptive strategy (Fig. 2).

� Strategy Str1: b is small, the shape functions are adapted, the state description at time instant ta+b is

updated and the step by step computation is pursued on ta+b + 1.
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Fig. 2. Adaptive strategies.
� Strategy Str2: whatever b is, the shape functions are adapted, the state description at time instant ta�1 is

updated and the step by step computation is restarted on t = ta;

� Strategy Str3: a = 1 and b = m, the shape functions are adapted and the step by step computation is

restarted on t = t1.

The strategy Str3 is implemented in [13] for explicit computations. It is also very convenient for non-

incremental computations thanks to the LATIN method [14]. An example of mesh adaptivity procedure
based on the LATIN method and the strategy Str3 can be found in [15] for viscoplastic problems. As shown

in [16] the LATIN method can be considered as an a priori method for model reduction which can be

optimized thanks to the Karhunen–Loève expansion. Moreover, the hyperreduction can be applied on such

an approach. But an important drawback of this kind of non-incremental approach is the formulation of

the balance conditions, which is not a classical one. So the tangent stiffness matrix does not correspond to

tangent stiffness matrix of the classical incremental formulation.

The first strategy is convenient for explicit time integration scheme. A recent example can be found in

[17] for transformations involving large elastoplastic deformations with damage (simulation of orthogonal
cutting). An other example of implementation of such a strategy can be found in [18]. It is applied to strain

localization phenomena with an ALE analysis and an explicit dynamics scheme. But it does not allow to

master the quality of the forecast state evolution because some errors at time instant ta+b could not be re-

duced by any adaptation of the shape functions on further time instants.

Thanks to the strategy Str2 we tend to really master the quality of the shape functions as b decreases. We

choose this strategy to master the quality of the ROM. Between two quality check the state evolution is

forecast thanks to the current ROM and thanks to reduced number of integration points. To reduce the

number of computation of the residuals (5) on all the integration points, b should be as large as possible.
In practice, for the first computation of the reduced state variables during the current adaptation period

[ta, ta+b], we choose b = 4. Then the computation is restarted for the first time with b changed into 2.

And after b = 0 until the quality criterion (6) is fulfilled at j + 1 = a + b. For the example of thermal prob-

lem, two convergence curves of residuals are shown in Fig. 3:
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Fig. 3. Examples of computations of the residuals of all the balance conditions of the reference model.
� one obtained by a classical Newton–Raphson incremental resolution of the finite element problem;

� and an other one obtained by the APHR method with very convenient initial shape functions.

During the APHR resolution the residuals of all the balance equations are checked only for the quality

control. Thanks to the adaptation of the shape functions of the ROM these residuals decrease.

When the shape functions of the ROM are adapted such that A(n) becomes A(n+1), then we can define an

intermediate update of the reduced state variables aðnþ1=2Þ
j such that the estimation of the state evolution

tends to be unchanged. This intermediate update is not the best one according to the equations of the ref-
erence problem. In the framework of mesh adaptation it corresponds to the projection of the state variables

defined on the old mesh, onto the new adapted mesh. If the computation is restarted on the interval [ta,ta+b]

then we obtain new updated reduced state variables aðnþ1Þ
j for any j such that a � j � a + b. But over [t1,ta�1]

the updated reduced state variables aðnþ1Þ
j are equal to the intermediate ones aðnþ1=2Þ

j . If the computation is

not restarted then: aðnþ1Þ
j ¼ aðnþ1=2Þ

j 8j6 aþ b.

3.2. The subspace expansion by Krylov subspaces

A Krylov subspace is defined by a matrix, a vector and the size of this subspace. Usually, the vector and
the matrix. respectively, correspond to a residual of balance equations and a tangent stiffness matrix. Let us

denote Y1 this vector and K the matrix. A Krylov subspace is spanned by the vectors (Yi)i=1. . .m such that

Yi = KYi�1 for i > 1.

