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Abstract

This paper provides information about the asymptotic behavior of a one-dimen-
sional Brownian polymer in random medium represented by a Gaussian field W on
R+×R assumed to be white noise in time and function-valued in space. According to
the behavior of the spatial covariance W , we give sharp upper and lower bounds on
the partition function’s exponential rate (Lyapunov exponent), and on the growth
(wandering exponent) of the polymer itself when the time parameter goes to infinity.
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1 Introduction

This paper is concerned with a model of one-dimensional directed Brownian polymer in
a Gaussian random environment which can be briefly described as follows: the polymer
itself will be simply modelized by a Brownian motion b = {bt; t ≥ 0}, defined on a com-
plete filtered probability space (Ωb,F , (Ft)t≥0, (P

x)x∈R), where P x stands for the Wiener
measure starting from the initial condition x. The corresponding expected value will be
denoted by Ex

b , or simply by Eb when x = 0.

The random environment will be represented by a Gaussian landscape W indexed by
R+ × R, defined on another independent complete probability space (Ω,G,P). Denoting
by E the expected value with respect to P, the covariance structure of W is given by

E [W (t, x)W (s, y)] = [t ∧ s]Q(x− y), (1.1)

for a given homogeneous covariance function Q : R → R satisfying some growth and
regularity conditions that will be specified later on. In particular, the function t 7→
[Q(0)]−1/2W (t, x) will be a standard Brownian motion for any fixed x ∈ R, and for every
fixed t ∈ R+, the process x 7→ t−1/2W (t, x) is a homogeneous Gaussian field on R with
covariance function Q. Notice that the homogeneity assumption is made here for sake of
readability, but could be weakened for almost all the results we will show. Nevertheless, we
have chosen to present this paper using only homogeneous landscapes W . The interested
reader can consult [10] for the types of tools needed for such generalizations.

Once b and W are defined, the polymer measure itself can be described as follows: for
any t > 0, the energy of a given path (or configuration) b on [0, t] will be given by

−Ht(b) =

∫ t

0

W (ds, bs). (1.2)

Notice that a completely rigorous meaning for this integral will be given in the next
section, but for the moment, notice that for any fixed path b, Ht(b) is a centered Gaussian
random variable with variance tQ(0). Based on this Hamiltonian, for any x ∈ R, and a
given constant β (interpreted as the inverse of the temperature of the system), we will
define our (random) polymer measure by

dGx
t (b) =

e−βHt(b)

Zx
t

dP̂ x(b), with Zx
t = Ex

b

[

e−βHt(b)
]

. (1.3)

In the sequel, we will also consider some Gibbs averages with respect to the polymer mea-
sure: for all t ≥ 0, n ≥ 1, and for any bounded measurable functional f : (C([0, t]; Rd))n →
R, we set

〈f〉t =
Ex

b

[

f(b1, . . . , bn)e−β
∑

l≤n Ht(bl)
]

Zn
t

, (1.4)

where the bl, 1 ≤ l ≤ n, are understood as independent Brownian configurations.

Notice that, after the early results of the Mathematical Physics literature (see [9], [11]),
links between martingale theory and directed polymers in random environments have been
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established in [2], [1], and over the last few years, several papers have shed some light
on different type of polymer models: the case of random walks in discrete potential is
treated for instance in [3], the case of Gaussian random walks in [12], [13], and the case
of Brownian polymers in a Poisson potential is considered in [7]. On the other hand, we
have undertaken in [15] the study of the polymer measure Gt defined by (1.3). This latter
model, which is believed to behave similarly to the other directed polymers mentioned
above, has at least one advantage, from our point of view: it can be tackled with a wide
variety of methods. Our hope is then to exploit all the tools available in this context
(scaling invariances for both b and W , stochastic analysis, Gaussian tools, relationship
with Lyapunov exponents for stochastic pdes) in order to get a rather complete description
of the asymptotic behavior of the measure Gt.

In the present article, we will illustrate this point of view on the topic by giving two
kind of results on the asymptotic behavior of our model. The first one concerns the
limiting behavior of the partition function: namely, we will see at Proposition 2.1 that
1
t
log(Zx

t ) converges almost surely to a quantity p(β), usually called the free energy of the
system. In the so-called weak disorder regime of the polymer model, in which the medium
W has no real influence on the polymer b (see e.g. [7] for a general result in that direction),
p(β) is equal to [Q(0)β2]/2, which coincides with the annealed free energy. On the other
hand, in the strong disorder regime, one gets the strict inequality p(β) < [Q(0)β2]/2,
and the function β 7→ p(β) is in fact believed to behave linearly in β. Some examples
of weak and strong disorder are given in [15], and the free energy of some of the related
models mentioned above are also deeply investigated in [1], [2], [3], [7], to cite just a
sample of relevant references. In this paper, we will use some methods inspired by the
study of Lyapunov exponents for stochastic PDEs (see [6], [18] and mostly [10]) in order
to get some non-trivial bounds on p(β) for large β, that is in the low temperature regime.
These results will be obtained in terms of the local regularity of Q in a neighborhood of
0. Namely, assuming some upper and lower bounds on Q of the form

c0|x|H ≤ Q(0) −Q(x) ≤ c1|x|H , for all x ∈ R, (1.5)

for a given exponent H ∈ (0, 1], we get the following conclusions:

1. If H ∈ [1/2, 1], we have for some constants C0 and C1 depending only on Q, for all
β ≥ 1,

C0β
4/3 ≤ p(β) ≤ C1β

2−2H/(3H+1).

2. If H ∈ (0, 1/2], we have for some constants βQ, C ′
0, and C ′

1 depending only on Q,
for all β ≥ βQ,

C ′
0β

2/(1+H) ≤ p(β) ≤ C ′
1β

2−2H/(3H+1).

Condition (1.5) is equivalent to assuming that W has a specific almost-sure modulus
of continuity in space, of order |x|H log1/2 (1/ |x|), i.e. barely failing to be H-Hölder
continuous (see [17] for details.)

The transition at H = 1/2 for the lower bounds above is continuous but not smooth,
and cannot be analytic since the lower-bound power of β is constant for H ≥ 1/2. In the
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case H ∈ [1/2, 1], the gap between the two estimates decreases as H increases to 1; for
H = 1/2, we get bounds with the powers of β equal to 4/3 and 8/5; and for H = 1, the
bounds are 4/3 and 3/2. It should be noted that the case H = 1/2 is our least sharp
result, while the case H = 1 yields the lowest power of β, and one should not expect lower
powers for any potential W since even if W is so smooth that it is C∞ in space: indeed,
unless W is highly degenerate, the lower bound in (1.5) should hold with H = 1, while
the upper bound will automatically be satisfied with H = 1. The case of small H is more
interesting. Indeed, we can rewrite the lower and upper bounds above as

C ′
0β

2−2H+F (H) ≤ p(β) ≤ C ′
1β

2−2H+G(H)

where the functions F and G satisfy, for x near 0:

F (x) = 2x2 +O
(

x3
)

;

G (x) = 6x2 +O
(

x3
)

.

We therefore see that the asymptotic β2−2H is quite sharp for small H , but that the
second order term in the expansion of the power of β for small H , while bounded, is
always positive. Notice that some sharper results will be obtained in case of a logarithmic
spatial regularity for W .

The second type of result that will be addressed here deals with the wandering ex-
ponent ξ, which measures the growth of the polymer when t tends to ∞, and could be
defined informally by the fact that, under the measure Gt, sups≤t |bs| should behave like tξ

for large times t. This kind of exponent has been studied in different contexts in [7], [12],
[13], [14] and [20], yielding the conclusion that, for a wide number of models in dimension
one, we should have 3/5 ≤ ξ ≤ 3/4, the true exponent conjectured by the Physicists
being ξ = 2/3. In this note, we will show that, for our model, we have ξ ≥ 3/5, and more
specifically, that for any β > 0 and any ε > 0,

lim
t→∞

P

[

1

t
3

5
−ε

〈sup
s≤t

|Bs|〉t ≥ 1

]

= 1. (1.6)

This result follows the steps of [13], where the same kind of growth bound has been
established for a random walk in a Gaussian potential, and our proof will also be inspired
by this latter reference. Notice however that we have been able to extend Petermann’s
result to a wider class of environments: indeed the relation (1.6) will be obtained as soon
as Q satisfies a mild assumption on its decay at infinity, that is

Q(x) = O
( 1

|x|3+θ

)

, as x→ ±∞, (1.7)

while [13] assumed an exponential decay for Q. On the other hand, many arguments
have to be changed in order to pass from the random walk to the Brownian case, and
[13] is an unpublished work. We have thus chosen to include most of the computations
in our proof, for sake of readability. Notice also that the two hypothesis (1.5) and (1.7)
are quite different in their nature, and one could hope that combining both conditions
on the regularity at 0 and on the decay at ∞ of Q, we could get some sharper results
on the asymptotic behavior of Gt. We plan to report on this strategy in a subsequent
communication.
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2 Preliminaries; the partition function

In this section, we will first recall some basic facts about the partition function Zt, and
then give briefly some notions of Gaussian analysis which will be used later on. Let us
recall that W is a centered Gaussian field defined on R+ × R, which can also be seen a a
Gaussian family {W (ϕ)} indexed by tests functions ϕ : R+ ×R → R, where W (ϕ) stands
for the Wiener integral of ϕ with respect to W :

W (ϕ) =

∫

R+×R

ϕ(s, x)W (ds, dx),

whose covariance structure is given by

E [W (ϕ)W (ψ)] =

∫

R+

(
∫

R×R

ϕ(s, x)Q(x− y)ψ(s, y)dxdy

)

ds, (2.1)

for two arbitrary test functions ϕ, ψ.
Let us start here by defining more rigorously the quantity Ht(b) given by (1.2), which

can be done through a Fourier transform procedure: there exists (see e.g. [6] for further
details) a centered Gaussian independently scattered measure ν on R+ × R such that

W (t, x) =

∫

R+×R

1[0,t](s)e
iuxν(ds, du). (2.2)

For every test function f : R+ × R → C, set now

ν(f) ≡
∫

R+×R

f(s, u)ν(ds, du). (2.3)

Then the law of ν is defined by the following covariance structure: for any test functions
f, g : R+ × R → C, we have

E
[

ν(f)ν(g)
]

=

∫

R+×R

f(s, u)g(s, u)Q̂(du)ds, (2.4)

where the finite (real) measure Q̂ is the Fourier transform of Q. We can go back now to
the definition of Ht(b): invoking the representation (2.2), we can write

−Ht(b) =

∫ t

0

B(ds, bs) =

∫ t

0

∫

R

eiubsν(ds, du),

and it can be shown (see [6]) that the right hand side of the above relation is well defined
for any Hölder continuous path b, by a L2-limit procedure.

Recall now that Zx
t has been defined by

Zx
t = Eb

[

e−βHt(b)
]

,

and set

pt(β) =
1

t
E [log (Zx

t )] , (2.5)
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usually called the free energy of the system. It is easily seen that pt(β) is independent
of the initial condition x ∈ R, thanks to the spatial homogeneity of W , and it is thus
usual to concentrate on this quantity for x = 0. In fact, in the remainder of the paper, x
will be understood as 0 when not specified, and Eb, Zt will stand for E0

b , Z
0
t , etc. Let us

summarize then some basic results on pt(β) and Zt shown in [15].

Proposition 2.1. For all β > 0 there exists a constant p(β) > 0 such that

p(β) ≡ lim
t→∞

pt(β) = sup
t≥0

pt(β).

