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Abstract In this work we have analyzed the application of a deterministic approx-
imation of the diffusion term in the Fokker-Planck equation using smooth particles
for computing its steady solution in a steady recirculating flow. The main idea of this
approach lies in the introduction of the Fokker-Planck diffusion term into the ad-
vection one, which allows to proceed in a Lagrangian deterministic manner without
a mesh support requirement.

1 Introduction

As indicated by Chaubal et al. [CHA97], ”complex fluid” is the term commonly
used to describe a wide class of liquid-like materials, in which the relaxation
time towards the equilibrium state occurs sufficiently slowly that significant
changes in the microstructural configuration, and thus in the macroscopic
properties, can be induced by the flow. Viscoelastic fluids or short fiber sus-
pensions may be considered as examples of complex fluids. The Fokker-Planck
formalism is a commonly used description of kinetic theory problems, for de-
scribing the evolution of the configuration distribution function. This function
represents the probability of finding the microstructural element in a partic-
ular configuration.

In the case of a short fiber suspension, the configuration distribution func-
tion (also known as orientation distribution function) gives the probability of
finding the fiber in a given direction. Obviously, this function depends on the
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physical coordinates (space and time) as well as on the configuration coordi-
nates, that taking into account the rigid character of the fibers, are defined on
the surface of the unit sphere. Thus, we can write Ψ(x, t, p), where x defines
the position of the fiber center of mass, t the time and p the unit vector defin-
ing the fiber orientation. The evolution of the distribution function is given
by the Fokker-Planck equation

dΨ

dt
= − ∂

∂p
(Ψṗ) +

∂

∂p

(
Dr

∂Ψ

∂p

)
(1.1)

where d/dt represents the material derivative, Dr is a diffusion coefficient
and ṗ is the fiber rotation velocity. When the fibers are assumed with an
ellipsoidal shape and the suspension is dilute enough, the rotation velocity
can be obtained from the Jeffery’s equation

ṗ = Ω p + k D p − k(pT D p) p (1.2)

where Ω and D are the vorticity and the strain rate tensors respectively,
associated with the fluid flow undisturbed by the presence of the fiber, and k
is a scalar which depends on the fiber aspect ratio λ (ratio between the fiber
length and the fiber diameter)

k =
λ2 − 1

λ2 + 1
(1.3)

Although this work focuses in the flow of short fiber suspensions, the nu-
merical procedures here developed could be applied successfully to other fluids
whose microstructure is described by similar kinetic theory models. This is the
case for example of some viscoelastic fluids. In the FENE model [BIR87], the
probability distribution function depends on the physical coordinates and on
the conformation coordinates that in this case are defined by the end-to-end
molecule vector q. The equation governing its evolution results:

dΨ

dt
= − ∂

∂q
(Ψq̇) +

1

2

∂

∂q

(
∂Ψ

∂q

)
(1.4)

where the evolution of q can be evaluated from

q̇ = Gradv q − 1

2
F (q) (1.5)

with the spring force F given by

F =
1

1 − ‖q‖2

b2

q

‖q‖ (1.6)

being b the maximum molecule length. The FENE-P model is obtained by
averaging the square norm of the molecule length in the expression of the
spring force [BIR80].
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In these cases the Fokker-Planck equations remain linear, even if the ad-
vection fields depend in a non-linear manner on the configuration coordinates
(see for instance Eqs. (1.2) and (1.5)).

