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Abstract. We explore the mathematical structure of the infinite-dimensional Schrödinger-
Virasoro algebra, and discuss possible applications to the integrability of anisotropic or out-
of-equilibrium statistical systems with a dynamical exponent z 6= 1 by defining several
correspondences with conformal field theory.

0. Two-dimensional conformal field theory is an attempt at understanding the universal
behaviour of two-dimensional statistical systems at equilibrium and at the critical temperature,
where they undergo a second-order transition. Starting from the basic assumption of
translational and rotational invariance, together with the fundamental hypothesis that scale
invariance holds at criticality, one is naturally led to the idea (for systems with short-
ranged interactions) that invariance under the whole conformal group should also hold. Local
conformal transformations in two dimensions are generated by infinitesimal holomorphic or anti-
holomorphic transformations which make up two copies of the celebrated Virasoro algebra
virk ∼= 〈Ln | n ∈ Z〉, with Lie brackets [Ln, Lm] = (n − m)Ln+m + kc(Ln, Lm), where
c(Ln, Lm) = 1

12n(n2 − 1)δn+m,0 is the Virasoro cocycle, defining a central extension 2 of vir0.
A systematic investigation of the theory of representations of the Virasoro algebra in the 80’es
led to introduce a class of physical models, called unitary minimal models, corresponding to the
unitary highest weight representations of vir with central charge less than 1, whose correlators
are entirely determined by the symmetries (see for instance [2]).

Nothing of the sort exists for the time being in non-equilibrium or anisotropic statistical
physics. The natural starting point for mathematical investigations is the scaling hypothesis,
which states that correlators should be invariant under time and space translations and under
anisotropic dilations ~r → λ~r, t → λzt, where ~r and t stand for ’space’ and ’time coordinates,
and z is called the anisotropy or dynamical exponent. This applies to critical dynamics (see
[4],[11]), phase ordering kinetics (see [1]) and also to problems of statistical mechanics with a
strong anisotropy, such as directed percolation [10] or Lifchitz points [13].

The case z = 2 is quite naturally associated with Galilei invariance or full Schrödinger
invariance, see (4) below. For instance, dynamical systems with z = 2 are often described in
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2 Central extensions describe important fluctuation effects in field theories, e.g. the Casimir effect.



terms of a stochastic Langevin equation

(2M∂t − ∂2
r )Φ(t, r) = F (Φ) + η (1)

where η is a Gaussian white noise. Recently it was pointed out that if the deterministic part
of (1) is Galilei invariant, the noise-averaged n-point correlation and response functions can be
rewritten in terms of certain correlators of the noiseless theory (where η = 0), see [14]. Therefore,
one is interested in the symmetries of non-linear PDE’s whose archetypes are diffusion equations
of the type

2M∂tΦ − ∂2
rΦ = F (2)

where F = F (t, r, Φ, Φ∗) is a potential. This set of admissible equations may be enlarged
by taking a Fourier transform with respect to the mass, Φ̃(ζ) =

∫
R

ΦMe−iMζ dM, yielding
equations of the type

(2∂ζ∂t − ∂2
r )Φ̃(t, r, ζ) = F (t, r, ζ, Φ̃, Φ̃∗) (3)

as well as by considering a potential depending on a dimensionful coupling constant g (see [16]).
In any case, the largest possible group of invariance (as obtained for F ≡ 0), say in one space
dimension for simplicity, is the Schrödinger group sch1 with Lie algebra

sch1
∼= sl(2, R) n gal = 〈L−1, L0, L1〉 n 〈Y− 1

2

, Y 1

2

, M0〉, (4)

with L−1 = −∂t, Y− 1

2

= −∂r (translations), L0 = −t∂t −
1
2r∂r (infinitesimal anisotropic dilation

for z = 2), Y 1

2

= −t∂r−Mr (Galilei transformation, including a phase term Mr multiplying the

wave function Φ) and M0 = −M, which exhibits a semi-direct product structure; in other words,
gal is both a subalgebra of sch1 and (as a vector space) a representation of sl(2, R). So, even for
one space dimension, there is seemingly no analogue of the infinite-dimensional conformal group
of conformal field theory.