Furthermore, the function p satisfies:

1. The map β 7→ p(β) is a convex nondecreasing function on R+.

2. The following upper bound holds true:

p(β) ≤ β2

2
Q(0). (2.6)

3. P-almost surely, we have

lim
t→∞

1

t
logZt = p(β). (2.7)

3 Study of the partition function

This section is devoted to the analysis of the quantity p(β) defined at Proposition 2.1. In
particular, we will show that for large β the function β 7→ p(β) is always subquadratic,
but grows faster than a linear function of β. More specifically, our results in this section
will be formulated in relation to W ’s regularity, or lack thereof, in the space parameter x.
The hypothesis we use guarantees that there is some H ∈ (0, 1) such that W is no more
than H-Hölder-continuous in space. Accordingly, we define the spatial canonical metric
δ of W by

δ2 (x− y) := E
[

(W (1, x) −W (1, y))2] = 2 [Q(0) −Q(x− y)] .

3.1 Lower bound result

Theorem 3.1. Assume there exists a number H ∈ (0, 1] and numbers c0, r0 > 0 such
that for all x, y ∈ R with |x− y| ≤ r0, we have

δ (x− y) > c0 |x− y|H . (3.1)

Then if H ≤ 1/2, there exist constants C0 and β0 depending only on Q such that for all
β > β0,

p(β) ≥ C0β
2/(1+H).

On the other hand if H ≥ 1/2, there exists a constant Ĉ0 depending only on Q such that
for all β ≥ 0,

p(β) ≥ Ĉ0β
4/3.
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Remark 3.2. A remarkable feature of the above theorem is the shape and values of the
power function in the lower bound. Indeed, we are claiming that p(β) is bounded below by
universal constants times βθ(H) where θ (H) is a decreasing function defined on [0, 1] which
is continuous, flat on [1/2, 1], reaches its minimum value of 4/3 for all H ≥ 1/2, and
does not reach its supremum of 2 near the open endpoint 0 of its domain. In particular,
the exponential rate of increase of the partition function is always significantly faster than
linear in β, is nearly quadratic for very irregular potential, and may only be as low as the
power β4/3 when the potential W has precisely a Brownian-type behavior in space, or is
more regular.

Proof of Theorem 3.1: Let us divide this proof in several steps.

Step 0: Strategy. Recall that pt(β) has been defined by (2.5). It was established in [15]
that almost surely

p(β) = sup
t>0

pt(β).

This proves that a lower bound on p(β) will be obtained by evaluating pt(β) for any fixed
value t. Additionally, by the positivity of the exponential in the definition of Zt, one may
include as a factor inside the expectation Eb the sum of the indicator functions of any
disjoint family of events of Ωb. In fact, we will only need two events.

Step 1: Setup. Let A+ (b) and A− (b) be two disjoint events defined on the probability

space Ωb under Pb. Let Xb = −βH2t(b) = β
∫ 2t

0
W (ds, bs). Conditioning by the two events

A+ and A−, and using Jensen’s inequality, we easily obtain

log(Z2t) ≥ log (min {Pb (A+) ;Pb (A−)}) + E [max {Z+, Z−}] , (3.2)

where
Z+ := Eb

[

Xb|Ã+

]

and Z− := Eb

[

Xb|Ã−

]

;

these two random variables form a pair of centered jointly Gaussian random variables.
Indeed, they are both limits of linear combinations of values of a single centered Gaussian
field. This implies that

E
[

max
{

Z̃+, Z̃−

}]

= (2π)−1/2 E1/2

[

(

Z̃+ − Z̃−

)2
]

.

Therefore we see that we only need to choose sets A+ and A− that are not too small,
but still big enough that condition (3.1) guarantees a certain amount of positivity in the
variance of Z̃+ − Z̃−.

Step 2: Choice of A+ and A−, and their probabilities. Let f be an arbitrary positive
increasing function on (0,∞). We take

A+ := {2f (t) ≥ bs ≥ f (t) : ∀s ∈ [t, 2t]} ,

and
A− := {−2f (t) ≤ bs ≤ −f (t) : ∀s ∈ [t, 2t]} .
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In other words, we force our trajectory b to be, during the entire time interval [t, 2t], in one
of two boxes of size f (t) which are at a distance of 2f (t) from each other. Because these
two boxes are symmetric about the starting point of b, the corresponding events have the
same probability. While this probability can be calculated in an arguably explicit way, we
give here a simple lower bound argument for it. Using time scaling, the Markov property
of Brownian motion, the notation a = f (t) /

√
t, and some trivial lower bounds, we have

Pb (A+) = Pb (∀s ∈ [1, 2] : bs ∈ [a, 2a])

= (2π)−1

∫ 2a

a

Pb (∀s ∈ [0, 1] : bs + y ∈ [a, 2a]) e−y2/2dy

≥ (2π)−1

∫ 7a/4

5a/4

Pb (∀s ∈ [0, 1] : bs + y ∈ [y − a/4, y + a/4]) e−y2/2dy

= Pb (b1 ∈ [5a/4, 7a/4]) Pb (∀s ∈ [0, 1] : |bs| ≤ a/4) . (3.3)

Step 3: Recalling the estimation of Z̃+ − Z̃−. It was established in [10] that

E

[

(

Z̃+ − Z̃−

)2
]

≥
∫ 2t

t

E
[

δ
(

x∗s,+ − x∗s,−
)2
]

ds,

where the quantities x∗s,+ and x∗s,− are random variables, but we have the following deter-
ministic bounds on them for all s ∈ [t, 2t]: x∗s,+ ∈ [f (t) , 2f (t)] and x∗s,− in the interval
[−2f (t) ,−f (t)]. As a consequence, by condition (3.1), as long as f (t) can be made
smaller than r0, we have (recall that c designates a constant that can change from line to
line)

E

[

(

Z̃+ − Z̃−

)2
]

≥ ctβ2 (f (t))2H . (3.4)

Step 4: The case H ≤ 1/2. It is possible, although we will spare the reader the pain
of deciphering such a development, to prove that the optimal choice for f in the case
H < 1/2 is f (t) = t1/2, which corresponds to a = 1, so that Pb (A+) is a universal
constant c1 that does not actually depend on t. Thus we have, from (3.2) and (3.4), that
for any t > 0,

p2t(β) =
log(Z2t)

2t
≥ −C1

2t
+

C2β

t(1−H)/2
, (3.5)

where the universal constant C1 = log (1/c1) > 0. Now we may maximize the above
function over all possible values of t > 0. To make things simple, we simply choose t so
that the second term in the above right-hand side equals twice the first, yielding t of the
form

t =
c

β2/(1+H)

and therefore
sup
t>0

pt(β) ≥ cβ2/(1+H),
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and the result for H < 1/2 follows as announced, as long as the use of (3.4) from Step
3 can be justified, namely as long as f (t) ≤ r0. This is obviously acheived as soon as
β > β0 where

β0 = c (r0)
−1−H .

Step 5: The case H > 1/2. The simple-minded choice for f that worked so well in the
previous case is still applicable here, but we may try instead the following

f (t) = r0t
α,

for a given α ∈ [0, 1]. Clearly the case α = 1/2 yields the same formula as in the case
H < 1/2, but we would like to do much better. It is possible to prove that α ≥ 1/2 is
suboptimal, but, again, we will spare the reader. Assuming now that α < 1/2, we then
have, using the notation of Step 2, that a = tα−1/2 so that, assuming for the moment that
t is small, a will be large. In this case, the result (3.3) from Step 2 yields that for some
universal constant c3,

Pb (A+) ≥ exp
(

−c3a2
)

= exp
(

−c3t2α−1
)

Using condition (3.1) and relation (3.4), we now get, for another constant c > 0,

p2t(β) ≥ −ct2α−2 + cβt−1/2+αH . (3.6)

Again, choosing t so that the second term on the right-hand side equals twice the first,
we obtain

t =
c

β1/(3/2−(2−H)α)
, (3.7)

and therefore
sup
t>0

p2t(β) ≥ cβ(2−2α)/(3/2−(2−H)α). (3.8)

It is now clear that in order to maximize the power of β in the lower bound for supt≥0 pt(β),
we should find the maximum of the function

k (α) =
2 − 2α

3/2 − (2 −H)α

for α < 1/2. This function is monotone decreasing when H > 1/2, which implies that we
should take α as small as possible when β is large. We may now arbitrarily decide to take
α = 0. This yields k (0) = 4/3. In applying condition (3.1) above, we had to assume that
tα ≤ 1, which is now obviously satisfied. This means we can state, from (3.8),

sup
t>0

p2t(β) ≥ cβ4/3,

which finishes the case H > 1/2 for all β ≥ 0, and the proof of the theorem.
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The reader might wonder, in view of the arbitrary choice made for α in Step 5 of the
above proof, why a smaller α, namely α < 0, does not yield a better result? Let us briefly
discuss this issue, to prove that α = 0 is the optimal choice above, even when β is close
to 0. Thus, assume α < 0. The condition tα ≤ 1 then means that t much be chosen ≥ 1.
Hence from formula (3.7), we see that β must be bounded above by c3/2+(2−H)|α|, so a
result for large β cannot be obtained this way. Still, one might be interested in improving
the lower bound result of the theorem for small β. In view of (3.8), it would then be best
to make k (α) as small as possible; since k (α) is still decreasing, we are thus forced to
take α = 0, since no α < 0 will yield a better result even for small β. This paragraph
concludes the proof that the choice α = 0 in Step 5 above is optimal.

3.2 Upper bound result

To find an upper bound, we will use a different type of computation. We have the
following.

Theorem 3.3. Assume there exists a number H ∈ (0, 1] and numbers c1, r1 > 0 such
that for all x, y ∈ R with |x− y| ≤ r1, we have

δ (x− y) ≤ c1 |x− y|H . (3.9)

Then there exists a constant C1 depending only on Q such that for all β ≥ 1,

p(β) ≤ C1β
2−2H/(3H+1).

Proof. Let us divide again this proof into several steps.

Step 0: Strategy. Exactly as in the Lower Bound theorem of the previous section, consider
the quantity pt(β) defined by (2.5), and recall that it was established in [15] that almost
surely

p(β) ≤ lim sup
t→∞

pt(β).

We will first give a discretization result, which, in spirit, was obtained originally in [6],
but finds here a much simpler proof, because of our use of the function pt(β). Then it
will be a matter estimating this function for the discretized path.

Step 1: Discretization. For each continuous function b on [0, t], and for each fixed ε > 0,
let the ε-discretization of b be the function b̃ defined by letting T0 = 0, Ti+1 = the first
exit time after Ti of b· − bTi

from the interval [−ε; +ε], and for each t ∈ [Ti, Ti+1), by
letting xi := b̃t = bTi

. Hence under Pb, b̃ is a pure jump process which visits the sites
of a discrete-time simple-symmetric random walk on εZ, while the inter-jump times of b̃,
which are independent of the sites visited, are independent and distributed like T1, the
first exit time of b from [−ε, ε].

In particular, we have that for any t ≥ 0, |bt− b̃t| ≤ ε. Now using Hölder’s and Jensen’s
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inequalities, we obtain

E [log(Zt)] = E
[

logEb

[

exp
(

−β[Ht(b) −Ht(b̃)]
)

exp
(

−βHt(b̃)
)]]

≤ 1

2
E
[

logEb

[

exp
(

−2β[Ht(b) −Ht(b̃)]
)]]

+
1

2
E
[

logEb

[

exp
(

−2βHt(b̃)
)]]

≤ 1

2
logEb

[

exp 2β2

∫ t

0

δ2
(

bs − b̃s

)

ds

]

+
1

2
E
[

logEb

[

exp
(

−2βHt(b̃)
)]]

.