Another more complex example consists in the model describing the be-
havior of Liquid Crystals Polymers (LCP) due to Doi. This model has been
treated using a particle technique in [CHA97]. In this case the microstructural
element is a rigid axis-symmetric rod of infinite aspect ratio. Under some sim-
plifying assumptions the orientation distribution (also defined on the surface
of the unit sphere) evolves according to

dΨ

dt
= − ∂

∂q
(Ψṗ) +

∂

∂p

(
Dr

{
∂Ψ

∂p
+ Ψ

∂U

∂p

})
(1.7)

where the advection field ṗ is given by

ṗ = Gradv p − (pT D p) p (1.8)

As the potential U depends on the second moment of the distribution
function 〈p ⊗ p〉 defined by

〈p ⊗ p〉 =

∮
p ⊗ p Ψ(p) dp (1.9)

and the Fokker-Planck equation results in this case non-linear.
Many of the experimental and industrial flows show recirculating areas or

recirculate themselves. For example, many rheometric devices involve this type
of flows, whose steady and recirculating character introduce some additional
difficulties in their numerical simulation. Actually, the Fokker-Planck equation
which defines an advection problem in physical coordinates, is supposed to
have a steady solution in these steady recirculating flows but neither boundary
conditions nor initial conditions are known in such flows.

In a former paper [CHI03] the discretisation of the advection dominated
Fokker-Planck equation, governing the fiber orientation in short fiber suspen-
sion flows, was carried out using a particle technique, where the diffusion term
was modelled from random motions. It was pointed out that the number of
fibers required in this stochastic simulation to describe the fiber distribution
increases significantly with the diffusion coefficient Dr. Thus, it was argued
that for practical applications the use of the particle method in the frame-
work of a stochastic simulation, is restricted to very slight diffusion effects.
When the diffusion becomes dominant, continuous approximations using a
fixed mesh seem to be suitable, but in this case accurate stabilizations are re-
quired for dealing with small diffusion effects, and a lack of accuracy is noticed
in the treatment of the advection dominated case.

Chaubal et al. [CHA97] propose the use of the SPH (Smooth Particle
Hydrodynamics) to solve the dynamics of a liquid crystalline polymer (LCP)
using the Doi’s model. Thus, the diffusion term is treated in a determinist
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manner, and high accurate results were obtained due to the meshless and
Lagrangian character of the SPH technique considered by the authors.

In this work we examine the application of this kind of techniques for
solving the steady Fokker-Planck equation in steady recirculating flows, but
we will limit our attention to the 2D linear Fokker-Planck equations.

2 A Particle Discretisation

In this section we will consider the simplest linear form of the Fokker-Planck
equation (1.1), that in the 2D case results

dΨ

dt
= − ∂

∂ϕ
(Ψϕ̇) +

∂

∂ϕ

(
Dr

∂Ψ

∂ϕ

)
(2.1)

where Ψ(x, t, ϕ), ϕ̇ = ϕ̇(x, t, ϕ) and Dr is assumed constant. Due to the steady
character of the flow kinematics we can remove the temporal variable in the
expression of ϕ̇. A general approximation of the steady probability distribution
function at point x0 can be written as

Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) Fi(ϕ) (2.2)

Due to the linearity and homogeneity of Eq. (2.1) we can compute its solu-
tion for each function Fi(ϕ) along the pathline related to the point x0. These
solutions are denoted by Ψi(x(x0, t0; t), ϕ), where the notation x(x0, t0; t)
refers to the position at time t of a particle located at point x0 at time t0.
The trajectory is defined by the equation

x(x0, t0; t) = x0 +

∫ t

t0

v(x(x0, t0; t
′)) dt′ (2.3)

Thus, the general solution of Eq. (2.1) results

Ψ(x(x0, t0; t), ϕ) ≈
i=N∑
i=1

αi(x0) Ψi(x(x0, t0; t), ϕ) (2.4)

The particle method lies in taking the Dirac masses in Eq. (2.2). Thus, if
we consider the N directions defined by ϕi = (i − 1) hϕ, i ∈ [1, · · · , N ], with
hϕ = 2π/N , Eq. (2.2) becomes

Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) δ(ϕ − ϕi) (2.5)

where αi(x0) represents the ”mass” of the particle aligned in the ϕi direction.
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2.1 The Advection Equation

In the case of neglecting all the diffusion effects, the solution Ψi(x(x0, t0; t), ϕ)
results

Ψi(x(x0, t0; t), ϕ) = δ(ϕ − ϕ(x0, t0, ϕi; t)) (2.6)

where ϕ(x0, t0, ϕi; t) denotes the orientation at time t of a fiber located at
time t0 in x0 and whose orientation was defined by ϕi. Obviously, the spatial
location of a fiber refers to the position of its center of mass, that at time t is
given by Eq. (2.3).

