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Zaragoza, Spain.
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Abstract The Natural Element method (also known as Natural Neighbour Galer-
kin method) is a Galerkin method based on the use of Natural Neighbour interpola-
tion to construct the trial and test functions. Unlike many other meshless methods, it
has some important characteristics, such as interpolant shape functions, easy impo-
sition of essential boundary conditions and linear precision along convex boundaries.

The natural neighbour interpolation scheme is based on the construction of a
Delaunay triangulation of the given set of points. This geometrical link provides the
NEM some other interesting properties. One of them is the ability of constructing
models without any explicit (CAD) boundary description. Instead, by invoking the
concept of α-shape of the cloud of points, the method is able to accurately extract
the geometry described by the nodes as it evolves, thus avoiding complex geometri-
cal checks in the formation of holes or waves in the domain, without any loss in mass
conservation requirements. It has been also proved how the use of α-shapes ensures
the strictly interpolant character of the shape functions along any type of boundary.
In this work we review the main characteristics of the method in its application to
Solid and Fluid Mechanics, including the study of mixed natural neighbour approxi-
mation, simulation of nearly incompressible media and some industrial applications.

1 Introduction

In this work we analyse the main features of one member of the wide fam-
ily of meshless methods. Natural Neighbour Galerkin methods (also known
as Natural Element methods, NEM) are based on the use of any natural
neighbour-based interpolation scheme. The most extended of these schemes
is often referred to as Sibson interpolation [18]. Among the most remarkable
properties of the resulting methods is the strictly interpolant character of the
resulting approximation, leading to an easy imposition of essential (Dirich-
let) boundary conditions. Also, the fact that the computation of the shape
functions is made —alt least, formally— upon the Delaunay triangulation of
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the cloud of points, confers the method with a sound geometrical basis. This
allows, form instance, to couple the method with some geometrical methods,
such as α-shapes [12]. This will allow to build a method in which the geometry
of the domain is extracted as it evolves, without any geometrical description
of the boundary. Thus, boundary evolution, with holes or waves formation, is
naturally handled by the method in a very efficient way.

The resulting method appears to be specially well suited to be used in an
updated Lagrangian framework, since it has been proved that the shape of
Delaunay triangles does not affect the quality of the results [19]. In this work,
we review the main characteristics of the method when applied to Fluid and
Solid Mechanics with large strains. In section 2 we revisit the basics of natural
neighbour interpolation. In section 3 we review the governing equations for
incompressible media, together with the conditions that ensure stable approxi-
mations (LBB condition) and suitable enriched NE approximations. In section
4 we review the α-shape based Natural Element Method, firstly proposed in
[9] and its potential applications in free surface flows. Finally, in section 5 two
examples corresponding to Solid and Fluid Mechanics are presented.

2 Natural Neighbour Galerkin Methods

2.1 Natural Neighbour Interpolation

Natural neighbour interpolation is a method to interpolate multivariate data
first established by Sibson [18]. Recently, it has been generalised in [5] and
[15]. It relies in the concepts of Voronoi diagram [22] of the given cloud of
points and its dual structure, the Delaunay triangulation [11]. The Delaunay
triangulation (tetrahedrisation) of a cloud of points N = {n1, ..., nN} ∈ R
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(R3) is the decomposition of the convex hull of the points into k-simplexes
(where k represents the dimension of the simplex, that is, k = 2 for a triangle
and k = 3 for a tetrahedron) such that the empty circumcircle criterion holds.
That is, the circumcircle (circumsphere) of each simplex contains no other
point of the cloud N . Fig. 2.1 represents the Delaunay triangulation of a
cloud of points.

For a given node nI , the associated Voronoi cell is composed by all of the
points which are closer to the node nI than to any other node. Formally,

TI = {x ∈ R
n : d(x, xI) < d(x, xJ) ∀ J �= I} (2.1)

where TI is the Voronoi cell and d(·, ·) represents the Euclidean distance. In
the problems considered in this paper, n = 2, 3.

For the definition of Sibson interpolation it is necessary to previously in-
troduce the concept of second order Voronoi cell. It is defined as the locus of
the points that have the node nI as the closest node and the node nJ as the
second closest node:
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Figure 2.1. Delaunay triangulation and Voronoi diagram of a cloud of points. On
the right, an example of a degenerate distribution of nodes, with the two possible
triangulations depicted. In this last case, four points lie in the same circumcircle and
thus no single triangulation exists.