Defining

pε
t (β) :=

1

2t
E
[

logEb

[

exp
(

−2βHt(b̃)
)]]

,

and assuming ε ≤ r1, we obtain the following.

Lemma 3.4. Let δ+ be an increasing function of one positive variable such that for all
|x− y| ≤ r1, δ (x− y) ≤ δ+ (|x− y|). Then we have

lim sup
t→∞

pt(β) ≤ β2δ+ (ε)2 + lim sup
t→∞

pε
t(β).

Of course, assuming Condition (3.9), this translates, for all ε ≤ r1, as

lim sup
t→∞

pt(β) ≤ β2c21ε
2H + lim sup

t→∞
pε

t(β). (3.10)

Step 2: Setup. Let Nt be the number of jumps of b̃ up to time t, and use the convention

tNt+1 = t. We note that Ht(b̃) = X
(

Nt, (Ti)
Nt

i=1 , (xi)
Nt

i=1

)

where for any x̃ ∈ Pm the set of

nearest-neighbor path of length m in εZ, and any t̃ ∈ Sm,t the simplex of all sequences of
length m of increasing times in the interval [0, t] with the convention t̃i+1 = t, we define

X
(

m, t̃, x̃
)

:=
Nt−1
∑

k=0

{

W
(

t̃i+1, x̃i

)

−W
(

t̃i, x̃i

)}

.

As such, X is a Gaussian field indexed by the union over all positive integers m of all the
sets Jm := {m}×Sm,t ×Pm. Let α be a fixed positive number which we will choose later.
Let Iα = ∪m≤αtJm, and set also

Yα = sup
Iα

X.

We can bound pε
t(β) above as follows:

tpε
t (β) ≤ E [log (A +B)]

≤ E
[

(logA)+

]

+ E
[

(logB)+

]

+ log 2 (3.11)

where
A := Pb [Nt ≤ αt] exp (βYα)

and
B :=

∑

n≥1

Pb [nαt ≤ Nt ≤ (n+ 1)αt] exp
(

βY(n+1)α

)

.
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The following fact, which were established in [10], will be crucial: for some constant CQ

depending only on Q, for every α > 0,

Pb [Nt > tα] ≤ exp

(

−1

2
tα2ε2 + tα

)

; (3.12)

E [|Yα|] ≤ CQtα
1/2. (3.13)

Step 3: The term A. Bounding the probability Pb [Nt ≤ αt] by 1, we immediately have

E
[

(logA)+

]

≤ βE [|Yα|] .

Since X is a centered Gaussian field on Iα, it follows that the right-hand side above is
bounded by 2βE[Yα], which implies, via the last estimate (3.13) in Step 2,

E
[

(logA)+

]

≤ CQβt
√
α. (3.14)

Step 4: The term B. Let µ := E[Yαn]. Since X is a Gaussian field on Iαn, and because
one shows easily that

σ2 := sup
(m,t̃,x̃)∈Iαn

Var
[

X
(

m, t̃, x̃
)]

≤ tQ(0),

the so-called Borell-Sudakov inequality implies that for any constant a > 0,

E [exp a |Yαn − µ|] ≤ 2 exp
(

a2σ2/2
)

≤ 2 exp
(

cta2
)

, (3.15)

where here and below the constant c depending only on Q may change from line to line.
Note that the last estimate above is uniform in α and n. Let now γ ∈ (1/2, 1) be a fixed
number, and calculate, using the estimate µ ≤ CQt(αn)1/2 from (3.13) at the end of Step
2,

1

tγ
E
[

(logB)+

]

≤ E





(

1

tγ
log
∑

n≥2

Pb [Nt > (n− 1)αt] exp [βYαn − βµ] exp[c′tβ(αn)1/2]

)

+





= E

[

log+

(

∑

n≥1

Pb [Nt > nαt] exp
[

βYα(n+1) − βµ
]

exp[c′tβ(α (n + 1))1/2]
)t−γ

]

,

where we have set log+(x) = [log(x)]+ and where the constant c′ appearing in the last
line need only be chosen such that c′ ≥ CQ where CQ is given in (3.13), and thus we can
assume without loss of generality that c′ ≥ 2. For t ≥ 1, we will now use the fact that

for any sequence (xn)n of non-negative reals, (
∑

n xn)t−γ ≤∑n x
t−γ

n . We will also use the
estimate (3.12) on the tail of Nt from the end of Step 2. Thus, denoting

Ŷαn ≡ exp
[

βt−γ
(

Yα(n+1) − µ
)]

,

12



we obtain

1

tγ
E
[

(logB)+

]

≤ E

[

log+

(

∑

n≥1

(Pb [Nt > nαt])t−γ |Ŷαn| exp
(

c′t1−γβ(α (n+ 1))1/2
)

)]

≤ E

[

log+

(

∑

n≥1

|Ŷαn| exp

(

−t
1−γ

2

[

α2n2ε2 − 2αn− c′β (α (n+ 1))1/2
]

)

)]

.

Now, bounding log+ (x) above by log (1 + x) for x ≥ 0, and using Jensen’s inequality, we
get

1

tγ
E
[

(logB)+

]

≤ log

(

1 +
∑

n≥1

E
[

|Ŷαn|
]

exp

(

−t
1−γun

2

)

)

,

where
un ≡ α2n2ε2 − 2αn− c′β (α (n + 1))1/2 .

In order for the series above to converge, since the expectation in the last line above is
bounded in (3.15) independently of n, it is clear that we must choose α so as to compensate
the negative terms in the first exponential factor. Specifically, we choose

α2ε2 = 4c′βα1/2,

i.e.
α =

(

c′βε−2
)2/3

. (3.16)

Rewriting the above estimate, with use of (3.15), we now obtain

1

tγ
E
[

(logB)+

]

≤ log

(

1 + 2 exp
(

cβ2t1−2γ
)

∑

n≥1

exp

(

−1

2
t1−γα2ε2yn

)

)

, (3.17)

where

yn := n2 − 2n

αε2
− 1

4

√

(n + 1)

The value ε will be chosen in the next step. We will then check that we can chose ε as a
function of β such that

βε ≥ 1. (3.18)

This, and the value of α in (3.16), imply that

αε2 ≥ (4c′)
2/3 ≥ 4

Note then that, since for all n ≥ 1, 4n2 − n −
√
n+ 1 ≥ n/2, we can now estimate the

quantity yn as
yn ≥ n/8.

In this way, summing the geometric series thus obtained by this subsitution for y in (3.17),
we immediately get,

1

tγ
E
[

(logB)+

]

≤ log

[

1 + 2 exp
(

cβ2t1−2γ
)

(

1

1 − exp
(

− 1
16
t1−γα2ε2

) − 1

)]

.
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By choosing t large enough, the last factor above can be made less than 1. Hence we can
write a final estimate on E

[

(logB)+

]

as follows: for some constant c depending only on
Q, for large t, we have

1

tγ
E
[

(logB)+

]

≤ log
[

1 + 2 exp
(

cβ2t1−2γ
)]

≤ log 2 + cβ2t1−2γ . (3.19)

Step 5: Conclusion. With the result (3.14) of step 3, with inequality (3.19) from step 4,
inequality (3.11) from step 2, and the value of α in (3.16), we obtain for some constant c
depending only on Q,

pǫ
t(β) ≤ cβα1/2 +

log 2

t1−γ
+
cβ2

tγ
+

log 2

t
= cβ4/3ε−2/3 + o (1) . (3.20)

Now we can put this result together with the discretization lemma 3.4, or more specifically
the estimate (3.10), to obtain, for some constant c depending only onQ, that almost surely,
for all β ≥ 0,

lim sup
t→∞

pt(β) ≤ c
(

β2ε2H + β4/3ε−2/3
)

.

In order to make this upper bound as small as possible (ignoring any possible multiplica-
tive factors depending only on H), we can choose ε so that

β2ε2H = β4/3ε−2/3,

i.e.
ε = β−1/(3H+1)

so that
lim sup

t→∞
pt(β) ≤ cβ2β−2H/(3H+1).

Also, to satisfy condition (3.18), we can see that βε = β1−1/(3H+1) ≥ 1 as soon as β ≥ 1.
This finishes the proof of the theorem.

3.3 Sharpness of our method. The logarithmic regularity scale.

In this section we first show that when putting the upper and lower bound results together,
we obtain an increasingly sharp result as the spatial regularity parameter H for the
potential decreases, with a nearly optimal result as H approaches 0. This suggests that
if we use a potential that is more irregular than any Hölder-continuous function, then we
should get an optimal result (up to undetermined multiplicative constants.)
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3.3.1 Comparing upper and lower bounds

Recall from the introduction (see condition (1.5) and explanations following) that if we
assume that we may use both Theorems 3.1 and 3.3, i.e. if we assume that there exist
positive constants c0 and c1, and H ∈ (0, 1], such that for all x, y,

c0 |x− y|H ≤ δ (x− y) ≤ c1 |x− y|H , (3.21)

the case of H small can be expressed as

C ′
0β

2−2H+F (H) ≤ p(β) ≤ C ′
1β

2−2H+G(H)

where the functions F and G are, up to constants (2 and 6 respectively), of order x2.
Hence while the asymptotic p (β) ≃ β2−2H = β2/δ2 (β) is quite sharp for small H , the
lower correction F is always positive, meaning that the expression β2/δ2 (β) always un-
derestimates the true value of p (β) for H > 0. It is therefore natural to ask ourselves if
this phenomenon persists for potentials that are more irregular than those in the Hölder
scale (those satisfying (3.21)). This question is the subject of the next subsection.

3.3.2 Logarithmic scale

We now work under the assumptions that there exist positive constants c0, c1, and r1,
and β ∈ (0,∞), such that for all x, y with |x− y| ≤ r1,

c0 log−γ (1/ |x− y|) ≤ δ (x− y) ≤ c1 log−γ (1/ |x− y|) , (3.22)

and also that supxQ (x, x) is finite. Assumption (3.22) implies that W is not spatially
Hölder-continous for any exponent H ∈ (0, 1]. Moreover, the theory of Gaussian regu-
larity implies that, if γ > 1/2, W is almost-surely continous in space, with modulus of
continuity proportional to log−γ+1/2 (1/ |x− y|), while if γ ≤ 1/2, W is almost-surely not
uniformuly continuous on any interval in space. The case γ = 1/2, which is the thresh-
old bewteen continuous and discontinuous W , is of special interest, as the reader will
find in paragraph 3.4.3. We now establish the following result, which is optimal, up to
multiplicative constants.

Theorem 3.5. Assume condition (3.22). We have for some constants C0 and C1 de-
pending only on Q, for all β ≥ 1,

C0β
2 log−2γ (β) ≤ p(β) ≤ C1β

2 log−2γ (β) .

Proof. Step 1: Setup. Nearly all the calculations in the proof of Theorems 3.1 and 3.3
are valid in our situation.

Step 2: Lower bound. For the lower bound, reworking the argument in Step 2 in the proof
of Theorem 3.1, using the function log−γ (x−1) instead of the function xH , we obtain the
following instead of (3.4):

E

[

(

Z̃+ − Z̃−

)2
]

≥ t (βc0)
2 log−2γ

(

2f (t)−1) ,
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which implies, instead of (3.5) in Step 4 of that proof, the following

p2t(β) ≥ − c

2t
+ β

(

c20 log−2γ
(

2f (t)−1)

8πt

)1/2

.