In the pure advection case ϕ(x0, t0, ϕi; t) becomes

ϕ(x0, t0, ϕi; t) = ϕi +

∫ t

t0

ϕ̇(x(x0, t0; t
′), ϕ(x0, t0, ϕi; t

′)) dt′ (2.7)

Thus, Eqs. (2.3) and (2.7) describe the position and orientation of each
fiber along the flow trajectory. Several discretisations of these equations ex-
ist, being the simplest one the backward Newton method, that consider the
time interval [t0, t] divided into M intervals [tm, tm+1] of length Δt such that
MΔt = t − t0, and the fibers updating given by

⎧⎨
⎩

x(x0, t0; tm+1) = x(x0, t0; tm) + v(x(x0, t0; tm)) Δt
ϕ(x0, t0, ϕi; tm+1) = ϕ(x0, t0, ϕi; tm) +

+ ϕ̇(x(x0, t0; tm), ϕ(x0, t0, ϕi; tm)) Δt, ∀i ∈ [1, · · · , N ]
(2.8)

where {
x(x0, t0; t0) = x0

ϕ(x0, t0, ϕi; t0) = ϕi, ∀i ∈ [1, · · · , N ]
(2.9)

2.2 Steady Recirculating Flows

In the case of a steady recirculating flow the particles come back to the depar-
ture position after a time T , that corresponds with the period of the considered
trajectory. Thus, we can write

x(x0, t0; T ) = x(x0, t0; t0) = x0 (2.10)

However, the final orientation will be, in general, different to the initial
one, i.e.

ϕ(x0, t0, ϕi; T ) 	= ϕi, ∀i (2.11)

On the other hand, the steady solution of the probability distribution at
point x0, Ψ(x0, ϕ), requires its periodicity along the closed streamline
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i=N∑
i=1

αi(x0) δ(ϕ − ϕ(x0, t0, ϕi; T )) =

i=N∑
i=1

αi(x0) δ(ϕ − ϕi) (2.12)

but this expression, (Eq. (2.12)), cannot be used in its present form because
the Dirac masses are concentrated in different angles at t0 and T .

To use this expression we need to transfer the masses concentrated in the
directions ϕ(x0, t0, ϕi; T ) to the initial ones ϕi. In [CHI03] this transfer is per-
formed from each angle ϕ(x0, t0, ϕi; T ) towards the neighbor directions, being
the mass transferred to each neighbor direction proportional to the distance
between them. Thus, we can finally write (see [CHI03] for more details)

i=N∑
i=1

αi(x0) δ(ϕ − ϕ(x0, t0, ϕi; T )) =

i=N∑
i=1

j=N∑
j=1

βijαj(x0) δ(ϕ − ϕi) (2.13)

where βij depends in the considered probability transfer from ϕ(x0, t0, ϕi; T )
to ϕj . If a linear transfer is used, then it results

βij =

{
1−|ϕ(x0,t0,ϕi;T )−ϕj |

hϕ
if |ϕ(x0, t0, ϕi; T ) − ϕj | ≤ hϕ

0 if |ϕ(x0, t0, ϕi; T ) − ϕj | > hϕ

The periodicity condition becomes in this case

i=N∑
i=1

j=N∑
j=1

βijαj(x0) δ(ϕ − ϕi) =

=

i=N∑
i=1

αi(x0) δ(ϕ − ϕi) =

i=N∑
i=1

j=N∑
j=1

δijαj(x0) δ(ϕ − ϕi) (2.14)

where δij is the unit tensor. The previous equation implies

j=N∑
j=1

(βij − δij)αj(x0) = 0, ∀i ∈ [1, · · · , N ] (2.15)

that with the normality condition

1 =

∫ 2π

0

Ψ(x0, ϕ) dϕ =

i=N∑
i=1

αi(x0) (2.16)

allows to compute the N coefficients αi(x0), and then, the steady solution of
the probability distribution at point x0

Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) δ(ϕ − ϕi) (2.17)
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2.3 Introducing Diffusion Effects Using a Deterministic
Approximation

When diffusion effects are retained in the kinetic model the application of a
particle technique becomes delicate as we will describe in this section. The
first possibility for introducing of the diffusion effects lies in the use of a
stochastic technique [CHI03]. Thus, a great amount of particles are considered
at point x0 aligned in each direction ϕi. Then, each fiber is subjected to three
actions during its movement along its closed trajectory: (i) the advection of
its center of mass, (ii) the rotation induced by the term ṗ and (iii) the rotation
associated with the diffusion that is modelled from a random motion. In spite
of the simplicity of its computational implementation and the very accurate
results obtained for slight diffusion coefficients, the great number of particles
required when the diffusion coefficient increases makes this strategy useless
for treating the problems encountered in practical applications.

To circumvent these computational drawbacks, we transform the linear
Fokker-Planck advection-diffusion equation in a pure advection problem. For
this purpose we define the new advection field ṗ∗

ṗ∗ = ṗ − Dr

∂Ψ
∂p

Ψ
(2.18)

that introduced in the pure advection Fokker-Planck equation

dΨ

dt
= − ∂

∂p
(Ψṗ∗) (2.19)

leads to the standard linear advection-diffusion Fokker-Planck equation (1.1).
In the 2D case developed in the previous section, both equations result in

the following purely-advection problem

ϕ̇∗ = ϕ̇ − Dr

∂Ψ
∂ϕ

Ψ
(2.20)

dΨ

dt
= − ∂

∂ϕ
(Ψϕ̇∗) (2.21)

Now, Eq. (2.21) could be used for computing the different solutions asso-
ciated with the Dirac’s distributions δ(ϕ−ϕi), ∀i, but two difficulties appear:
(i) the derivative and the ratio of linear combinations of Dirac masses cannot
be defined in a proper way, and (ii) due to the distribution function derivative
required to compute the modified advection field ϕ̇∗ in Eq. (2.20), a coupling
between the different fibers takes place, and consequently, in this case, the
evolution of each fiber cannot be computed independently of the other ones.

In order to circumvent the first difficulty we introduce a smoothed approx-
imation of the Dirac mass given by
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ζ(x) =
e−x

2

√
π

(2.22)

which verifies the normality condition∫ ∞

−∞

ζ(x) dx = 1 (2.23)

To adapt its sharpness we modify this function in the following manner

ζε(x) =
ζ
(
x
ε

)
ε

(2.24)

which verifies also the normality condition. Fig. 2.1 depicts this function for
three values of the ε parameter.

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

ε = 0.2 

ε = 1 

ε =2 

ζε

ϕ

Figure 2.1. Representation of the cut-off function for different values of the ε
parameter

In this form, the gradients and ratios can be computed in a proper way. On
the other hand to avoid the second limitation two simple possibilities exist: (i)
a direct procedure that compute N times, the evolution history of N particles
along the closed trajectory, and (ii) an iteration algorithm that computes
the evolution of each particle along the closed trajectory independently of
the other ones due to the fact that the coupling term is evaluated from the
solution at the previous iteration. In the following sections we describe both
procedures.

A Direct Procedure.
We write the searched solution at point x0 in a matrix form
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Ψ(x0, ϕ) ≈
i=N∑
i=1

αi(x0) ζε(ϕ − ϕi) = α(x0) · ζε(ϕ) (2.25)

where the unknown coefficients αi(x0), contained in the vector α(x0), must
be determined in order to satisfy the periodicity condition imposed by both
the steady character of the searched solution and the steady and recirculating
character of the flow.