1. Yet –in some sense– there are several substitutes for virk in this setting. We shall mainly
concentrate on the so-called Schrödinger-Virasoro Lie algebra, first introduced in [6]

sv = 〈Ln, Ym, Mp | n, p ∈ Z, m ∈ Z +
1

2
〉 (5)

with Lie brackets

[Ln, Lp] = (n − p)Ln+p, [Ln, Ym] = (
n

2
− m)Yn+m, [Ln, Mp] = −pMn+m

[Ym, Ym′ ] = (m − m′)Mm+m′ , [Ym, Mp] = 0, [Mn, Mp] = 0 (6)

where n, p ∈ Z, m, m′ ∈ 1
2 +Z. It is an infinite-dimensional ’extension’ of sch1, with a semi-direct

product structure sv ∼= gnh – where g = 〈Ln | n ∈ Z〉 ∼= vir0 and h = 〈Ym, Mp | m ∈ Z+ 1
2 , p ∈ Z〉

is a nilpotent Lie algebra – extending that of sch1. Looking at sv from the point of view of the
theory of representations of the Virasoro algebra (also called for short: vir-modules) proved to
be a very fruitful approach (see [15] for the following exposition). The Virasoro algebra has a
class of representations Fλ called tensor-density modules; formally, Fλ

∼= 〈f(z)dz−λ〉 with action
[Ln, zmdz−λ] = (λn−m)zn+mdz−λ, allowing an identification with a primary field of conformal
weight (1 + λ). Then h ∼= F− 1

2

⊕F0 as a g-module.

The following theorem classifies deformations of the Lie algebra sv and central extensions of
these. Central extensions are familiar to anybody acquainted with conformal field theory; they



are an essential tool to construct covariant quantum theories. On the other hand, deformations
(in this context) answer the question : how ’general’ is sv ? Is it the only Lie algebra that enjoys
more or less the same structure as sv, or does it belong to a family? The Virasoro algebra, which
is simple, is known to have no non-trivial deformations; on the contrary, it is mathematically
natural to try deforming Lie algebras that enjoy a semi-direct product structure; therefore,
the problem of finding deformations of sv is a priori quite sensible. The answer combines all
anisotropy exponents into a single structure, making it plausible to find general theories for
anisotropic statistical physics not depending on any particular exponent.

Theorem 1 (see [15], section 5)

(i) The most general deformation of the Lie algebra sv is given by svλ,µ,ν with Lie
bracket [X, Y ]λ,µ,ν = [X, Y ]sv + λc1(X, Y ) + µc2(X, Y ) + νc3(X, Y ), where c1(Ln, Ym) =
n
2 Yn+m, c1(Ln, Mm) = nMn+m; c2(Ln, Ym) = −Yn+m, c2(Ln, Mm) = −2Mn+m;
c3(Ln, Lm) = (m − n)Mn+m (all missing components vanishing).

(ii) The Lie algebra svλ := svλ,0,0 has exactly one family of central extensions, given by the

extension by zero of the Virasoro cocycle, (svλ)k ∼= virk
nhλ, except for λ = 1,−3, in which

cases the cocycle c : (Yp, Yq) → p3δ0
p+q, (Lp, Mq) → −p3δ0

p+q (λ = 1), c′ : (Yp, Yq) →
1
q
δ0
p+q

(λ = −3) defines another independent family (all missing components vanishing).

(iii) The Lie algebra tsvλ
∼= svλ, 1

2
,0 – for which we choose to give integer indices to the

components of Y by shifting them by 1
2 , see comments below – has no other central

extensions than those given by the extension by zero of the Virasoro cocycle, except for
the cocycles

c−3 : (Ln, Ym) → δ0
n+m (λ = −3), (7)

c−1 : (Ln, Ym) → n2δ0
n+m (λ = −1), (8)

c1 : (Ln, Ym) → n3δ0
n+m; c′1 : (Ln, Mm) → n3δ0

n+m, (Yn, Ym) → n3δ0
n+m (λ = 1). (9)

The proof is long and technical and relies heavily on the cohomological machinery for Lie
algebras of vector fields developed by Fuks (see [3] or [5]). Note the very different results for
the central extensions of svλ and tsvλ; this follows immediately from an easy lemma which
states that any cocycle c generating a central extension may be chosen to satisfy c(Xn, Xm) = 0
(X = L, Y or M) if n + m 6= 0.