In other words, now choosing f (t) = t1/2 as we did in the case H < 1/2, for some constant
CQ depending only on Q,

p2t(β) ≥ − c

2t
+ βCQ

log−γ (t−1)

t1/2
.

Now choose t such that the second term in the right-hand side above equals twice the
first, i.e.

t1/2 log−γ
(

t−1
)

= c/ (CQβ) .

For small t, the function on the left-hand side is increasing, so that the above t is uniquely
defined when β is large. We see in particular that when β is large, t is small, and we have
t−1 ≤ β2. This fact is then used to imply

1

t
= (cβ)2 log−2γ

(

t−1
)

≤ 2 (cβ)2 log−2γ (β) .

Therefore, for some constants β2 and c depending only on Q, for the t chosen above with
β ≥ β2,

p2t(β) ≥ cβ2 log−2γ (β) .

Step 3: Upper bound. Here, returning to the proof of Theorem 3.3, the upper bound
(3.20) in Step 5 of that proof holds regardless of δ, and therefore, using the result of
Lemma 3.4 with δ+ (r) = log−γ (1/r), we immediately get that there exists c depending
only on Q such that for all ε < r1 and all β > β3,

lim sup
t→∞

pt(β) ≤ β2 log−2γ (1/ε) + cβ4/3ε−2/3,

as long as one is able to choose ε so that βε ≥ 1 (condition (3.18)). By equating the two
terms in the right-hand side of the last inequality above, we get

ε log−3γ (1/ε) = c3/2β.

Since the function ε 7→ ε log−3γ (1/ε) is increasing for small ε, the above equation defines
ε uniquely when β is large, and in that case ε is small. We also see that for any θ > 0,
for large β, 1/ε ≥ β1−θ. Therefore we can write, for β ≥ β3, almost surely,

lim sup
t→∞

pt(β) ≤ 2β2 1

(1 − θ)2γ log−2γ (β) .

This finishes the proof of the theorem.
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3.4 Conclusions

3.4.1 Relation between p (β) and δ2 (1/β)

Define the commensurability relation a ≍ b for two positive functions a and b by saying
that the ratio a/b is bounded above and away from 0. The conclusions we can draw from
the last theorem is that in the logarithmic regularity scale, i.e. under condition (3.22), up
to multiplicative constants depending only onQ, the Lyapunov exponent limt→∞ t−1 logZt

of the partition function Z is of order

p(β) ≍ β2δ2 (1/β) , (3.23)

since log−γ (1/x) is commensurate with the canonical metric δ (x) via (3.22). Thus, our
results are sharp in this logarithmic scale. But when comparing with the Hölder scale,
if we write δ (x) = xH , then the relation (3.23) does not hold. In fact, for large β,
lim inft→∞,

1
t
log u (t) is much larger than β2δ2 (1/β) = β2−2H . Hence the Lyapunov ex-

ponent’s true power of β remains unknown in the Hölder scale, and we cannot base a
conjecture for the Hölder scale on our sharp results in the logarithmic scale.

3.4.2 Superlinear and subquadratic growth

In Theorem 3.1, we have found the lower bound

p (β) ≥ cβ4/3

holds in all cases, which, as we said in Remark 3.2, means the partition function grows
always significantly faster than linearly. On the other hand, in order to get the fastest
possible growth in β, we see that we should use a potential which is as spatially irregular
as possible, e.g., thanks to the lower bound in Theorem 3.5, we should work in the
logarithmic scale with small γ. But no matter how small γ is, that is, even if W is not
continuous anywhere in space – which is the case if and only if γ ≤ 1/2 – the upper bound
in Theorem 3.5 shows that the Lyapunov exponent will always grow slightly slower than
quadratically in β.

However, we can get arbitrarily close to quadratic growth. Indeed, one can repeat
the proof of Theorem 3.5 assuming, instead of (3.22), that δ is continuous and increasing
on R+, with δ (0) = 0, simply requiring that we are at best in the logarithmic scale, i.e.
that for some γ > 0, δ (r) ≥ log−γ (1/r); we then obtain that (3.23) holds in this general
highly irregular case. So we see that by choosing δ which converges to 0 at 0 extremely
slowly, we can force the Lyapunov exponent to grow arbitrarily close to quadratically.
Still, one can prove that for any separable homogeneous Gaussian field on R, then δ has
to be continuous in a neighborhood of 0, which implies that the Lyapunov exponent can
never grow quadratically in β.

3.4.3 Special case: spatially white-noise medium

A comparison with the discrete-space polymer is worthwhile. Our proof techniques for
establishing the Lyapunov exponent of Z and the estimation of p (β) are valid if we replace

17



our Gibbs measure model (1.3) of Brownian paths in R under the influence of the random
field W , by the same model, but on Z

d instead, i.e. with Ŵ on R+×Z
d and with the paths

b as continuous-time random walks in Zd under Pb. Then, the polymer model in which
W is sometimes known as space-time white noise, is that in which {Ŵ (1, x) : x ∈ Zd} are
IID centered Gaussian variables, with still t 7→ Ŵ (t, x) a Brownian motion for each x.
This is the most popular model in a Gaussian environment as far as Lyapounov exponent
computations for stochastic PDEs are concerned. We omit the proof of the following
result. In some sense, it also follows from the calculations in [4].

Proposition 3.6. For the polymer model in discrete space in the space-time white-noise
environment Ŵ described above, P-almost-surely,

lim
t→∞

t−1 logZt = p(β) ≍ β2

log (β)
.

In relation with the continuous space models which are the subject of this article, we see
that to obtain the same behavior as with space-time white noise in discrete space, we need
to use precisely the environment W in R with the logarithmic regularity corresponding
to γ = 1/2, i.e.

δ (r) ≍ log−γ (1/r) .

In this logarithmic case, this behavior of W happens to be precisely at the threshold in
which W becomes almost-surely discontinuous at every point. Nevertheless such a W
is still function-valued. Hence, for the purpose of understanding the polymer partition
function, there is no need to study the space-time white noise in continuous space, for
whichW (t, ·) is not a bonafide function (only a distribution), and for which the meaning of
Zt itself is difficult to even define. Said differently, from the continuous space perspective,
the appellation “space-time white noise in R+ × Zd” is not well-founded, since it only
has the same effect on the partition function as the first spatially discontinuous function-
valued W in R+×R that one encounters in the logarithmic regularity scale, when γ = 1/2.

One last way to interpret the coincidence of behaviors for “space-time white noise
in R+ × Z” and for “γ = 1/2” is to say that both models for W are function-valued
and exhibit spatial discontinuity: indeed, in discrete space, one extends W (t, ·) to R

by making it piecewise constant, in order to preserve independence. This is again an
argument implying state that “space-time white noise in R+ × Z” should really not be
called “white” in space.

3.4.4 Strong disorder

We finish this section with some remarks on strong disorder, which draw a connection with
the next section. We say (see [15] and references therein) that the polymer measure dGx

t (b)
exhibits strong disorder if its partition function Z satisfies limt→∞ t−1 logZt < Q (0)β2/2
almost surely. The upper bounds in Theorems 3.3 and 3.5 show that our Hölder- and
logarithmic regularity scales provide wide classes of polymer measures exhibiting strong
disorder for β ≥ 1. This also includes all spatially smooth W ’s, for which H = 1.
Paragraph 3.4.2 above shows that this strong disorder for low temperature also works
with even more irregular W .
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The condition β ≥ 1 is uncomfortable, however. One would prefer not having any
condition on the temperature scale. This is where the polymer’s growth (wandering ex-
ponent, denoted by α in the next section) can be useful. Since the concept of “strong
disorder” was introduced in order to determine whether the random medium has any
significant influence on polymer paths b, it is generally accepted to say that a polymer
with super-diffusive behavior (α > 1/2) exhibits strong disorder. Even though this second
definition does not match the common one given above (p (β) = Q (0)β2/2), it is useful to
note that the results of the next section imply the following (see Corollary 4.14): if W ex-
hibits decorrelation that is not too slow, specifically if for large x, Q (x) ≤ cx−5/2−ϑ where
ϑ > 0, then the polymer is superdiffusive with exponent any α < min

{

1
2

+ ϑ
6−2ϑ

; 3/5
}

,
and this form of strong disorder holds for all β > 0. The specific order of decorrelation
x−5/2−ϑ ≪ x−5/2 can be quantified by saying that W ’s decorrelation is certainly faster
than the well-known order x−2+2H for the increments of fractional Brownian motion, but
the class of such W ’s still qualifies as containing long-range correlations (polynomial with
moderate power).

4 Polymer growth

In this section, we will specialize our environment in the following way:

Hypothesis 4.1. We assume that Q : R → R defined by (1.1) is a symmetric positive
function, decreasing on R+ and satisfying

1. The function Q is an element of L1(R) and
∫

R
Q(x)dx = 1.

2. There exists a strictly positive constant θ such that

Q(x) = O
( 1

|x|3+θ

)

, as x→ ±∞.

Remark 4.2. The normalization
∫

R
Q(x)dx = 1 is not physically relevant, and is just

here in order to simplify some of our formulae. On the other hand, it does represent
a kind of non-degeneracy condition, which says that the decorrelation of W at distinct
sites is not immediate. A typical situation is that of a W which is separable; one can
then prove that Q is continuous at the origin. Since Q (0) = E

[

W (1, 0)2
]

is finite and
strictly positive,

∫

R
Q(x)dx is then strictly positive. Part 2 of Hypothesis 4.1 implying that

∫

R
Q(x)dx is finite, Part 1 of Hypothesis 4.1 is thus indeed really only a normalization in

this situation.

Recall also that the polymer measure Gt = G0
t has been defined by (1.3). Then, under

the conditions of Hypothesis 4.1, we will be able to prove the

Theorem 4.3. Let β be any strictly positive real number. Then, for any ε > 0, we have

lim
t→∞

P

[

1

t
3

5
−ε

〈sup
s≤t

|bs|〉t ≥ 1

]

= 1.
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Remark 4.4. This theorem gives an indication of the asymptotic speed of our polymer.
Indeed, if we could write that sups≤t |bs| ∼ tα under Gt as t → ∞, then Theorem 4.3
would state that α ≥ 3

5
.

Strategy of the proof for Theorem 4.3. For t, ǫ > 0, set

At,ǫ =
{

there exists s0 ∈ [t/2, t] such that|bs0
| ≥ t

3

5
− ǫ

2

}

.

Then we can write

〈sups≤t |bs|〉t
t

3

5
−ǫ

≥ t
ǫ
2

t
3

5
− ǫ

2

〈

sup
s≤t

|bs| 1At,ǫ

〉

t

≥ t
ǫ
2Gt

(

At,ǫ

)

,

since sups≤t |bs| ≥ t
3

5
− ǫ

2 on At,ǫ. Thus

〈sups≤t |bs|〉t
t

3

5
−ǫ

≥ t
ǫ
2

(

1 −Gt

(

Ãt,ǫ

))

, (4.1)

where Ãt,ǫ is defined by

Ãt,ǫ =

{

b; sup
s∈[t/2,t]

|bs| ≤ t
3

5
− ǫ

2

}

= Ac
t,ǫ.

We will start now a discretization procedure in space: for an arbitrary integer k, and
α > 0, set

Iα
k = tα[2k − 1, 2k + 1), and Lα

k = {b; bs ∈ Iα
k for all s ∈ [t/2, t]} .

Then Ãt,ǫ = L
3/5−ǫ/2
0 , and equation (4.1) can be rewritten as

〈sups≤t |bs|〉t
t

3

5
−ǫ

≥ t
ǫ
2

(

1 −Gt

(

L
3

5
− ǫ

2

0

))

.