We define the following N alpha-vectors:

αk(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αk1(x0)
...

αkk−1(x0)
αkk(x0)

αkk+1(x0)
...

αkN (x0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν
...
ν
μ
ν
...
ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∀k ∈ [1, · · · , N ] (2.26)

where ν and μ can be chosen arbitrarily with the only restriction of verifying
the normality condition, i.e. (N−1)ν+μ = 1. We can notice that the uncoupled
procedure, applied when diffusion effects are neglected, uses ν = 0 and μ = 1.

Introducing this notation, Eq. (2.25) can be rewritten as

Ψ(x0, ϕ) ≈
k=N∑
k=1

βk αk(x0) · ζ =

k=N∑
k=1

βk Ψk(x0, ϕ) (2.27)

Now, we can compute the evolution along a closed trajectory of each so-
lution

Ψk(x0, ϕ) = αk(x0) · ζε(ϕ) (2.28)

which in fact requires the tracking of N particles. For this purpose, we need
to integrate the evolution of the orientation for each fiber (represented by the
subscript i) in each problem (noted by the superscript k). If we consider, for
a sake of simplicity, the backward Newton method again, it results

ϕ(x0, t0, ϕ
k
i ; tm+1) = ϕ(x0, t0, ϕ

k
i ; tm)+ ϕ̇(x(x0, t0; tm), ϕ(x0, t0, ϕ

k
i ; tm)) Δt−

− Dr

∂
∂ϕ

(∑j=N
j=1 αkj (x0)ζε(ϕ − ϕ(x0, t0, ϕ

k
j ; tm))

)
ϕ=ϕ(x0,t0,ϕ

k
i ;tm)∑j=N

j=1 αkj (x0)ζε(ϕ(x0, t0, ϕ
k
i ; tm) − ϕ(x0, t0, ϕ

k
j ; tm))

Δt (2.29)

∀k ∈ [1, · · · , N ], ∀i ∈ [1, · · · , N ], ∀m ∈ [0, · · · , M − 1]

After a complete turn of period T we obtain
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ϕ(x0, t0, ϕ
k
i ; T ) ∀i ∈ [1, · · · , N ], ∀k ∈ [1, · · · , N ] (2.30)

Now the weights associated to each orientation ϕ(x0, t0, ϕ
k
i ; T ), βkαki (x0),

must be transferred to the angles ϕi to enforce the periodicity. This operation
can be accurately carried out by using the algorithm proposed in [CHI03] as
previously described.

This algorithm offers the steady solution of the problem from the resolu-
tion of the N problems, requiring each one of them, the integration of the
orientation evolution of N fibers along the closed trajectory. In this form the
algorithm results of order N 2.

A Fixed Point Iteration Algorithm. In this case we start from the
solution obtained assuming Dr = 0. This solution can be written as

Ψ0(x(x0, t0; t), ϕ) ≈
i=N∑
i=1

α0
i (x0) ζε(ϕ − ϕ(x0, t0, ϕi; t)), ∀t ∈ [t0, T ] (2.31)

Now, the iteration k results

ϕk(x0, t0, ϕi; tm+1)=ϕk(x0, t0, ϕi; tm)+ϕ̇(x(x0, t0; tm), ϕk(x0, t0, ϕi; tm))Δt

−Dr

∂
∂ϕ

(
Ψk−1(x(x0, t0; t), ϕ)

)
ϕ=ϕk(x0,t0,ϕi;tm)

Ψk−1(x(x0, t0; t), ϕ
k(x0, t0, ϕi; tm))

Δt

(2.32)
for all i ∈ [1, · · · , N ], and all m ∈ [0, · · · , M − 1], where in this case the
superscript k ≥ 1 refers to the iteration.