TIJ = {x ∈ R
n : d(x, xI) < d(x, xJ) < d(x, xK) ∀ J �= I �= K} (2.2)

If a new node is added to a given cloud of points, the Voronoi cells will
be modified by the presence of the new point. Sibson [18] defined the natural
neighbour coordinates of a point x with respect to one of its neighbours I
as the ratio of the cell TI that is transferred to Tx, when adding x to the
initial cloud of points, to the total area of Tx. In other words, being κ(x) and
κI(x) the Lebesgue measures of Tx and TxI respectively, the natural neighbour
coordinates of x with respect to the node I is defined as

φsibI (x) =
κI(x)

κ(x)
. (2.3)

The resultant shape function depends obviously of the relative position of the
nodes. An example for a node surrounded by other eight on a regular lattice
is depicted in Fig. 2.3.
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Figure 2.2. Definition of the Natural Neighbour coordinates of a point x.
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Figure 2.3. Natural Element shape function (courtesy N. Sukumar).

The resultant shape function has some remarkable properties (see [19] or
[10] for more in-deep explanations and rigorous proofs of this behaviour).
Firstly, it is smooth (C1 at least) everywhere except at the nodes, as can
be seen in Fig. 2.3. Natural neighbour (Sibson) shape functions posses linear
completeness [19] and form a partition of unity. Therefore, it is possible to
enrich natural neighbour interpolants in order to increase the order of the
polinomial of the interpolation, as proposed in [3].

3 Natural Element Methods for Incompressible Media

The governing equations for incompressible Solid or Fluid Mechanics are:

1. Equilibrium equations (balance of linear momentum in the absence of
inertial and body forces):

∇ · σ = 0 in Ω. (3.1)

2. Incompressibility of the medium:

∇ · u = 0 in Ω, (3.2)

where σ represents the Cauchy stress tensor and u the displacement vector if
we deal with Solid Mechanics and usually the velocity vector if it is the case
with Fluid Mechanics. Boundary conditions are of the type

σ · n = t on Γt (3.3)

u = u on Γu. (3.4)
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in which n is the outward normal on the boundary Γ =Γu∪Γt, with Γu∩Γt=∅.
If we assume small displacements and strains, the constitutive equations

can be expressed, both for an isotropic elastic solid and a newtonian fluid, as

σ = −pI + 2μ∇su (3.5)

0 = ∇ · u − p

λ
(3.6)

where p represents the hydrostatic pressure and ∇s the symmetric part of
the gradient operator, thus leading to the Cauchy small strains tensor or to
the strain rate tensor in Solid or Fluid Mechanics, respectively. The Lamé
parameters λ and μ are expressed in terms of the Young’s modulus E and the
Poisson’s ratio ν as

μ =
E

2(1 + ν)
, λ =

2μν

1 − 2ν
(3.7)

As ν approaches 0.5, it is clear that λ becomes unbounded, so that the equation
(3.6) represents the incompressibility restraint ∇ · u = 0.

The variational (weak) formulation is usually stated as:
Find u ∈ U such that∫

Ω(t)

σ(u) : ε∗dΩ =

∫
Γt

t̄ · u∗dΓ ∀u∗ ∈ V (3.8)∫
Ω(t)

(−∇u +
1

λ
p)p∗dΩ = 0 ∀p∗ ∈ L2(Ω(t)), (3.9)

where U = {u|u ∈ (
H1(Ω)

)2
, u|Γu

= ū}, V = {u∗|u∗ ∈ (
H1(Ω)

)2
, u|Γu

=
0}, and Γu and Γt are the portions of the boundary of the domain Ω with
prescribed displacements (velocities) and tractions, respectively. t and u rep-
resent such tractions and displacements. As usual, H1 and L2 are the Sobolev
and Lebesgue functional spaces, respectively.

If we approximate the displacement (velocities) and pressures by employing
a finite-dimensional set of basis functions, we arrive to a discrete form of the
previous equations (Bubnov-Galerkin method)

uh(x) =

n∑
I=1

φI(x)uI (3.10)

ph(x) =

n∑
I=1

ψI(x)pI . (3.11)

The functions ψI(x) and φI(x) in this work represent some form of natu-
ral neighbour interpolation, as presented before. This leads to the following
system of algebraic equations:(

K G

GT M

) (
u
p

)
=

(
f
0

)
(3.12)
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where

KIJ =

∫
Ω

BT
I CBJdΩ (3.13)

GIJ = −
∫
Ω

B̃
T

I ψJdΩ (3.14)