Set now

Zα
t (k) : =Eb

[

1Lα
k

exp (−βHt(b))
]

. (4.2)

We have

〈sups≤t |bs|〉t
t

3

5
−ǫ

≥ t
ǫ
2

(

1 − Z
3

5
− ǫ

2

t (0)

Eb [exp (−βHt(b))]

)

,

by definition of Gt. On the other hand, since the events Lk are disjoint sets we have

Eb [exp (−βHt(b))] ≥
∑

k∈Z

Z
3

5
− ǫ

2

t (k).
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Therefore, we have established that

〈sups≤t |bs|〉t
t

3

5
−ǫ

≥ t
ǫ
2

(

1 − Z
3

5
− ǫ

2

t (0)

Z
3

5
− ǫ

2

t (0) + Z
3

5
− ǫ

2

t (k)

)

, (4.3)

for any integer k 6= 0. Suppose now that W ∈ At, where At is defined as

At : = {W ; There exists k∗ 6= 0 such that Zα
t (k∗) > Zα

t (0)} .

Then, choosing k = k∗ in (4.3), it is easily seen that

〈sups≤t |bs|〉t
t

3

5
−ǫ

≥ t
ǫ
2

(

1 − 1

2

)

≥ 1,

whenever t is large enough. The proof is now easily finished if we can prove the following
lemma:

Lemma 4.5. Given a positive real number α ∈ (1/2; 3/5) and an environment W satis-
fying Hypothesis 4.1, then

lim inf
t→∞

P(At) = 1. (4.4)

The remainder of this section will now be devoted to the proof Lemma 4.5.

4.1 Preliminary results

In order to prove Lemma 4.5, we shall first go into a series of preliminary results, and we
will start by a lemma on the covariance structure of W .

4.1.1 Covariance computations

For a given k ∈ Z and α > 0, recall that Iα
k = tα[2k − 1, 2k + 1), and set

η̃α
k ≡ 1

t(α+1)/2

∫ t

t
2

∫

Iα
k

W (ds, x)dx. (4.5)

Then {η̃α
k ; k ∈ Z} is a centered Gaussian vector, whose covariance matrix will be called

C(t) = (Cℓ,k(t))ℓ,k∈Z, where

Cℓ,k(t) = E [η̃α
ℓ η̃

α
k ] = Cov (η̃α

ℓ ; η̃α
k ) . (4.6)

We will now proceed to estimate this matrix, and show in particular that limt→∞C(t) =
Id. This can be interpreted as saying that the amount of decorrelation of the potential at
distant locations implied by Hypothesis 4.1, is enough to guarantee independence of the
η̃α

k asymptotically.
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Proposition 4.6. Let θ be the strictly positive constant defined in Hypothesis 4.1, and
consider k ∈ Z, α > 0 and τ < θ. Set also

λ ≡ 1

C0,0(t)
=

1

Ck,k(t)
,

where C(t) has been defined at (4.6). Then, the elements of C(t) satisfy the following
properties:

(i) λ = 1 +O
(

1
tα

)

.

(ii) λ
∑

ℓ 6=k |ℓ− k|τ |Cℓ,k(t)| = O
(

1
tα

)

·

Proof. We will only consider the case k = 0, the other ones being easily deduced by
homogeneity of W . Let us first evaluate Cℓ,0(t) for ℓ ≥ 0 (here again, the case ℓ < 0 is
similar, since Q is a symmetric function). Then, a direct application of (2.1) gives

Cℓ,0(t) =
1

2tα

∫ tα(2ℓ+1)

tα(2ℓ−1)

∫ tα

−tα
Q(x− y)dxdy.

Moreover,
∫

R
Q(x− y)dx = 1 for any y ∈ R, and thus it is easily checked that

Cℓ,0(t) = 1 − 1

2tα

∫ tα(2ℓ+1)

tα(2ℓ−1)

[
∫ −tα

−∞

Q(x− y)dx+

∫ ∞

tα
Q(x− y)dx

]

dy. (4.7)

Set now

(I) =
1

2tα

[

∫ tα(2ℓ+1)

tα(2ℓ−1)

∫ −tα

−∞

Q(x− y)dxdy +

∫ tα(2ℓ+1)

tα(2ℓ−1)

∫ ∞

tα
Q(x− y)dxdy

]

.

Then, a series of changes of variable yields

(I) =
1

2tα

[

∫ tα(2ℓ+1)

tα(2ℓ−1)

∫ −tα−y

−∞

Q(u)dudy +

∫ tα(2ℓ+1)

tα(2ℓ−1)

∫ ∞

tα−y

Q(u)dudy

]

=
1

2tα

[

∫ −tα(2ℓ)

−tα(2ℓ+2)

∫ ẑ

−∞

Q(u)dudẑ +

∫ −tα(2ℓ−2)

−tα(2ℓ)

∫ ∞

z

Q(u)dudz

]

,

where we have set ẑ = −tα − y and z = tα − y. Thus, denoting by F (z) the quantity
∫ z

−∞
Q(u)du, we get

(I) =
1

2tα

[

∫ −tα(2ℓ)

−tα(2ℓ+2)

F (ẑ)dẑ +

∫ −tα(2ℓ−2)

−tα(2ℓ)

(1 − F (z))dz

]

= 1 +
1

2tα

∫ −tα(2ℓ)

−t−α(2ℓ+2)

F (z)dz − 1

2tα

∫ −tα(2ℓ−2)

−tα(2ℓ)

F (z)dz. (4.8)
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Hence, setting F̄ (z) =
∫∞

z
Q(u)du = 1 − F (z) and putting together (4.7) and (4.8) one

obtains, for any ℓ ≥ 0,

Cℓ,0(t) =
1

2tα

[

∫ −tα(2ℓ−2)

−tα(2ℓ)

F (z)dz −
∫ −tα(2ℓ)

−tα(2ℓ+2)

F (z)dz

]

=
1

2tα

[

∫ −tα(2ℓ)

−tα(2ℓ+2)

F̄ (z)dz −
∫ −tα(2ℓ−2)

−tα(2ℓ)

F̄ (z)dz

]

. (4.9)

We are now ready to prove item (i): for ℓ = 0, equation (4.9) becomes

C0,0(t) =
1

2tα

[
∫ 2tα

0

F (z)dz −
∫ 0

−2tα
F (z)dz

]

=
1

2tα

[
∫ 2tα

0

(

1 −
∫ ∞

z

Q(u)du

)

dz −
∫ 0

−2tα
F (z)dz

]

, (4.10)

by definition of F . Thus

C0,0(t) = 1 − 1

2tα

[
∫ 2tα

0

(
∫ ∞

z

Q(u)du

)

dz +

∫ 0

−2tα
F (z)dz

]

(4.11)

= 1 − 1

tα

∫ 2tα

0

F̄ (z)dz, (4.12)

where we have used the symmetry of Q. Now, using the fact that

F̄ (z) ≤ c
(

1 ∧ |z|−(2+θ)
)

, (4.13)

which follows directly from Hypothesis 4.1, it is easily seen that C0,0(t) = 1 + O(t−α),
which ends the proof of item (i).

In order to show item (ii), notice that equation (4.9) yields

k
∑

l=1

ℓτ |Cℓ,0(t)| ≤
1

2tα

k
∑

ℓ=1

ℓτ
∫ tα(2ℓ+2)

tα(2ℓ−2)

F̄ (z)dz.

However, invoking Hypothesis 4.1, there exists a constant κ (that may change from line
to line) such that

k
∑

l=1

ℓτ |Cℓ,0(t)| ≤
1

2tα

k
∑

ℓ=1

ℓτ
[ κ

[tα(2ℓ+ 2)]θ+1
+

κ

[tα(2ℓ− 2)]θ+1

]

≤
k
∑

ℓ=1

κ

ℓθ+1−τ tα(θ+1)
= O

( 1

tα

)

, (4.14)

thanks to the fact that θ + 1 − τ > 1. The same kind of estimate being true for
∑−1

l=−k ℓ
τ |Cℓ,0(t)| by symmetry of Q, the result now follows using item (i).
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4.1.2 Interaction between b and W

We will now try to get some quantitative information about the way b interacts with with
the random medium W when the Brownian motion is localized by the event Lα

k . This
will be done by introducing two quantities: first a family of random variables {ηℓ , ℓ ∈ Z}
which will be obtained by a normalization of η̃, that is

ηℓ =
t

1−α
2

2
η̃l. (4.15)

We will also need a vector v = v(bs; t/2 ≤ s ≤ t) of RZ, defined for each ℓ ∈ Z by

vℓ = 4tα−1Cov

(

∫ t

t
2

W (ds, bs); ηℓ

)

= 4tα−1E

[

∫ t

t
2

W (ds, bs) ηℓ

]

. (4.16)

Then we will prove, in a sense, that vℓ looks like 1k=ℓ on Lα
k . To this purpose, for a fixed

k ∈ Z, and τ < θ (remember that θ is defined at Hypothesis 4.1), let us consider the norm
‖ · ‖τ,k defined on R

Z by

‖x‖τ,k = |xk| +
∑

i6=k

|xi||i− k|τ . (4.17)

Remark 4.7. It will be essential in the sequel to control the decay of vℓ, and also of δℓ
(defined at Proposition 4.9) when |ℓ| → ∞. It will be used for instance in relations (4.33)
and (4.38). This is why we have introduced here this norm ‖ · ‖τ,k.

We are now ready to state a first result about the interaction between b and W .

Proposition 4.8. Suppose b ∈ Lα
k . Then the vector v given by (4.16) satisfies the follow-

ing properties:

(i) Let ‖ · ‖τ,k be the norm defined at (4.17). Then

‖v‖τ,k − vk = O

(

1

tα

)

.

(ii) For t large enough, there exist two strictly positive real numbers c and c such that

c ≤ vk ≤ c.

Proof. Let us start with item (i), and observe that our computations will be easier here
if we use the environment representation (2.2). Recall also that η̃k is defined by (4.5) and
ηk by (4.15). Then

vℓ =
2

t
E

[
∫ t

t
2

∫

R

exp(iubs)ν(ds, du)

∫

Iℓ

∫ t

t
2

∫

R

exp(iux)ν(ds, du)dx

]

=
2

t

∫

Iℓ

E

[
∫ t

t
2

∫

R

exp(iubs)ν(ds, du)

∫ t

t
2

∫

R

exp(iux)ν(ds, du)

]

dx.
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Thanks to (2.4), and according to the fact that Q̂ is the Fourier transform of Q, we thus
have

vℓ =
2

t

∫

Iℓ

∫ t

t
2

∫

R

exp(iu(bs − x))Q̂(du)dsdx

=
2

t

∫ t

t
2

∫

Iℓ

Q(bs − x)dxds (4.18)

≤ sup
s∈[t/2,t]

∫

Iℓ

Q(bs − x)dx. (4.19)

However, on the event Lα
k , it is easily checked that, for s ∈ [t/2, t], we have

(2|ℓ− k| − 2) tα ≤ bs − x ≤ (2|ℓ− k| + 2) tα.