We choose:
Y 1 ¼ Rjþ1 qðnÞ
jþ1

� �
: ð14Þ
And, as proposed in [19,20], the following difference provides the vectors Yi+1 with a matrix-free approach:
Y iþ1 ¼ Rjþ1 qðnÞ
jþ1

þ �Y
qðnÞ
jþ1

��� ���
Y ik k Y i

0
@

1
A� Rjþ1 qðnÞ

jþ1

� �
: ð15Þ
If a tangent stiffness matrix exists and if �Y is small enough, then the vectors (Yi)i=1. . .m tend to span a

Krylov subspace. In practice, we choose �Y = 0.01 and m = 3.
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Fig. 4. Example of a residual field on the face Cc of X for the thermal problem.
The shape functions corresponding to the vectors (Yi)i=1. . .m are rarely smooth. In Fig. 4 an example of

such a shape function is shown in the case of the 3D transient thermal problem. The state evolution we

want to forecast with the ROM is smoother than the shape functions corresponding to the vectors

(Yi)i=1. . .m. So, how can we obtain smoother shape functions?

Krylov subspaces are widely used for reduction methods. But none of them directly uses the vectors

(Yi)i=1. . .m to define the shape functions. For example, in the case of the modal superposition methods where

the eigenmodes are computed by the Lanczos algorithm [21], the shape functions are the eigenmodes. And

these shape functions are defined thanks to Krylov subspaces according to the Lanczos algorithm. An
example of such an approach applied to linear or non-linear problems can be found in [22]. In the frame-

work of non-linear time dependent problems, some extended conjugate gradient methods were proposed to

represent the forecast state evolution by a superposition of shape functions defined thanks to Krylov sub-

spaces [20,23]. For these methods too, the shape functions do not directly correspond to the vectors defining

the Krylov subspaces. An orthogonalization procedure is used to build them. In other cases of reduction

method the shape functions are defined by some Arnoldi vectors [24,25].

In the framework of non-linear problems we do not expect any orthogonal property, or any uncoupled

governing equations. The reduced state variables can be forecast even if the reduced governing equations
are coupled. So, even if the vectors (Yi)i=1. . .m are not smooth enough, we propose to use them directly to

define new shape functions for the adapted ROM. We expect from the Karhunen–Loève expansion to

improve the shape of theses shape functions.

Few remarks:

� If the vectors (Yi)i=1. . .m are not independent we recommend to use m = 1. We have never met this problem
yet with the APHR method.

� All the integration points are needed to compute each residual but this subspace creation is highly par-

allelizable [23].

� The Krylov subspaces allow to take into account coupling terms in an easy way, even if we consider

multiphysic simulations. In this case the residuals define multiphysic shape functions.
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� The incremental approach based on Krylov subspaces proposed in [23,20] are more computational meth-

ods than model reduction methods, and they are proposed as computational methods.

3.3. The selection of the most relevant shape functions

The Karhunen–Loève expansion [26,27], named also the proper orthogonal decomposition [1], is widely

used for a posteriori model reduction of non-linear time dependent problems. The first works about this

approach deal with weather prediction [28] thanks to a statistical analysis of experimental data (pressures

and temperatures). The most popular approach seems to be the snapshot POD proposed in [29] because it is

based on smaller eigenproblem than the classical Karhunen–Loève expansion.

The main advantage of the Karhunen–Loève expansion is to provide shape functions corresponding to

the main events contained in known state evolutions. Usually the state evolutions used for the Karhunen–
Loève expansion are computed thanks to the reference model with different values of parameters. Let us

note si(x,t) the state variable corresponding to the ith study of the influence of some parameters. Let us

consider an inner product of two fields u(M) and v(M) defined over X: Æu,væ. Thanks to this inner product

the Karhunen–Loève expansion can be defined by a problem of optimization where a field /must maximize

its projection k(/) on all the fields spanned by the state variables si(x,t). k(/) is defined such that:
k /ð Þ ¼
X
i

Z tf

0

hsi; /i2

h/;/i dt: ð16Þ
This optimization problem leads to an eigenproblem. There are several solutions: the empirical eigenvectors

/k. To each /k corresponds the eigenvalue kk = k(/k). The empirical eigenvectors /k are sorted according to

the magnitude of the projections kk such that: k1 P k2 P � � �P kk� � �. An approximate state bsiðx; tÞ is pro-
vided with a truncated decomposition involving the first empirical eigenvectors such that:
bsiðx; tÞ ¼ Rk¼g
k¼1ak iðtÞ/kðxÞ with ak iðtÞ ¼

hsi; /ki
h/k; /ki

: ð17Þ
The higher is g, the better is the approximation of si(x, t) and the distance between bsi and si can be estimated

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk¼inf

k¼gþ1kk
q

.