M IJ = − 1

λ

∫
Ω

ψIψJdΩ (3.15)

fI =

∫
Γt

φItdΓ (3.16)

and

B̃I =
[
φI,1(x) φI,2(x)

]
(3.17)

BI =

⎛
⎝φI,1(x) 0

0 φI,2(x)
φI,2(x) φI,1(x)

⎞
⎠ (3.18)

CIJKL = μ(δIKδJL + δILδJK) (3.19)

It must be noted that, if we consider totally incompressible situations, M = 0.
As it is well known, not all of the displacement-pressure approximations

constructed in this way lead to stable and convergent results [4]. The con-
ditions to be fulfilled by the chosen approximation are determined by the
inf–sup or Ladyzhenskaya-Babuška-Brezzi (LBB) condition [2] [7], together
with the elipticity condition of the resultant formulation. The LBB condition
may be written as:

inf
ph∈Ph

sup
uh∈Uh

∫
Ω phdivuhdΩ

||ph||0||uh||1 = γh ≥ γ > 0 (3.20)

where γ is a positive constant independent of the mesh size, h. Ph and Uh
represent the pressure and displacement approximation spaces.

This condition is rarely proved analytically. Instead, its fulfillment is usu-
ally checked numerically. In [14], the authors have tested some mixed formu-
lations arising from the Partition of Unity enrichment [3] of the displacement
(or velocity) field. If the resultant approximation is able to reproduce the xy
monomial, together with the usual NE linear consistency, it seems to verify
the LBB condition. The resultant shape functions are depicted in Fig. 3.4.

In order to verify the fulfilment of the LBB condition, Bathe [4] proposed
a numerical test based on the use of a finite, small, set of meshes. To evaluate
expression (3.20), an equivalent discrete form is developed:

inf
W h

sup
Uh

W T
hGhUh√

W T
hGhW h ·

√
UT
hShUh

= γh ≥ γ > 0 (3.21)

6



(a) (b) (c)

Figure 3.4. Plot of the shape functions φx (a), φy (b) and φxy (c).

where W h and Uh are vectors of nodal values corresponding to pressures and
displacements, respectively. Gh and Sh are the matrices associated with the
norms

||ph||20 = W T
hGhW h and ||uh||21 = UT

hShUh (3.22)

Gh and Sh are positive semidefinite and positive definite [8], respectively. It
is then demonstrated that the first non-zero eigenvalue, λk, of the problem

Ghφh = λShφh (3.23)

is related to the searched value γh through the expression

γh =
√

λk. (3.24)

If the constructed approximation for a given problem consists of np pres-
sure degrees of freedom and nu displacement degrees of freedom, the number
of spurious pressure modes is given by

kpm = k − (nu − np − 1) (3.25)

Bathe [4] proposed the use of sequences composed of three or more meshes in
order to test a given approximation. If the γh value is not bounded away from
0, one can say that the LBB condition is not satisfied. The test is only valid
for the given geometry and problem considered, but it can be assured that if
the test is not passed, the approximation will not verify the LBB condition.

In order to test the ability of the proposed formulations to pass the inf-sup
condition, we have checked a sequence of three meshes, composed by 3 × 3,
4 × 4 and 5 × 5 nodes, regularly and irregularly distributed over a square of
side unity (see Fig. 3.5).

Results for these discretisations are shown in Fig. 3.6. Results for the test
applied over the 3/1 triangular Finite Element are also shown. It can be seen
how the Sibson approximation, enriched with {1, x, y, xy}, for the displace-
ments gives good results, both using Thiessen (C−1) and Sibson interpolations
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Figure 3.5. Geometry of the
problem used to evaluate the nu-
merical inf-sup test.
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Figure 3.6. Inf-sup test for the proposed ap-
proximations.

for the pressure. However, the enrichment with the monomials {1, x2, y2}, ini-
tially proposed in order to avoid rank deficiency in the resultant stiffness
matrix, gives rise to spurious pressure modes. These same spurious modes
can be obtained for certain configurations in the Sibson-Thiessen element,
in a way similar to the bilinear displacement–constant pressure quadrilateral
Finite Element [4].

Although results for a unique problem are not extrapolable, the proposed
formulation for the {1, x, y, xy} enrichment seems to be stable and adequate
for a wide variety of problems. Also, enrichment with the set {1, xy} seems to
give stable approximations. In this case, the resulting approximation closely
resembles the MINI element [1] (linear triangular finite element with bubble
and discontinuous approximation for pressure).