This algorithm results of order N but the convergence is not ensured.
Some improvements can be introduced, as for example the introduction of the
diffusion coefficient step by step.

3 Numerical Examples

In this section two numerical examples involving steady recirculating flows
will be considered. The first one is defined by the following kinematics:

v =

(
u
v

)
=

(−y
√

x2 + y2

x
√

x2 + y2

)
(3.1)

The steady solution of the probability distribution is searched at point
(0, 1). For this problem the exact solution can be computed due to the solution
symmetry as described in [CHI03]. Thus, for a diffusion coefficient Dr = 0.2
and fibers with an aspect ratio related to k = 0.6, the fixed point algorithm
proposed in the section 2.3 with ε = 0.5 and N = 72 converges in around 10
iterations to the reference solution as depicted in Fig. 3.2.

Now, the direct method described in the section 2.3 is applied. Obviously,
the numerical solution accuracy will depends on the μ coefficient (for μ ∈ [3, 5]
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Figure 3.2. Numerical solution com-
puted at point (0, 1) using the fixed point
algorithm
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Figure 3.3. Numerical solution com-
puted at point (0, 1) using the direct pro-
cedure with μ = 1.2/N
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Figure 3.4. Numerical solution com-
puted at point (0, 1) using the direct pro-
cedure with μ = 10/N
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Figure 3.5. Numerical solution com-
puted at point (0, 1) using the direct pro-
cedure with μ = 0

the extact and the computed solutions are in very good agreement). Figs. 3.3
and 3.4 depicts the fiber distribution related to μ = 1.2/N and μ = 10/N
respectively as well as the exact solution (dashed line). The case of μ = 0
(where N − 1 fibers with equal weights are considered) is depicted in Fig. 3.5.
The solution accuracy can be improved by increasing the number of particles
N involved in the simulation. A first order convergence is noticed when the
number of particles N is increased. In these examples we don’t take μ in the
interval [3, 5] because in that case the numerical and reference solutions are
completely superposed.

Fig. 3.6 depicts the fiber distribution in some points on the closed stream-
line related to point (0, 1) computed using the following model parameters:
k = 0.8, ε = 0.5, Dr = 0.2 and N = 72. The fiber orientation is then defined
on the unit circle, where the orientation of each fiber is depicted by a small
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circle. Thus, for each one of the eight points considered, the orientation of the
72 fibers involved in the simulation are depicted.
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Figure 3.6. Fiber orientation distribution along the streamline related to the point
(0, 1)

The second example concerns the flow kinematics induced by two-eccentric
rotating cylinders. The velocity field was computed assuming a Newtonian
fluid behavior and using the well known lubrification hypothesis (justified by
the fact that the flow gap is much more lower than the cylinder radius). The
inner cylinder is rotating with a velocity of 0.1 rad/s. The cylinder radius are
0.01 m. and 0.015 m., being the distance between the both cylinder axes of
0.0031 m. The model parameters are k = 0.8, Dr = 0.2, ε = 0.5 and N = 0.72.
Figs. 3.7 and 3.8 depict the fiber orientation distribution along a streamline
located in the secondary vortex and the main recirculation respectively.
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Figure 3.7. Fiber orientation distribution on a streamline located in the secondary
vortex of a two-eccentric rotating cylinders device
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Figure 3.8. Fiber orientation distribution on a streamline located in the main
recirculation of a two-eccentric rotating cylinders device

4 Conclusions

In this work we have analyzed the application of a deterministic approximation
of the diffusion term in the Fokker-Planck equation using smooth particles for
computing its steady solution in a steady recirculating flow. The main idea
of this approach lies in the introduction of the Fokker-Planck diffusion term
into the advection one, which allows to proceed in a Lagrangian deterministic
manner without a mesh support requirement. In spite of its simplicity, and
from the first numerical results here shown, this technique seems to be very
accurate.
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