To perform other state predictions corresponding to unstudied values of the parameters a ROM is built

by selecting a set of first empirical eigenvectors (/k)k=1. . .g as shape functions of the ROM. The smaller the

difference between the new values of the parameters, and the ones used for the Karhunen–Loève expansion

is, the better the quality of the ROM should be. But this method is not convenient for any adaptation of a

known ROM to any modification of some parameters of the reference model. Moreover, it is based on sev-

eral full finite element computations.

According to us, an approximate ROM can provide informations on what is significant on a state evo-
lution. Then the Karhunen–Loève expansion can be applied on the reduced state variables of such a ROM.

So, for the APHR method, the state variables we propose to consider are the reduced state variables of the

current ROM: a(n). Then the Rayleigh quotient we use is:
k Uð Þ ¼
Xj¼m

j¼1

aðnÞ Tj U
� �2

UTU
: ð18Þ
The eigenproblem is the following:
H ðnÞUðnÞ
k ¼ kðnÞk UðnÞ

k ; ð19Þ
9



where H(n) is the following covariance matrix:
H ðnÞ ¼
Xj¼m

j¼1

aðnÞj aðnÞ Tj : ð20Þ
The empirical eigenvectors UðnÞ
k belong to the space of the reduced state variables of the current ROM. A set

of first empirical eigenvectors defines a selection matrix V(n) such that:
V ðnÞ ¼ UðnÞ
1 ; UðnÞ

2 ; . . . ;UðnÞ
g

h i
: ð21Þ
To get the main significant part of the empirical eigenvectors, g, is such that:
kðnÞg P 10�8 kðnÞ1 : ð22Þ
The selection matrix defines a subspace of the space of the reduced state variables. The shape functions cor-

responding to this subspace are obtained by the following product: A(n) V(n). We think that thanks to the

Karhunen–Loève expansion these shape functions have a better physical meaning than the shape function

of the current ROM.

Few remarks:

� As for the snapshot POD the size of the covariance matrix is small. It is less than 100 in practice.

� Obviously, since H(n) is a real symmetric matrix, the matrix V(n) TV(n) is diagonal.

� Thanks to the link between the eigenvectors of the covariance matrix H and the singular value decom-

position of the state matrix ½aðnÞ1 ; aðnÞ2 ; . . . ; aðnÞm � [30], it can be proved that g is lower than m which is

assumed to be lower than the number of the finite element degrees of freedom. So, the size of the

ROM depends on the complexity of the state evolution and does not depend on number of degrees

of freedom of the reference model (if ~n is higher than m).

� The correlations between the shape functions of the ROM are not explicitly taken into account with the
proposed Karhunen–Loève expansion, but the computation of the reduced state variables takes into

account the non-linear coupling between these shape functions.

3.4. Adaptation of the shape functions

The adapted ROM is defined thanks to the new vectors (Yi)i=1. . .m and thanks to the selection matrix V(n)

such that:
Aðnþ1Þ ¼ AðnÞ V ðnÞ ;
1

Y 1k k Y 1; . . . ;
1

Y mk k Y m

� 	
: ð23Þ
The intermediate updated variables are chosen such that each contribution of the new shape functions
ð 1
kY kk

Y kÞk¼1::m is equal to zero. This way, we obtain:
aðnþ1=2Þ
j ¼

V ðnÞ T V ðnÞ
� ��1

V ðnÞ T aðnÞj

0

..

.