The most usual Sibson-Thiessen mixed approximation closely resembles
the bilinear displacement-constant pressure finite element, which presents spu-
rious modes under certain boundary conditions. However, for most practical
applications, it has shown a good behaviour and has never presented locking.
An example is presented in section 5.2 in which this approximation is used.

4 The α-shape based Natural Element Method

In most Lagrangian Fluid Mechanics simulations the tracking of the free sur-
faces requires a special treatment, since the possibility of development of
holes, waves, etc. exists. Traditionally, this task has been accomplished by
discretising the boundary and performing complex geometrical checks. This
may include the checking for new free surface boundary segments, if holes are
developing, or boundary segments deletion, if the free surface disappears.

In this work we have chosen a different approach, based on the geomet-
rical concept of α-shapes [13]. In addition, the authors have shown that the
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construction of natural neighbour-based interpolants over an α-shape of the
domain leads to linearly interpolant approximations along the whole bound-
ary, thus solving one of the biggest problems of meshless methods. The prob-
lem can be formulated briefly as follows: can the cloud of points itself contain
enough information about the geometry of the domain over which it is defined?
If the density of the cloud is enough, the answer is affirmative.

An α-shape is a polytope that is not necessarily convex nor connected,
being triangulated by a subset of the Delaunay triangulation of the points.
Thus, the empty circumcircle criterion holds. Let N be a finite set of points
in R

3 and α a real number, with 0 ≤ α < ∞. A k-simplex σT with 0 ≤ k ≤ 3
is defined as the convex hull of a subset T ⊆ N of size | T |= k + 1. Let b
be an α-ball, that is, an open ball of radius α. A k-simplex σT is said to be
α-exposed if there exist an empty α-ball b with T = ∂b

⋂
N where ∂ means

the boundary of the ball. In other words, a k-simplex is said to be α-exposed
if an α-ball that passes through its defining points contains no other point of
the set N .

Following this, we can define the family of sets Fk,α as the sets of α-exposed
k-simplexes for the given set N . This allows us to define an α-shape of the set
N as the polytope whose boundary consists on the triangles in F2,α, the edges
in F1,α and the vertices or nodes in F0,α. As remarked before, an α-shape is a
polytope that can be triangulated by a subset of the Delaunay triangulation
or tetrahedrization, that is, by an α-complex.

In the case of non-uniform nodal distributions, the possibility of using
density-scaled α-shapes [20] has also been studied in [9]. The resultant ge-
ometry of the domain ranges from the cloud of points itself for α = 0 to the
convex hull of the cloud for α = ∞. The parameter α can be seen as a measure
of the level of detail up to which the domain is represented. If there exists a
sufficiently dense nodal sampling it would be easy to find an α value that
gives an accurate geometry definition. See [9, 17] for a deeper discussion on
how the value of α can affect the results.

In this approach, the geometry of the domain is extracted at each time
step, with no need of complex geometrical checks. See example 5.2 for an
application of the method in an extrusion flow.

5 Numerical Examples

5.1 Cantilever Beam under Bending

In this section we study the problem of a two-dimensional beam subjected to
a parabolically distributed load at its end and fixed at the other side, as shown
in Fig. 5.7. We consider a discretisation composed of 85 nodes, as shown in
Fig. 5.8.

Material characteristics are: Young’s modulus 1.0 and variable Poisson’s
ratio, ranging from 0.4 to 0.4999999. To test the performance of the proposed

9



Figure 5.7. Geometry of the cantilever beam under bending.

Figure 5.8. Cloud of points for the simulation of a beam under bending.

formulations, we have compared the tip displacement to the theoretical one
[21]. In this case, L = 4.0 and D = 1.0.

In table 5.1, normalised end displacements (uy(L, 0)) are presented. These
results include those of the FEM, obtained by using the same Delaunay
triangles for the construction of the approximation. It can be seen how
the displacement-based NEM presents severe locking as the Poisson’s ratio
increases, as expected. However, all the other constructed approximations
present good agreement with the analytical result. In particular, we would
like to highlight the good behaviour of the Sibson-Thiessen approximation,
previously used by the authors in Fluid Mechanics simulations in [17]. Al-
though it is possible to impose certain boundary conditions so as to generate
a spurious pressure mode (in a similar way than to the 4/1 Finite Element [4]),
no spurious pressure modes have been observed throughout our computations.