Assume now that ℓ 6= k. According to the fact that Q is a positive decreasing function
on R+, for each s ∈ [t/2, t], we can conclude that

∫

Iℓ

Q(bs − x)dx ≤
∫ tα(2|ℓ−k|+2)

tα(2|ℓ−k|−2)

Q(x)dx ≤ 4tαQ(tα(2|ℓ− k| − 2)). (4.20)

Consequently, putting together equations (4.19) and (4.20), we get

‖v‖τ,k = vk +
∑

ℓ 6=k

|ℓ− k|τvℓ ≤ vk + 4tα
∑

ℓ 6=k

|ℓ− k|τQ(tα(2|ℓ− k| − 2))

≤ vk +
κ

tα(2+θ)

∑

ℓ 6=k

|ℓ− k|−(3+θ−τ) ≤ vk +
κ

tα(2+θ)
, (4.21)

where κ is a positive constant that can change from line to line, and where we have used
again Hypothesis 4.1. It is now readily checked that ‖v‖τ,k ≤ vk + 0(t−α), which ends the
proof of item (i).

Let us prove now the item (ii): go back to equation (4.18) and set ℓ = k. Then we get

inf
s∈[ t

2
,t]

∫

Ik

Q(bs − x)dx ≤ vk ≤ sup
s∈[ t

2
,t]

∫

Ik

Q(bs − x)dx ≤
∫

R

Q(u)du = 1

To find a lower bound on the left-hand side, we now make use of Part 1 of Hypothesis
4.1, which will serve as a non-degeneracy assumtion, as announced in Remark 4.2. Since
Q is an even function, we get

∫∞

0
Q (x) dx = 1/2. But if b ∈ Lα

k , then for any s ∈ [t/2, t],
we have that the interval bs − Ik contains either [0, tα] or [−tα, 0], so that, again by the
evenness of Q,

∫

Ik

Q(bs − x)dx ≥
∫ tα

0

Q (x) dx.

The latter quantity, which tends to 1/2 when t → ∞, can be made to exceed 1/4 for t
large enough. This finishes the proof of item (ii) with c = 1/4 and c = 1, and of the
proposition.
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4.1.3 Inversion of C(t)

In this section, we will be concerned with the operator C−1(t), where C(t) has been
defined by relation (4.6), and more specifically, we will try to get some information about
the solution δ to the system C(t)x = v. The importance of δ stems from the fact that the
variables ηk will be independent of −Ht(b) −

∑

j∈Z
δjηj , which will be useful for further

computations (see Proposition 4.13). However, we have already seen that C(t) behaves
asymptotically like the identity matrix, and thus the vector δ should be of the same kind
as v. This is indeed the case, and will be proved in the following Proposition:

Proposition 4.9. Assume Hypothesis 4.1 holds true, and that b ∈ Lα
k . Set lτ,k = {x ∈

RZ; ‖x‖τ,k <∞}. Then

(i) The operator C(t) is invertible in lτ,k. We will set then δ = C−1(t)v.

(ii) There exist some strictly positive real numbers d and d such that

d ≤ δk ≤ d.

(iii) The following relation holds true:

‖δ‖τ,k − δk = O

(

1

tα

)

· (4.22)

(iv) On the probability space (Ω,G,P), the family {ηl; l ∈ Z} is independent of −Ht(b)−
∑

j∈Z
δjηj.

Remark 4.10. Notice that Proposition 4.9 contains a considerable amount of the infor-
mation which will be used for the proof of Lemma 4.5. Indeed, inequality (4.41) will be
obtained thanks to item (iv), item (iii) will be invoked for inequality (4.38), and item (ii)
will be essential in order to define the random variables η̌0 and η̌k at (4.36).

Proof of Proposition 4.9. (i) We will first choose an appropriate operator norm on lτ,k. In
fact this norm is given by

‖A‖τ,k : = sup
r∈Z

∑

i∈Z

fτ,k(i)

fτ,k(r)
|Ai r|, where fτ,k(i) = 1i=k + |i− k|τ1i6=k.

We will also call Lτ,k the corresponding operator space. Then, on one hand, the following
relations are easily checked, for D1, D2 ∈ Lτ,k and x ∈ lτ,k:

‖D1x‖τ,k ≤ ‖D1‖τ,k‖x‖τ,k, and ‖D1 +D2‖τ,k ≤ ‖D1‖τ,k + ‖D2‖τ,k. (4.23)

On the other hand, setting A(t) = Id− λC(t), Proposition 4.6 directly yields ‖A(t)‖τ,k =
O(t−α), and thus ‖A(t)‖τ,k < 1 if t is large enough. This allow us to define C−1(t) in Lτ,k

by a Von Neumann type series of the form

C−1(t) = λ
∑

j≥0

Aj . (4.24)
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(ii) For t large enough, set δ = C−1(t)v, which makes sense since v ∈ lτ,k. Then, thanks
to the fact that C−1(t) can be defined by relation (4.24), we have

δk = λ
(

vk +
∑

j≥1

(Ajv)k

)

≥ λ
(

vk −
∑

j≥1

‖Ajv‖τ,k

)

≥ λ
(

vk −
∑

j≥1

‖A‖j
τ,k‖v‖τ,k

)

,

where we have used the relations xk ≥ −‖x‖τ,k and (4.23). Hence, since ‖A(t)‖τ,k =
O(t−α), we obtain

δk ≥ λ

(

vk −
‖A‖τ,k

1 − ‖A‖τ,k

‖v‖
)

≥ λ

(

vk +O

(

1

tα

))

(4.25)

≥ d+O

(

1

tα

)

,

according to the properties of v shown at Proposition 4.8. The upper bound on δk can
now be shown by the same type of argument, which ends the proof of our claim.

(iii) Let us evaluate now the quantity ‖− δ‖τ,k − δk: thanks to relations (4.23) and (4.25),
we get

‖δ‖τ,k − δk ≤ ‖C(t)−1‖τ,k‖v‖τ,k − δk

≤
(

‖C(t)−1‖τ,k‖v‖τ,k − λvk +
λ‖A‖τ,k

1 − ‖A‖τ,k
‖v‖τ,k

)

.

Thus, using again that fact that C−1(t) is defined by equation (4.24) and relation (4.23),
we obtain

‖δ‖τ,k − δk ≤ λ

(

1 + ‖A‖τ,k

1 − ‖A‖τ,k
‖v‖τ,k − vk

)

= λ (‖v‖τ,k − vk) +O

(

1

tα

)

= O

(

1

tα

)

,

where in the last two steps, we have invoked, respectively, item (i) and Proposition 4.8.
This concludes our proof.

(iv) Recall that C(t) = Cov(η). Hence, by definition of v and η,

δj =
(

C−1 (t) v
)

j
=

1

4
t1−α

∑

k∈Z

[Cov(η)]−1
jk vk

=
∑

k∈Z

[Cov(η)]−1
jk E

[

∫ t

t
2

W (ds, bs) ηk

]

=
∑

k∈Z

[Cov(η)]−1
jk E [(−Ht (b)) ηk] ,
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we have the following standard calculation for any k ∈ Z

E

[(

−Ht(b) −
∑

j∈Z

δjηj

)

ηℓ

]

= −E [Ht (b) ηℓ] + E
∑

j∈Z

∑

k∈Z

[Cov(η)]−1
jk E [Ht (b) ηk] ηjηℓ

= −E [Ht (b) ηℓ] + E
∑

j∈Z

∑

k∈Z

[Cov(η)]−1
jk [Cov(η)]jℓ E [Ht (b) ηk]

= −E [Ht (b) ηℓ] +
∑

k∈Z

δkℓE [Ht (b) ηk] = 0.

Now since for fixed b, Ht (b) and η are both linear functionals of a same Gaussian field,
they form a jointly Gaussian vector, and are thus independent.

4.1.4 Application of Girsanov’s theorem

In our context, the cost of having b living in the interval Ik = [tα(2k − 1), tα(2k + 1)]
instead of I0 = [−tα, tα] can be calculated explicitely thanks to Girsanov’s theorem: given
an integer k, a real number t and a realization of the environment W , we define a new
environment by

W k,t(s, x) ≡W (s, x+ min(2s/t, 1)2ktα). (4.26)

We will also need to introduce a modified partition function Z̃ defined by

Z̃α
t (k) = Eb

[

1Lα
k

exp

(

β

(
∫ t

0

W (ds, bs) −
∑

j∈Z

δjηj

))]

.

In the sequel, we will have to stress the dependence of these partition functions on the
environment under consideration. We will thus set Z̃α

t (k) = Z̃α
t (k,W ). With these

notations in mind, we can prove the following proposition:

Proposition 4.11. Given two positive real numbers α and t, there exists a positive integer
ζ = ζ(k) such that

Z̃α
t (k,W ) ≥ exp(−ζt2α−1)Z̃α

t (0,W k,t). (4.27)

Proof. Given k and t, we associate to a path b a shifted path b′ by the relation

b′s ≡ bs − min(2s/t, 1)2ktα, for s ∈ R.

Notice that this shift tranforms a path which lives in the interval Ik for all s ∈ [t/2, t]
into a path which belongs to I0 in the same time interval. Now, a standard application
of Girsanov’s theorem yields

Z̃α
t (k,W ) =Eb

[

1L0
exp

(

−bt/24kt
α−1 − 4k2t2α−1

)

exp

(

β

(
∫ t

0

W k,t(ds, bs) −
∑

j∈Z

δjηj(W
k,t)

))]

≥ exp
(

−(1 + k)4kt2α−1
)

Z̃α
t (0,W k,t),
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where in the last step, we have used the fact that L0 is realized. This finishes our proof.

4.2 Proof of Lemma 4.5

Recall that we have reduced our problem to the evaluation of P(Bt), where

Bt = Ac
t = {For all k ∈ Z, Zα

t (k) ≤ Zα
t (0)} ,

and one wishes to show that limt→∞ P(Bt) = 0. Then a first step in order to prove this
claim is to truncate Bt: for a positive integer M let ZM and Z̄M be the sets defined
respectively by

Z̄M = {−M,−M + 1, . . . ,M − 1,M} and ZM = Z̄M\{0}, (4.28)

and BM,t the event defined by

BM,t = {For all k ∈ ZM , Z
α
t (k) ≤ Zα

t (0)} .

Then obviously, P(Bt) ≤ P(BM,t), and we only need to prove that P(BM,t) tends to 0 as
t→ ∞.

Here is a brief account on the strategy we will follow in order to complete our proof.

(1) Recall that we are trying to bound

P (BM,t) = P
(

Eb

[

1Lk
e−Ht(b)

]

< Eb

[

1L0
e−Ht(b)

]

for all k ∈ ZM

)

. (4.29)

A natural idea is then split the conditions Eb[1Lk
e−Ht(b)] < Eb[1L0

e−Ht(b)] in terms of a
condition involving the random variables ηl introduced at (4.15), on which we have a
reasonable control, and another set of conditions involving some random variables inde-
pendent of the family {ηl; l ∈ Z}. However, we have already seen at Proposition 4.9 that
−Ht(b)−

∑

j∈Z
δjηj is independent of {ηl; l ∈ Z}. Thus, a natural choice will be to replace

e−Ht(b) by et(b) in the expression (4.29), where et(b) is defined by

et(b) = exp

(

−β
(

Ht(b) +
∑

j∈Z

δjηj

))

.