0

2
666664

3
777775: ð24Þ
The norms of the empirical eigenvectors are such that the norms of the columns of the matrix A(n+1) remain

equal to 1. The vectors (Yi)i=1. . .m are going to be modified by the next selection matrix V(n+1) of the next

ROM adaptation.
10



4. The hyperreduction of the balance conditions

The purpose of this section is to define control variables for the formulation of the governing equations

of the ROM. According to the Galerkin projection, the balance equations can be formulated with test func-

tions corresponding to test columns q* such that:
q� T F int q
jþ1

; q
j

� �
¼ q� T F ext q

jþ1
; q

j
; tjþ1

� �
8q�; 8j ¼ 1 . . .m� 1: ð25Þ
For the current ROM the Galerkin projection provides the following balance equations:
AðnÞ T F int AðnÞ aðnÞjþ1; A
ðnÞ aðnÞj

� �
¼ AðnÞ T F ext AðnÞ aðnÞjþ1; A

ðnÞ aðnÞj ; tjþ1

� �
8j ¼ 1 . . .m� 1: ð26Þ
This means that the residuals Rjþ1ðAðnÞ aðnÞjþ1Þ must be orthogonal to the space spanned by the shape func-

tions of the current ROM. Obviously all the balance conditions are not checked if the number of shape

functions of the ROM is lower than the number of shape functions of the reference model. Moreover, each

shape function of the ROM is a global field defined over all the structure X. So to a line of the system of
equations (26) corresponds a global balance equation. But we want to satisfy all the local balance condi-

tions of the reference problem according to the criterion (6). This is possible only if the shape functions

of the ROM are convenient ones.

In the frame work of linear problems with a symmetric definite and positive matrix, the Galerkin pro-

jection corresponds to an optimization of the reduced state variables according to a global energy criterion.

And this optimization leads to an orthogonal property. But no orthogonal condition has a strong physical

meaning for the problems we are interested in. The same lack of orthogonal property of global fields ap-

pears in the frame work of correlation studies between an experimental modal analysis and an analytical
modal analysis. Let us consider a linear mechanical system. Two analytical eigenmodes Wk and Wp are

orthogonal vectors such that:
WT
k MWp ¼ dk p; ð27Þ
where M is the mass matrix of the finite element model of the mechanical system and dk p is the delta Kro-

necker. The experimental analysis leads to define the experimental values corresponding to the degrees of
freedom of any experimental eigenmode k: Wk exp. Let us imagine that sensors allow to observe all the accel-

erations corresponding to the degrees of freedom of the model. Then the modal assurance criteria (MAC)

[31] based on the mass matrix M is very convenient to perform the correlation analysis, such that:
MACk p ¼ WT
k expMWp: ð28Þ
But in practice it is not possible to observe the acceleration corresponding to all the degrees of freedom of

the finite element model. Let us assume that a restricted part of these degrees of freedom is observed. This

observed part, bWk exp, is defined by a matrix P such that:
bWk exp ¼ P Wk exp: ð29Þ
Then, in practice, the MAC can be:
dMACk p ¼
1

P Wk exp

��� ��� P Wp

��� ��� WT
k exp P

T P Wp: ð30Þ
If there are enough sensors at convenient places, then the correlation analysis can be achieved [32]. The

more j dMACk pj is close to 1, the better the correlation is. As a conclusion, the inner product is defined by

the matrix PT P instead of the mass matrix. Moreover, the key point of this approach is not the orthogo-

nality condition but concerns the recognition of the shape of global fields thanks to few control variables.
11



For the non-linear problems, we are interested in, we can consider that we must ‘‘recognize’’ the state of

the system thanks to a linear combination of global shape functions according to balance conditions. So, we

choose to check only few balance equations to find the reduced state variables of the current ROM. These

checked equations are obtained by a matrix P such that a restricted part of test variables bq�
is considered as

control variables:
q� ¼ PT bq� 8bq�
; ð31Þ
where P is full of zeros excepted a one per line such that bq�
is a part of q* with:
bq� ¼ P q�: ð32Þ
In practice, we choose more checked balance equations than shape functions of the current ROM. But

finally the number of reduced balance conditions and the number of reduced state variables are the same by

choosing:
q� ¼ PT P Aa� 8a�: ð33Þ
We then obtain the following balance conditions:
AT PT P F int Aajþ1; Aaj
� �

¼ AT PT P F ext Aajþ1; Aaj; tjþ1

� �
8j ¼ 1 . . .m� 1: ð34Þ
The control variables are the finite element degrees of freedom of control nodes. Only few elements are di-

rectly connected to these control nodes. Let us XR be the reduced integration domain defined by these ele-

ments. The other elements of the mesh do not have any contribution to the formulation (34). So, we only

use the integration points of XR to perform the hyperreduction. The list of control nodes is defined after
each adaptation of the ROM by a loop on the shape functions. First, we compute a local average of the

norm of the gradient of each shape function on each node of the mesh. Then, for each shape function,

we add to the list a node which does not belong to this list, where the maximum of the norm of the gradient

is reached. Thanks to this procedure all the shape functions should be observable with the control variables.

Few remarks:

� In practice, the product P F is implemented as a selection of lines of F.

� The tangent stiffness matrix KAj+1 (35) of the reduced governing equations is not symmetric and it is a

full matrix. But in practice its size is lower than 100.
K
A jþ1

¼ AT PT P K
jþ1

A: ð35Þ
� If ATPT P Fext is equal to zero, we must add to the list of control nodes some nodes connected to the

loading conditions.
5. First examples of reduction of floating point operations

5.1. Computational savings over the reference simulation

We propose to study the influence of the number of FE degrees of freedom ~n and the required precision

�R (6) on the computational savings provided by the APHR method. Five different meshes are considered.

From a mesh to another there is the same ratio of elements in the 3 directions. The number of FE degrees of

freedom of each mesh, M1 M2 M3 M4 M5, are, respectively, 980, 2025, 3872, 7840, and 16,200. The mesh
M3 is the one shown on Fig. 1.

An estimation of the computational savings over the reference simulation is obtained by the number of

FLOPs needed to forecast the state evolution over [t1,tm], according to the quality criterion (6) thanks to the
12
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reference model divided by the number of FLOP needed to forecast the state evolution over same time

interval according to the same quality criterion thanks to the APHR method. The FLOP reduction coef-

ficient is denoted G:
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herma

(T)

(T)

able 2

ateria

round

n the fi
G ¼ EF FLOP

APHR FLOP
: ð36Þ
Thanks to the Matlab software version 5.2.1, we are able to get the number of FLOP involved in a com-

putation. So, both APHR method and finite element method where implemented with Matlab.

5.2. The initial ROM

We have to choose a set of initial shape functions in order to define the matrix A(0). It can be a unique

shape function to represent the initial state of the structure. In practice, if we do not know any approximate

state of the non-linear problem we want to study, we add a shape function in order to represent the state of

the linearized problem at the beginning of the time interval.

5.3. Some details of the main results provided by the APHR method

Let us consider the finite element model obtained with the mesh M3 (7840 FE degrees of freedom) with
material properties described by the Tables 1 and 2 such that eT 1 ¼ 25 �C, eT 2 ¼ 700 �C. A 3D state evolu-

tion is obtained with properties of the fiber different from the ones of the material around it (Table 2).

The initial temperature of the bar is Tini = 25 �C. During the 25 first time steps the boundary condition

Tc is equal to 700 �C and after it is equal to 25 �C. So the time interval involves two transient responses. In

Fig. 5 the temperature field corresponding to the 3D problem is shown for different time instant, on the face

Cc and on the face Cxz.

161 adaptations are performed to build the ROM and to forecast the state variables over [t1,tm]. In Fig. 6

the evolution of a and r – the number of shape functions of the current ROM – is shown at the end of each
adaptation period. The Karhunen–Loève selection is not applied if r < 7. For r P 7 the size of the ROM is

strongly connected to the number of computed time steps (a + b) and to smoothness of the state evolution.