Poisson’s Ratio 0.4 0.4999 0.4999999

FEM-displacement-based 93.74 18.73 17.75

FEM-3/3 96.38 94.45 94.45

FEM-3/1 100.61 101.52 101.52

NEM-displacement-based 94.36 19.09 19.58

NEM-Sibson-Sibson 96.78 94.93 94.94

NEM-Sibson-Thiessen 99.28 99.07 99.07

NEM Sibson × {1, x2, y2}-Thiessen 100.38 100.33 99.34

NEM Sibson × {1, x, y, xy}-Sibson 99.32 100.52 100.52

NEM Sibson × {1, x, y, xy}-Thiessen 99.4 100.7 100.7

Table 5.1. Results for the beam under bending problem, expressed as % of the
theoretical result at the beam end.
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Results are even better for the enriched Sibson approximation. None of
the implemented enrichments showed spurious pressure modes for this prob-
lem and the obtained accuracy is remarkable. However, the use of enriched
approximations is not so intuitive, since the nodal parameters in the discrete
system of equations do not represent the nodal displacements.

5.2 Simulation of Extrusion Processes

In this section we deal with the simulation of extrusion processes. We consider
a benchmark example of an extrusion die whose geometry is shown in Fig.
5.9. For the simulation, only the region of the metal nearest to the die was
considered by enforcing appropriate displacements. The cloud of points is
composed by 2989 nodes and remained unchanged throughout the simulation.
The extruded metal was simulated as viscoplastic, with constitutive equations
as follows:

σ = −pI + 2μ(D)D (5.1)

If we assume a Norton-Hoff plasticity model (viscoplastic flow with null yield
stress), viscosity is a function of the second invariant of the strain rate tensor,
namely

μ(D) = μ0

(√
2D : D

)n−1

(5.2)

being μ0 the so-called consistency coefficient and n the pseudo-plasticity co-
efficient. In this example, the consistency coefficient was μ0 = 1.0MPa · s
and the pseudo-plasticity n = 0.3. Note the highly non-linear character of the
resultant behaviour. Similar material behaviour was employed in [6] in the
simulation of metal forging processes with Corrected Smooth Particle Hydro-
dynamics methods (CSPH).

3
.0

5.0

2
.0

1.0

0.2
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200.0
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DETAIL A

Figure 5.9. Geometry of the extrusion die and detail of the simulated region.

The mould is considered as perfectly rigid and slipping contact between
metal and die was assumed. Of course, this model is a first attempt to validate
the ability of natural neighbour Galerkin methods to handle such type of

11



processes. The springback of the extruded metal can not be predicted, for
instance, by assuming a Norton-Hoff plasticity model like the one exposed in
Eq. (5.1).

Equivalent plastic strain (or, equivalently, second invariant of the strain
rate tensor,

√
2D : D) for time steps 1, 100 and 200 is depicted in Fig. 5.10.

It can be noticed the accuracy obtained in the volume prediction (see Fig.
5.11). In this case, total volume error is under 0.25%, much lower than those
predicted in references like [16] by using ALE techniques and a similar number
of nodes. This is in spite of the high distortion of the Delaunay triangles
achieved throughout the simulation (see the α-shape of the cloud of points in
an intermediate time step in Fig. 5.12).

Figure 5.10. Equivalent plastic strain for time steps 1, 100 and 200. See Color
Plate 2 on page 293.

In this example it can be seen how natural neighbour Galerkin methods
constitute an appealing choice among numerical methods to simulate forming
processes in general, and among meshless methods in particular.
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Figure 5.11. Volume of the computed α-shape of the extruded metal (a) and
associated relative error (b).

Figure 5.12. α-shape of the cloud of points at the 200th time step.

6 Closing Remarks

In this paper we have briefly reviewed the characteristics of Natural Neigh-
bour Galerkin methods. In particular, we have focused on the simulation of
incompressible media and the development of stable mixed approximations
through the use of Partition of Unity enrichment of Sibson interpolants.

Natural Neighbour Galerkin methods offer a sound geometrical basis for
the treatment of free boundaries through the use of α-shapes. It has been
shown how the use of an appropriate α-shape of the cloud of points allows us
to accurately track the free surface of the domains through the simulated time
interval. At the same time, the employ of α-shapes ensures linear interpolation
along the boundary of the domain.
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In summary, we believe that the α-shape based Natural element Method
(α-NEM) is an attractive choice when large distortion of the domain appears,
both in Solid and Fluid Mechanics.
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1972.

22. G. M. Voronoi. Nouvelles Applications des Paramètres Continus à la Théorie
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