Of course, this induces a correction term exp(β
∑

j∈Z
δjηj),but this term can be controlled,

since the covariance structure of the family {ηl; l ∈ Z} is given by Proposition 4.6, and
the vector δ is controlled by means of Proposition 4.9. Thus, up to a negligible term, we
will be allowed to bound P(BM,t) by

P

(

For any k ∈ ZM ;
Z̃α

t (k)

Z̃α
t (0)

< exp(2γt2α−1 + η̌0 − η̂k)

)

, (4.30)

where Z̃α
t (k) = Eb[1Lk

et(b)], and the random variables η̌k, η̂k are defined in (4.36) in terms
of the random variables η.
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(2) Notice that up to now, we have chosen our parameters carefully in order to get
a penalization of order exp(2γt2α−1) in (4.30). Indeed, Proposition 4.11 gives a sharp
estimate on the correction we have to impose on b if we wish that it lives the second half
of his life in Iα

k , and this penalization is exactly of order exp(ζt2α−1). In fact, we will be
able to bound P(BM,t) by P(FM), where the event FM is defined by

FM =

{

For any k ∈ ZM ;
Z̃α

t (0,W k,t)

Z̃α
t (0,W )

< exp(γ̂t2α−1 + η̌0 − η̂k)

}

,

for a constant γ̂ = γ̂(M), where the shifted environments W k,t are defined at (4.26),
and where the random variables η̌0 − η̂k, defined via (4.36), are going to be of the order
t(1−α)/2 (η̃0 − η̃k). See also Part 2 of point (3) that follows.

(3) We are now considering a set FM involving the random variables Z̃t and η̌, η̂, and this
will allow us to take advantage of the following facts:

1. The ratio Z̃α
t (0,W k,t)/Z̃α

t (0,W ) cannot be too small at many different sites k ∈ ZM ,
by translation invariance in space of W .

2. The difference η̌0 − η̂k can be highly negative at many different sites, since it is
of the order t(1−α)/2 (η̃0 − η̃k), and Proposition 4.6 asserts that {η̃k; k ∈ ZM} is
asymptotically a standard Gaussian vector, so that we are allowed to expect that
exp(γ̂t2α−1 + η̌0 − η̂k) is much smaller than 1 at many different sites of ZM .

3. The random variables Z̃α
t are independent of η̌0, η̂k, and hence the two effects alluded

to above can be taken into account separately.

These heuristic considerations will be formalized at Step 3 through the introduction of
an intricate family of subsets of ZM , but let us mention that the exponent 3/5 comes out
already at this stage: indeed, the above considerations only make sense if the magnitude
t(1−α)/2 of the ηk is greater than the magnitude t2α−1 of the penalization, which occurs
obviously whenever α < 3/5. In this sense, our estimates are quite sharp: they mainly
rely on the covariance structure of η̃ and on Girsanov’s theorem applied to b.

Before going into the details of our calculations, let us introduce a new set B̂M,t: as
mentioned above, our computations will bring out some expressions of the form ut ≡
t(1−α)/2

∑

j∈Z
δj η̃j , and it will be convenient to keep this kind of term of order O(t2α−1),

which is also the order of the exponential correction term appearing in (4.27). However,
since δ satisfies Proposition 4.9, it is easily checked that ut is of the desired order if
η̃j ≤ |j − k|τ t(7α−3)/2 on Lα

k . These considerations motivate the introduction of the event

B̂M,t ≡ { There exists ℓ ∈ Z̄M and j ∈ Z\{ℓ}; |η̃j | ≥ |j − ℓ|τ t(7α−3)/2},

and we will trivially bound P(BM,t) by

P(BM,t) ≤ P(B̂M,t) + P(B̂c
M,t ∩ BM,t). (4.31)
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We will now prove that the two terms in the right hand side of (4.31) are vanishing as
t→ ∞, whenever M is large enough.

Step 1: Estimation of P(B̂M,t)
Let Φ be the distribution function of a standard Gaussian random variable, i.e. if Z ∼
N (0, 1), then

Φ(x) = P(Z ≤ x), (4.32)

and set Φ̄ = 1 − Φ. Then let us bound simply P(B̂M,t) by

P(B̂M,t) ≤
∑

ℓ∈Z̄M

∑

j 6=ℓ

P(|η̃j| ≥ |j − ℓ|τ t 7α−3

2 )

≤ 2
∑

ℓ∈Z̄M

∑

j 6=ℓ

Φ̄

(

|j − ℓ|τ t 7α−3

2

C
1/2
0,0 (t)

)

,

where C0,0(t) is defined at (4.6). Recall now that Φ(x) ≤ e−x2/2 for x large enough, and
that C(t) satisfies Proposition 4.6. Thus, for two constants c1, c2 > 0, we get

P(B̂M,t) ≤ c1M
∑

j≥1

exp
(

−c2j2τ t7α−3
)

. (4.33)

The following facts are now easily seen:

• The series in the right hand side of (4.33) is convergent, since τ > 0, which explains
the choice of the norm ‖x‖τ,ℓ in order to bound η̃j .

• Since we have assumed α > 1/2 > 3/7, we have 7α−3 > 0, and thus, an elementary
application of the dominated convergence theorem yields

lim
t→∞

P(B̂M,t) = 0, (4.34)

which proves our first claim.

Step 2: Estimation of P(B̂c
M,t ∩ BM,t)

Recall that the vector δ has been introduced because −Ht(b) − t(1−α)/2
∑

j∈Z
δj η̃j is

independent of the family η̃, and for sake of compactness of notations, set

ηj = t(1−α)/2η̃j , and et(b) = exp

(

−β
(

Ht(b) +
∑

j∈Z

δjηj

))

. (4.35)

Now we have

P(B̂c
M,t ∩ BM,t) = P

(

B̂c
M,t and Eb

[

1Lk
e−Ht(b)

]

< Eb

[

1L0
e−Ht(b)

]

for all k ∈ ZM

)

= P

(

B̂c
M,t and Eb

[

1Lk
et(b) exp

(

∑

j∈Z

βδjηj

)

]

< Eb

[

1L0
et(b) exp

(

∑

j∈Z

βδjηj

)

]

for all k ∈ ZM

)

.
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It is worth noticing at this point that v, and thus δ, depend on the path b, as is easily
seen from definition (4.16). In order to get rid of the term

∑

j∈Z
δjηj , we will then set

η̌0 = max (βdη0, βdη0), and η̂k = min (βdηk, βdηk), (4.36)

where the constants d, d have been introduced in Proposition 4.9. Then, according to the
definition of B̂c

M,t, we get

P(B̂c
M,t ∩ BM,t)

≤P

(

For any k ∈ ZM , Eb

[

1Lk
et(b) exp

(

∑

j∈Z

β|δj||j − k|τ t3α−1 + η̂k

)

]

< Eb

[

1L0
et(b) exp

(

∑

j∈Z

β|δj|jτ t3α−1 + η̌0

)

])

.

Now, invoking Proposition 4.9 item (iii), we obtain that for any integer k, there exists a
constant γ (possibly depending on β) such that

∑

j∈Z
β|δj||j − ℓ|τ ≤ γ/tα on Lk. Thus,

thanks to the fact that the random variables η only depend on W , and observing that
Z̃α

t (k) = Eb[1Lk
et(b)], we get

P(B̂c
M,t ∩ BM,t) (4.37)

≤P
(

For any k ∈ ZM ; Z̃α
t (k) exp(−γt2α−1 + η̂k) < exp(γt2α−1 + η̌0)Z̃

α
t (0)

)

=P

(

For any k ∈ ZM ;
Z̃α

t (k)

Z̃α
t (0)

< exp(2γt2α−1 + η̌0 − η̂k)

)

. (4.38)

Let us apply now Proposition 4.11 in order to conclude that

P(B̂c
M,t ∩ BM,t) ≤ P

(

For any k ∈ ZM ;
Z̃α

t (0,W k,t)

Z̃α
t (0,W )

< exp(γ̂t2α−1 + η̌0 − η̂k)

)

,

where γ̂ = γ̂(M) = sup{2γ + ζ(k); k ∈ ZM} and ζ (k) = 4k(k + 1). We have thus proved
that

P(B̂c
M,t ∩ BM,t) ≤ P(FM),

where

FM =

{

For any k ∈ ZM ;
Z̃α

t (0,W k,t)

Z̃α
t (0,W )

< exp(γ̂t2α−1 + η̌0 − η̂k)

}

.

Step 3: Evaluation of P(FM)
We can see now that the probability of FM will be expressed in terms of a balance
between the values of η̌0 − η̂k (which will be assumed to be highly negative) and the ratio
Z̃α

t (0,W k,t)/Z̃α
t (0,W ), which cannot be too small at many different sites k. In order to

quantify this heuristic statement, we will introduce a family S̄M,m of subsets of Z̄M which
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will be used to construct a large symmetric set L around 0 such that η̌0 − η̂ℓ < −t2α−1+ρ

for all ℓ ∈ L: for a given ρ > 0 and integer numbers m and M , define the sets

SM,m =
⋃

k,k̂∈DM,m

kZk̂, with DM,m =
{

k ≥ 1, k̂ ≥ m; kZk̂ ⊂ ZM

}

S̄M,m = {L ⊂ ZM ; There exists S ∈ SM,m such that S ⊂ L} . (4.39)

In relation with these families of subsets of ZM , set also

F̂M,m,ρ =
⋃

L∈S̄M,m

F̂ρ,L, (4.40)

with

F̂ρ,L =
{

η̌0 − η̂ℓ < −t2α−1+ρ, for all ℓ ∈ L, η̌0 − η̂ℓ̂ > −t2α−1+ρ, for all ℓ̂ ∈ ZM\L
}

.

Then one can bound trivially P(FM) by

P(FM) ≤ 1 − P(F̂M,m,ρ) + P(FM ∩ F̂M,m,ρ).

Furthermore, for t large enough, γ̂t2α−1 − t2α−1+ρ < 0 – which explains the need for the
constant ρ > 0 – and thus

FM ∩ F̂M,m,ρ ⊆
⋃

L∈S̄M,m

⋂

ℓ∈L

{

Z̃α
t (0,W ℓ,t)

Z̃α
t (0,W )

< exp
(

γ̂t2α−1 − 2t2α−1+ρ
)

}

∩ F̂ρ,L

⊆
⋃

L∈S̄M,m

{

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ L
}

∩ F̂ρ,L.

Hence, since the events F̂ρ,L are disjoint, we get

P(FM) ≤ 1 − P(F̂M,m,ρ) +
∑

L∈S̄M,m

P
({

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ L
}

∩ F̂ρ,L

)

≤ 1 − P(F̂M,m,ρ) +
∑

L∈S̄M,m

P
(

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ L
)

P
(

F̂ρ,L

)

,

(4.41)

where in the last step, we have just used the independence between the random variables
Z̃α

t and the sequence {ηℓ; ℓ ∈ Z̄M}.
The end of our proof will then rely on the following propositions, whose proofs will be

postponed until the next subsections:

Proposition 4.12. Let m be a fixed positive even integer, and M > m. Then, for any
L ∈ S̄M,m, we have

P
(

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ L
)

≤ 1

m
.
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Proposition 4.13. Let m be a fixed positive integer. Let ρ be a strictly positive number
such that 5

2
(α− 3

5
) +ρ < 0. Then, for t large enough, there exists a M large enough such

that

P(F̂M,m,ρ) ≥ 1 − 1

m
. (4.42)

With these results in mind, let us finish now the proof of our Theorem: take t,M large
enough so that (4.42) is satisfied. Then (4.41) yields directly, invoking Proposition 4.12
and the fact that the events F̂ρ,L are disjoints,

P(FM) ≤ 1

m
+

1

m

∑

L∈S̄M,m

P(F̂ρ,L) ≤ 1

m
+

1

m
=

2

m
.

which tends to 0 as m→ ∞, and ends the proof of the Theorem. �

Before proceeding with the proofs of Propositions 4.12 and 4.13, we discuss the con-
sequences of weakening Part 2 of Hypothesis 4.1. If we assume only that

Q (x) ≤ x−2−θ, (4.43)

can we find values of θ ≤ 1 such that we still get superdiffusive behavior for the polymer,
i.e. α > 1/2? Since the result of the Girsanov theorem, Proposition 4.11, is not effected
by the value of θ above, this means that the penalization from Girsanov’s theorem, of
order t2α−1, cannot be made smaller by a different choice of decorrelation speed in Q.
Therefore we should expect not to be able to preserve the threshold α < 3/5. To see
exactly what happens to this threshold under condition (4.43), we first state, and leave
it to the reader to check, that we can rework the proof of Proposition 4.9 item (iii) to
obtain instead

|δ|τ,k − δk = o
(

tαθ
)

.