The more important the state evolution is during an adaptation period the more important is the number of
l capacity and conductivity

T < eT 1
eT 1 6 T 6 eT 2 T > eT 2

C1 C1

eT 2 � TeT 2 � eT 1

þ C2

T � eT 1eT 2 � eT 1

C2

k1 k1
eT 2 � TeT 2 � eT 1

þ k2
T � eT 1eT 2 � eT 1

k2

l parameters

C1 (J kg
�1 K�1) C2 (J kg

�1 K�1) k1 (W m�1 K�1) k2 (W m�1 K�1

the fiber 500 700 50 25

ber 570 707 110 85
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Fig. 5. Temperature fields at different time instants obtained by the APHR method.
adaptations of the ROM during this period and the higher are the norms of the residuals. Fig. 7 represents

the evolution of kRaþbðqðnÞaþb
Þk at the end of each quality check.

For this example, the size of the matrix H(n) and the number of equilibrium conditions (34) are always

lower than 35. When quality criterion is fulfilled on the entire time interval, the ROM is defined by only 32

shape functions in stead of 7840 finite element ones. As expected, in Fig. 8 we can see that the shape func-

tions are global. Moreover, the first ones are as smooth as the temperature field despite the residuals are
not. This means that the Karhunen–Loève selection improves the shape functions of the ROM. The other

shape functions allow to take into account local events.
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Fig. 6. Size of the ROM (r) and evolution of a during the APHR procedure.
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Fig. 7. Evolution of the norm of the residuals during the APHR procedure.
During the last adaptation period the reduced integration domain XR involved only a selection of 326

elements (Fig. 9) instead of 6691 elements for the full finite element model. The spatial distribution of

the elements of XR seems to correspond to the position of the main transformations.

Finally, the FLOP reduction is: G = 24. Despite the reference model is not a large one (only 7840 un-

knowns) the reduction of floating point operations is really interesting.

For the next numerical results, a 1D state evolution has been also considered. It is obtained by the 3D

model with the properties shown in Table 3.

5.4. Numerical analysis of the complexity of the APHR method

What we expect from a model reduction method is to provide increasing computational savings while the

size of the reference model increases. Since there is 50 time steps, according to the Karhunen–Loève selec-

tion the number of shape function of the ROMmust be lower than 53 (m = 50 and m = 3) for any mesh. This
15



Fig. 8. First and 29th shape functions obtained by the APHR method.
is confirmed by Fig. 10 for the five meshes M1, M2,. . .,M5. More shape functions are needed to represent

the state estimated with �R = 10�2 than the one obtained with �R = 10�4 because the selection criterion does

not depend on �R and the state evolution if smother for the second case than for the other one. For this

thermal problem there is no influence of the size of the reference model on the size of the ROM. The num-

ber of elements of the reduced integration domain is also independent of the size of the reference model.

The study of the FLOP reduction confirms what we could expect. This FLOP reduction increases as the

number of degrees of freedom of the finite element model increases (Fig. 11). Moreover, the APHR method

seems to be interesting even if the reference model is a small one (about 2000 degrees of freedom).
The previous results were obtained thanks to an optimal resolution of the different FE linear systems

involved in the incremental Newton procedure. In Fig. 12 there is a comparison between the number of

FLOP for the APHR estimation of the state evolution over [t1,tm] with �R = 10�3 and one linear resolution

corresponding to the finite element model, for the five different meshes. As the size of the reference model

increases the contribution to the number of FLOP of the initialization thanks to a linear finite element

problem becomes more important.
6. A learning strategy

6.1. The initial ROM

On the previous section we observed that the contribution to the number of FLOP of the initialization

increases as the size of the mesh increases. In some cases, a previous ROM construction could provide inter-

esting shape functions that could be convenient to describe the state evolution during the current compu-
16



Table 3

Material parameters

C1 (J kg
�1 K�1) C2 (J kg

�1 K�1) k1 (W m�1 K�1) k2 (W m�1 K�1)

Around the fiber 500 700 50 25

In the fiber 500 700 50 25

X
Y

X
Y

Z

Full integration

Reduced integration

Fig. 9. Elements of the full FE model and elements of the reduced integration domain.
tation. Thus, the current ROM construction should be initialized with a matrix A(0) that contains the shape

functions of this previous ROM construction. Then any resolution of linear finite element problem can be

avoided.