While c2 amounts to a simple shift in the indices of Y, M (similarly to the Ramond/Neveu-
Schwarz sectors in supersymmetric conformal field theory), yielding in particular the twisted
Schrödinger-Virasoro algebra tsv (with same Lie bracket as sv but integer indices for the Y
generators), and the signification of c3 is unclear as yet, c1 corresponds to a shift in the anisotropy
exponent z. Namely, it gives rise to a family of Lie algebras svλ

∼= g n hλ, with hλ
∼= F 1+λ

2

⊕Fλ

as g-module. It can be proved (see [15], section 3) that

Ln = −tn+1∂t −
1 + λ

2
(n + 1)tnr∂r −

[
λ(n + 1)tnζ +

1 + λ

4
(n + 1)ntn−1r2

]
∂ζ − x(n + 1)tn

Ym = −tm+ 1+λ
2 ∂r − (m +

1 + λ

2
)tm+λ−1

2 r∂ζ , Mp = −tp+λ∂ζ (10)

gives for any scaling exponent x an explicit realization of svλ, λ
2
,0, generalizing the original

realization of sv introduced in [6] whose restriction to sch1 coincides with that given in the



introduction; in particular, the explicit form L0 = −t∂t − (1
2 + λ

2 )r∂r − λζ∂ζ + x shows the

connection with dynamical scaling with z = 2
1+λ

, while carrying a third coordinate ζ as in
(2). The Lie algebras svλ, λ

2
,0 admit for integer λ = 0, 1, . . . finite-dimensional Lie subalgebras

sλ = 〈L−1, L0, L1〉 n 〈Y− 1+λ
2

, . . . , Y 1+λ
2

; M−λ, . . . , Mλ〉. Note that the Y -generators of svλ, λ
2
,0,

hence of sλ, bear integer indices when λ is even and half-integer indices when λ is odd.

Theorem 2.

(i) Let λ = 0, 1, . . . Set t = t1 − t2, r = r1 − r2, ζ = ζ1 − ζ2. The two-point
functions C(t1, r1, ζ1; t2, r2, ζ2) = 〈Φ1(t1, r1, ζ1)Φ2(t2, r2, ζ2)〉 of fields Φ1,2 covariant under
the realization (10) of sλ, with respective scaling exponents x1, x2, are equal (up to a
constant) to δx1,x2

t−2x1, except for λ = 0: then the general two-point function is equal

to δx1,x2
t−2x1f( r2

2t
− ζ), where f is an arbitrary scaling function.

(ii) Let λ = 1, 2, . . . Then the three-point functions C(t1, r1, ζ1; t2, r2, ζ2; t3, r3, ζ3) (same
notations) are given up to a constant by the usual conformal Ansatz (t1 − t2)

−x1−x2+x3(t2 −
t3)

−x2−x3+x1(t3 − t1)
−x3−x1+x2.

The s0-case is already known (see [8]) since s0
∼= sch1; the scaling function for the two-

point functions gives (after inverting the Fourier transform in the mass, see introduction) the

exponential in the heat kernel exp
(
−Mr2

2t

)
. Apparently, covariance constraints are too strong

for λ > 0 to give anything else than the rather trivial, space-independent conformally invariant
two- or three-point functions in the variable t. Yet one should not throw away these ideas too
quickly; we conjecture that, by adapting formulas (12) below to svε, one can find vector sλ-
covariant fields for which the two- and three-point functions mix the coordinates t, r, ζ. One
should maybe find physical equations that are invariant under these representations for a start.
These preliminary results look very different from those of [7].

2. The Lie algebra sv has several graduations; one of them is given by the adjoint action of the
full dilation generator t∂t + r∂r + ζ∂ζ in the realization (10), yielding sv(n) = 〈Ln, Yn+ 1

2

, Mn+1〉.