It is then simple to check that (4.38) becomes

P(B̂c
M,t ∩ BM,t) ≤ P

(

For any k ∈ ZM ;
Z̃α

t (k)

Z̃α
t (0)

< exp(2γt3α−1−θ + η̌0 − η̂k)

)

.

Hence the application of Proposition 4.11 still works, but we can no longer make the
corresponding Girsanov penalization of the same order, since for θ < 1, 3α − 1 − αθ >
2α− 1. Having thus convinced ourselves that Part 2 of Hypothesis 4.1 is the only way to
get the entire proof to be efficient in terms of using comparable penalizations throughout,
we can now ignore this inefficiency, and answer the question at the beginning of this
paragraph. The reader will check that any other occurences of the use of Hypothesis 4.1
are not further effected by switching (4.43): the entire proof can still be used if we only
require that the magnitude of the ηk’s, namely t(1−α)/2, is larger than the new penalization
t3α−1−αθ. This yields

α <
3

7 − 2θ
.

We have already argued that θ should be no greater than 1 (or else we revert to the
original Hypothesis 4.1), but now we see that to get a super-diffusive behavior, we need
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3/ (7 − 2θ) > 1/2, i.e. θ > 1/2. We also see that the weakest hypothesis required for
such behavior is Q (x) ≤ x−5/2−ϑ for ϑ > 0. We state these findings formally, using the
reparametrization θ = ϑ+ 1/2.

Corollary 4.14. Assume instead of Part 2 of Hypothesis 4.1 that there exists ϑ ∈ (0, 1/2]
such that as |x| → ∞,

Q (x) = O
(

|x|−5/2−ϑ
)

.

Then for any ε > 0 we obtain the following specific super-diffusive behavior for the polymer
measure:

lim
t→∞

P

[

〈sup
s≤t

|bs|〉t ≥ t
1

2
+ ϑ

6−2ϑ
−ε

]

= 1.

4.3 Proof of Proposition 4.12

Let L ∈ S̄M,m. Then, by definition (4.39) of S̄M,m, there exists k ≥ 1 such that kZm ⊂ L.
Then

P
(

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ L
)

≤P
(

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ kZm

)

.

It is thus sufficient to estimate the right hand side in the above inequality.

Given an even integer m ≤ M , recall that Z̄m has been defined at (4.28). Set also
m̂ = m/2, and for each i ∈ kZ̄m̂, we associate the following event:

Ω(i) ≡
{

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W i,t) for all ℓ ∈ kZ̄m̂\{i}
}

.

Then these events are disjoint, and since |kZ̄m̂| = 2m̂ + 1, we get trivially the existence
of i0 ∈ kZ̄m̂ such that

P
(

Ω(i0)
)

≤ 1

2m̂+ 1
≤ 1

m
. (4.44)

However, the translation invariance of the environment W yields

P
(

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W ) for all ℓ ∈ kZm

)

= P
(

Z̃α
t (0,W ℓ+i0,t) < Z̃α

t (0,W i0,t) for all ℓ ∈ kZm

)

≤ P
(

Z̃α
t (0,W ℓ,t) < Z̃α

t (0,W i0,t) for all ℓ ∈ kZ̄m̂\{i0}
)

= P
(

Ω(i0)
)

. (4.45)

Observe that the last inequality is just due to the fact that kZ̄m̂\{i0} ⊂ i0+kZm whenever
i0 ∈ kZ̄m̂, a fact that can simply be proved as follows: if i′ ∈ kZ̄m̂\{i0} then for some
j such that |j| ≤ m/2, i′ = jk; similarly, i0 = kj0, and j0 6= j and |j0| ≤ m/2 as well;
therefore i′ = i0 + (j − j0) k where j − j0 6= 0 and |j − j0| ≤ |j|+ |j0| ≤ m; this does then
indeed means that i′ ∈ i0 + kZm. Hence, putting together (4.44) and (4.45), we get the
announced result. �
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4.4 Proof of Proposition 4.13

Recall that F̂M,m,ρ is defined by (4.40), and define the quantity

τ(t) = β−1t
5

2
(α− 3

5
)+ρ,

which tends to 0 as t→ ∞ if α < 3
5

and ρ is small enough. The following inequality

P(F̂M,m,ρ) ≥ P





⋃

L∈S̄M,m

{

t(α−1)/2(η̌0 − η̂ℓ) ≤ −βτ(t) for all ℓ ∈ L
}



 (4.46)

is then easily established by an elementary inclusion argument, which we detail here.
Indeed, assume that for some L ∈ S̄M,m, for all ℓ ∈ L, η satisfies

t(α−1)/2(η̌0 − η̂ℓ) ≤ −βτ(t)
which is equivalent to

η̌0 − η̂ℓ ≤ −t2α−1+ρ

To justify the above inequality, we only need to prove that for some other L′ ∈ S̄M,m,
the same η also satisfies the above inequality for all ℓ ∈ L′, while for all ℓ ∈ ZM \ L′, the
contrary holds, namely

η̌0 − η̂ℓ > −t2α−1+ρ.

Let then Λ be the subset of ZM defined by

Λ =
{

ℓ ∈ ZM ; η̌0 − η̂ℓ > −t2α−1+ρ
}

,

and set L′ = ZM \Λ. Then, by construction L′ has the required properties defined above,
and since L′ ⊃ L, by definition of S̄M,m, we have L′ ∈ S̄M,m.

In order to get a lower bound on the right hand side of (4.46) above, we will construct
now a large enough collection of symmetric and disjoint sets in ZM : with m < M , consider
the collection {Pq(m)Zm; q < q∗}, where the integers Pq (m) are defined by

P1(m) = 1, Pq+1(m) = mPq(m) + 1, q∗ = inf {q;Pq(m) > M}.
This collection is the sequence

Zm, (m+ 1)Zm, [m(m+ 1) + 1]Zm, · · · , Pq (m) Zm, · · · , Pq∗−1 (m) Zm,

which are non-overlapping annuli in ZM , and therefore are indeed symmetric and disjoint
subsets of ZM . Since Pq (m) Zm is certainly of the form kZk̂ with k ≥ 1 and k̂ ≥ m, and
is a subset of ZM as soon as q < q∗, by definition Pq (m) Zm ∈ S̄M,m. Thus, using the
notation η̌0, η̂ℓ and ηℓ defined in (4.35) and (4.36), we get

P(F̂M,m,ρ) ≥ P

(

⋃

q<q∗

{

max(dη̃0, dη̃0) − min(dη̃ℓ, dη̃ℓ)

≤ −τ(t) for all ℓ ∈ Pq(m)Zm

}

)

.
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Let us call now Aℓ the event

Aℓ =
{

max(dη̃0, dη̃0) − min(dη̃ℓ, dη̃ℓ) ≤ −τ(t)
}

,

and we distinguish two cases according to the values of η̃0:

(a) If η̃0 ≥ 0, then max(dη̃0, dη̃0) = dη̃0, and hence Aℓ is the event defined by the relation

min(dη̃ℓ, dη̃ℓ) ≥ τ(t) + dη̃0.

In particular, η̃ℓ has to be positive, and thus Aℓ can be written as
{

dη̃0 − dη̃ℓ < −τ(t)
}

.

(b) If η̃0 ≤ −τ(t)/d ≤ 0, then max(dη̃0, dη̃0) = dη̃0. Thus Aℓ can be written as the event
defined by the relation

min(dη̃ℓ, dη̃ℓ) ≥ τ(t) + dη̃0, (4.47)

and if η̃0 ≤ −τ(t)/d, the quantity τ(t)+ dη̃0 is negative. Hence, (4.47) is implied by
η̃ℓ ≥ 0.

Summarizing the considerations above, we get

P(F̂M,m,ρ) ≥ P(D+) + P(D−),

with

D+ =
⋃

q<q∗

{

dη̃0 − dη̃ℓ ≤ −τ(t) for all ℓ ∈ Pq(m)Zm

}

∩ {η̃0 > 0}

D− =
⋃

q<q∗

{η̃ℓ ≥ 0 for all ℓ ∈ Pq(m)Zm} ∩ {η̃0 ≤ −τ(t)/d} .

We will now prove that P(D+) is close to 1/2. Entirely similar arguments, left to the
reader, lead to showing that P(D−) can also be made arbitrarily close to 1/2, concluding
the proof of the proposition.

Observe that, according to Proposition 4.6 the random variables {η̃ℓ; l ∈ Z̄M} converge
in distribution to a family of independent standard Gaussian random variables {Υℓ; l ∈
Z̄M}. Consequently, and using the fact that −τ (t) → 0 as t→ ∞,

P(D+) = P

(

⋃

q<q∗

{

dΥ0 − dΥℓ ≤ 0 for all ℓ ∈ Pq(m)Zm

}

∩ {Υ0 > 0}
)

+ εM(t),

where, for a fixed M ∈ N, we have limt→∞ εM(t) = 0. Furthermore, since the Υℓ are
independent random variables, we get

P(D+) =

∫ ∞

0

P

(

⋃

q<q∗

{

dx− dΥℓ ≤ 0 for all ℓ ∈ Pq(m)Zm

}

)

e−
x2

2

(2π)1/2
dx+ εM(t)

=
1

2
−
∫ ∞

0

P

(

⋂

q<q∗

D̂q

)

e−
x2

2

(2π)1/2
dx+ εM(t), (4.48)
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where
D̂q =

{

There exists ℓ ∈ Pq(m)Zm; dx− dΥℓ ≥ 0
}

.

In order to take advantage of the independence of the Υℓ, it is convenient to pick some
disjoint sets out of ZM , which explains the choice of disjoint subsets Pq(m)Zm. Now, it
is easily seen that, for a fixed value q0, if one desires to have q∗ > q0, it is sufficient to
take M of order mq0 . Let us assume that we are in this situation; this means that, setting
κ = d/d, we have

P

(

⋂

q<q∗

D̂q

)

≤ P

(

⋂

q≤q0

{There exists ℓ ∈ Pq(m)Zm; Υℓ ≤ κx}
)

= Pq0 (There exists ℓ ∈ Zm; Υℓ ≤ κx)

=
[

1 − P2m (Υ1 ≥ κx)
]q0 .

Plugging these inequalities into (4.48), we obtain

P(D+) ≥ 1

2
−
∫ ∞

0

[

1 −P2m (Υ1 ≥ κx)
]q0 e−

x2

2

(2π)1/2
dx+ εM (t) .

Recall that the functions Φ has been defined by relation (4.32). Then the last inequality
yields,

P(D+) ≥ 1

2
−
∫ ∞

0

[

1 − Φ (κx)2m]q0 e−
x2

2

(2π)1/2
dx+ εM (t) .

It is now easily seen that this probability can be made as close as we wish to 1
2

by taking
q0 → ∞, because 0 < Φ(x) < 1 for all x ∈ R, this asymptotic being equivalent toM → ∞.
�
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