But since the method we proposed is an adaptive strategy, we must take care of the information involved

in the matrix A(0). If the strategy proposed above is not modified, we can loose some of these informations.

Let us consider that the current ROM has been adapted over [t1, ta+b]. The previous strategy is based on a

selection of the shape functions with a state extrapolation such that:
aðnÞp ¼ aðnÞaþb 8p > aþ b: ð37Þ
Then if some shape functions of the current ROM are only relevant to describe events happening at tj such

that tj > ta+b, then these shape function are not going to be selected. Thus, they are going to be removed to

the current ROM. To avoid this, we just have to replace the extrapolation of the state by a description of
17



Fig. 10. Influence of number of the degrees of freedom of the FE model and influence of �R on the number of shape functions of the

ROM.

R

R

R

Fig. 11. Influence of number of degrees of freedom of the FE model and influence of �R on the FLOP reduction.
the state obtained during the previous ROM construction. But these description has to be compatible with

the current ROM. Let us denote ðbð0Þj Þj¼1...m the reduced state variables such that the product Að0Þ bð0Þj is the
state estimation at t = tj obtained during the previous ROM construction. During the adaptation of the cur-

rent ROM the reduced state variables ðbð0Þj Þj¼1...m have to be updated just like the current reduced state var-

iables are updated:
bðnþ1Þ
j ¼

V ðnÞ T V ðnÞ
� ��1

V ðnÞ T bðnÞj

0

..

.

0

2
666664

3
777775 8j: ð38Þ
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Fig. 12. Influences of the number of degrees of freedom of the reference model on the number of FLOP (mesh M3, �R = 10�3).
The block of zeros correspond to the vectors (Yi)i=1. . .m. So, to keep the shape functions that are relevant

during the time steps where the current computation have not been done, we just have to replace the extrap-

olation by this one (Fig. 13):
aðnÞp ¼ bðnÞp 8p > aþ b: ð39Þ
Thus, the selection matrix V(n) allows to keep shape functions corresponding to events that are not yet fore-
cast with the current ROM construction. Moreover, if previous shape functions are not interesting, the

Karhunen–Loève selection eliminates them as a + b increases thanks to this approach, we obtain a strategy

that takes into account a previous ROM construction and current reference model equations. This is a

learning strategy.
Fig. 13. The learning strategy.
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Fig. 14. More cost reduction obtained with the learning strategy.
6.2. Numerical analysis of the complexity of the learning strategy

Let us consider the 1D problem to build a first ROM thanks to the first adaptive strategy. Thus, we ob-

tain a convenient initialization for the 3D problem studied above. Moreover, this initialization has to be

very convenient for the same 1D problem.

In Fig. 14 is shown the ratio between two numbers of FLOP for the 1D problem. On the numerator
there is the number of FLOP corresponding to the first strategy and on the denominator there is the

number of FLOP corresponding to the learning strategy. As expected, this ratio is always greater than

one.

If the ROM of the 1D problem is used to initialize the ROM construction of the 3D problem, we divide

the number of FLOP by 1.5 (Fig. 14).

The learning strategy really takes into account the previous results. But should we take into account all

the shape function of the previous ROM to build A(0)? Certainly not. This learning strategy has to be

optimized.
7. Conclusions

We propose an algorithm which builds a reduced-order model from a finite element model. No pre-

vious estimation of what are the main events forecast by the finite element model is needed. Only a model

of what could happen is necessary. This algorithm is based on an adaptive strategy. This approach is

therefore convenient to update the reduced-order model when the finite element model is modified. To
do so a learning strategy is proposed. The reduction of the number of unknowns is important. On

one of the proposed example, this number is divided by almost 1000. This is obtained by studying the

time correlation between the reduced state variables. The computational savings increase as the size of

the reference model increases, and the APHR method starts to be interesting for small problem (about

2000 FE degrees of freedom). The proposed algorithm can be applied on different non-linear time

dependent problems.
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