The Lie subalgebra sv(0) is solvable, it admits a simple class of finite-dimensional representations
given by

ρ(L0) = σ

([
−1

4 0
0 1

4

])
, ρ(Y 1

2

) = σ

([
0 1
0 0

])
, ρ(M1) = ρ(Y 1

2

)2 (11)

where σ is a spin-s representation of sl(2, R) on a space Hρ. Now ρ gives rise by the coinduction
method to a representation ρ̃ of sv on the space of Hρ-valued functions of three variables t, r, ζ
defined by (see [15], Theorem 4.2)

ρ̃(Ln) =

(
−tn+1∂t −

1

2
(n + 1)tnr∂r −

1

4
(n + 1)ntn−1r2∂ζ

)
⊗ IdHρ

+ (n + 1)tnρ(L0) +
1

2
(n + 1)ntn−1rρ(Y 1

2

) +
1

4
(n + 1)n(n − 1)tn−2r2ρ(M1)

ρ̃(Ym) =

(
−tm+ 1

2 ∂r − (m +
1

2
)tm− 1

2 r∂ζ

)
⊗ IdHρ + (m +

1

2
)tm− 1

2 ρ(Y 1

2

) + (m2 −
1

4
)tm− 3

2 r ρ(M1)

ρ̃(Mp) = −tp∂ζ ⊗ IdHρ + ptp−1 ρ(M1). (12)



This family of representations is very rich (see [15], section 4.2 for a list of physical examples);
it is the exact mathematical analogue of the primary fields or otherwise tensor density modules
Fλ for sv, while the most naive approach by induction, leading to unitary highest weight
representations for vir, seems to fail here.

3. In a work in progress (see [17]), we construct representations of sv by means of current
algebras: that is,

L(t) =
∑

n∈Z

Lnt−n−2, Y (t) =
∑

n∈Z+ 1

2

Ynt−n− 3

2 , M(t) =
∑

n∈Z

Mnt−n−1

are constructed as polynomials in Kac-Moody current fields satisfying the non-trivial operator
product expansions

L(t1)L(t2) ∼
∂L(t1)

t1 − t2
+

2L(t2)

(t1 − t2)2
+

k/2

(t1 − t2)4
, k ∈ R (13)

L(t1)Y (t2) ∼
∂Y (t2)

t1 − t2
+

3
2Y (t2)

(t1 − t2)2
, (14)

L(t1)M(t2) ∼
∂M(t2)

t1 − t2
+

M(t2)

(t1 − t2)2
(15)

Y (t1)Y (t2) ∼
∂M(t2)

t1 − t2
+

2M(t2)

(t1 − t2)2
(16)

In analogy with conformal field theory, a ρ-Schrödinger conformal field Φ is defined as a

(formal) infinite series Φ(t, r, ζ) =
(∑

ξ∈Z
Φa,ξ(t, ζ)rξ

)
ea, (ea) basis of Hρ, where the Φa,ξ(t, ζ)

are mutually local fields with respect to the time variable t– which are also mutually local with
the sv-fields L(t), Y (t), M(t) – with the following properties:

L(t1)Φ
a,ξ(t2, ζ) ∼

∂Φa,ξ(t2, ζ)

t1 − t2
+

(1
2ξ)Φa,ξ(t2, ζ) − ρ(L0)

a
bΦ

b,ξ(t2, ζ)

(t1 − t2)2

+

1
2∂ζΦ

a,ξ−2(t2, ζ) − ρ(Y 1

2

)a
bΦ

b,ξ−1(t2, ζ)

(t1 − t2)3
−

3
2ρ(M1)

a
bΦ

b,ξ−2(t2, ζ)

(t1 − t2)4

Y (t1)Φ
a,ξ(t2, ζ) ∼

(1 + ξ)Φa,ξ+1(t2, ζ)

t1 − t2
+

∂ζΦ
a,ξ−1(t2, ζ) − ρ(Y 1

2

)a
bΦ

b,ξ(t2, ζ)

(t1 − t2)2
−

2ρ(M1)
a
bΦ

b,ξ−1(t2, ζ)

(t1 − t2)3

M(t1)Φ
a,ξ(t2, ζ) ∼

∂ζΦ
a,ξ(t2, ζ)

t1 − t2
−

ρ(M1)
a
bΦ

b,ξ(t2, ζ)

(t1 − t2)2
(17)

See [17] for constructions using U(1)-currents or more general Kac-Moody currents.
As a first application, we now give a surprising relationship with a Dirac-type equation.

Theorem 3.

(i) The space of spinor solutions

(
φ
ψ

)
of the constrained 3D-Dirac equation

∂rφ = ∂tψ, ∂rψ = ∂ζφ, ∂ζψ = 0 (18)



is in one-to-one correspondence with the space of triples (h−
0 , h+

0 , h1) of functions of t only:
a natural bijection may be obtained by setting

φ(t, r, ζ) = (h−
0 (t)+ ζh+

0 (t))+ rh1(t)+
r2

2
∂h+

0 (t), ψ(t, r, ζ) =

∫ t

0
h1(u) du+ rh+

0 (t). (19)

(ii) Put

Φ(t, r, ζ) = (b̄−(t) + ζb̄+
0 (t)) + ra(t) +

r2

2
∂b̄+(t), Ψ(t, r, ζ) =

∫ t

0
a(u) du + rb̄+(t) (20)

where a is a free boson and b̄± are charge-conjugate superbosons, see for instance [12], by
which we mean that the following operator product expansions hold:

a(t1)a(t2) ∼
1

(t1 − t2)2
, b̄±(t1)b̄

∓(t2) ∼ ±
1

t1 − t2
, a(t1)b̄

±(t2) ∼ 0 (21)

Then

(
Φ
Ψ

)
is a ρ-Schrödinger-conformal field for the sv-fields

L(t) =
1

2
: a2 : (t) +

1

2
(
(
: b̄+∂b̄− : (t)− : b̄−∂b̄+ : (t)

)
, Y (t) =: ab̄+ :, M =

1

2
: (b̄+) :2,

(22)
ρ being the two-dimensional character defined by

ρ(L0) =

(
−1

2
0

)
, ρ(Y 1

2

) = ρ(M1) = 0. (23)

This constrained Dirac equation also appears in [15], see section 3.5 for details, in connection
with a family of wave equations indexed by the dimension that are invariant under the Lie
algebras svλ or related Lie algebras of the same type vir n h, h infinite-dimensional nilpotent.

4. Let us finally come back to what we said in the introduction, namely that sv is one of the
substitutes for vir in z = 2 non-equilibrium dynamics. The Schrödinger-Virasoro algebra actually
appears to be a quotient of the twisted Poisson algebra P̃(2) [9], defined as the associative algebra
of functions f(p, q) :=

∑
i∈ 1

2
Z

∑
j∈Z

ci,jp
iqj with usual multiplication and Lie-Poisson bracket

defined by {f, g} := ∂f
∂q

∂g
∂p

− ∂f
∂p

∂g
∂q

. Namely, if we define a graduation gra : P̃(2) → {0, 1
2 , 1, . . .}

on the associative algebra P̃(2) by setting gra(qnpm) := m, and call P̃
(2)
≤κ, κ ∈ 1

2Z the vector

subspace of P̃(2) consisting of all elements with graduation ≤ κ, then sv ∼= P̃
(2)
≤1/P̃

(2)

≤− 1

2

. This

construction has a rich family of supersymmetric analogues, see again [9].
The interesting point for this short article is that this isn’t mere mathematical fancy. Namely,

one has
Theorem 4.

The free diffusion equation in one space dimension (2M∂t−∂2
r )Φ(t, r) = 0 is invariant under

the family of integro-differential operators f(t + Mr∂−1
r )∂2κ

r , where f is any function in one
variable and κ ∈ 1

2Z.

Through the transformation Φ 7→ Φ̃ defined as Φ̃(t, ξ) =
∫

R

e−Mr2/2ξ
√

ξ
Φ(t, r) dr, the operator

t + Mr∂−1
r is seen to go over to t + ξ and ∂2

r
2M to ∂ξ. In the ’light-cone’ coordinates z = t + ξ,



z̄ = t−ξ, this family of integro-differential operators becomes the family of fractional differential
operators f(z)(∂z − ∂z̄)

κ, which (restricting to values κ ≤ 1) is easily seen to be isomorphic to

P̃
(2)
≤1 . The vector fields zn+1∂z + n+1

4 zn, when rewritten in the original coordinates (t, r), have
(up to the equations of motion) the same differential part as the Virasoro generators of the
Schrödinger-Virasoro algebra sv, in its realization (10). This fact points to an unexpected
direct relation between (z = 2) non-equilibrium dynamics and conformal field theory that is
undoubtedly very promising.

[1] Bray, A.J. Theory of phase ordering kinetics, Adv. Phys. 43, 357 (1994).
[2] Di Francesco, P.; Mathieu, P.; Sénéchal, D. Conformal field theory, Springer (1997).
[3] Fuks, D. B. Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants

Bureau, New York (1986).
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