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Application of the Natural-Element Method to

Model Moving Electromagnetic Devices
L. Illoul1, J. Yvonet1, F. Chinesta1, and S. Clénet2

LMSP, ENSAM, CER Paris, 75013 Paris, France

L2EP, ENSAM, CER Lille, 59046 Lille Cedex, France

The natural-element method, which belongs to the family of meshless methods, is applied in the context of two-dimensional magne-
tostatics with moving parts. The method is reviewed and its interest for handling discontinuities in electromagnet devices with moving
parts is illustrated through a numerical example.

Index Terms—Magnetostatics, movement, natural-element method (NEM).

I. INTRODUCTION

E
FFICIENT methods have been already developed in two

dimensionstohandle themotionofelectromagneticdevices

with rotating parts in finite-element model (FEM) [1], [2]. When

the motion becomes complex (combination of rotation and

translation), it leads to large mesh deformations. A remeshing

step is then required, which increases the complexity of the

method and can also induce noise due to the gap between the field

projections from the old to the new meshes. Meshless methods

provide new tools to take motion of interfaces into account.

Nevertheless, in most mesh-free methods, imposition of essential

boundary conditions is a difficult task. The natural-element

method (NEM), which is a great interest in the domain of

mechanics, enables us to easily overcome the aforementioned

issues [3], [4]. In this paper, we propose the use of the NEM

to model an electromagnetic device involving moving parts.

First, the magnetostatics problem is summarized. Then, the

NEM is reviewed. Finally, the interest of the NEM to handle

moving discontinuities is evaluated in the context of a simple

electromagnetic problem.

II. MAGNETOSTATICS PROBLEM

Let denote the domain studied and its surface. In mag-

netostatics, the magnetic field and the magnetic flux density

verify

(1)

where is the current density whose distribution is assumed

known in . Both fields are related by the constitutive equation

(2)

with the permeability. On the surface , the following

boundary conditions are prescribed:

on on (3)

with and , two complementary parts of , and , the out-

ward normal unity vector defined on . In magnetostatics, the

problem is generally solved using the vector potential which

satisfies

on (4)

The vector potential has only one component in two dimen-

sions, with the coordinates of a point in the domain

. The equation to be solved then reads

and on (5)

III. DISCRETISATION

A set of nodes , with coordinates ,

respectively, is distributed on the whole domain . A scalar

function is associated with each node in . The vector

potential is then approximated in the usual form

(6)

with representing the nodal degrees of freedom which are

obtained solving the linear system obtained by applying the

Galerkin method to the weak formulation related to (5). In

the FEM context, the nodal degree of freedom corresponds

with the vector potential at node . The interpolation function

verifies the Kronecker’s delta property, i.e. .

Thus, the essential boundary conditions can be imposed by

prescribing the vector potential at the nodes located on

(the shape functions related to internal nodes vanish on the

domain boundary). In most mesh-free methods, it is not possible

to directly impose essential boundary conditions because the

shape functions do not satisfy the Kronecker property, and the

shape functions related to the interior nodes do not vanish on

the domain boundary. In the next section, we show how the

NEM enables us to overcome this issue and allows handling

discontinuities in the domain in a very simple manner.

In recent years, mesh-free methods for the solution of partial

differential equations have significantly matured and have

been used in various fields of engineering science. One of

the reasons for this development is the fact that mesh-free

discretizations and particle models are often better suited to
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cope with geometrical changes of the domain of interest than

mesh-based discretization techniques, such as finite differences,

finite elements, or finite volumes techniques. Furthermore, the

computational costs associated with mesh generation are al-

leviated in mesh-free approaches since they are based only

on a cloud of nodes without any geometrical restriction with

respect to their distribution, in contrast with the finite-element

method, where elements that are too distorted lead to poor

accuracy. The so-called meshless or mesh-free methods have

been investigated and used by many researchers for treating a

large variety of engineering problems, usually involving large

displacements as encountered, for example, in forming process

simulations (free surface problems, moving boundaries prob-

lems, moving interfaces, and cracks propagation, among many

others). In these problems, accurate finite-element solutions

require significant computational efforts in remeshing steps.

In contrast, meshless methods require only nodal data without

explicit connectivity between nodes. The first generation of

meshless methods, the smooth particle hydrodynamics (SPH)

method, originally proposed by Lucy [5], introduces kernel

approximations and imposes the consevation laws using a

collocation technique. Recently, other mesh-free methods have

been proposed, such as the element-free Galerkin (EFG) [6],

the reproducing kernel particle method (RKPM) [7], and the

NEM [8], among many others, and they have been success-

fully used to discretize the Galerkin weak form associated

with the different models. Several methods for the analysis of

discontinuities or interfaces have been developed in both mesh

and meshless techniques. The most common approach lies in

explicitly tracking the interface motion. Within the interface

tracking approach, two main alternatives exist: the moving

mesh methods and the mixed Eulerian–Lagrangian methods.

Moving finite-element mesh methods conform element bound-

aries to the interface as it evolves. Although these methods

are very accurate, they are limited by severe mesh distortion.

Thus, frequent remeshing is needed, with the associated field

projections between successive meshes. Moreover, remeshing

is, even today, a delicate task in three dimensions. To alleviate

remeshing efforts a number of Eulerian–Lagrangian methods

have been developed recently that track the interface while

solving the equations on a fixed grid. Many of these methods

effectively smear the discontinuity over a few grid cells, and,

therefore, are not capable of accurately representing the solution

across the interface. A new approach for representing localized

behaviors has recently emerged in the field of the finite-element

method, known as extended finite-element method (X-FEM),

in which the interface evolution can be properly represented

on a fixed background mesh, just by adding an appropriate

enrichment in the functional approximation in the elements

that are intersected by the moving discontinuity. Alternative

to the aforementioned methods, the constrained NEM [4] has

been proposed to handle discontinuities and moving interfaces

in mesh-free methods in a very simple manner. The technique

uses the features of the NEM [8], [3] in tandem with a visibility

criterion. Unlike in most mesh-free methods, the constructed

approximation is strictly conforming and continuous across

interfaces (with discontinuous normal derivative), which avoids

the use of discontinuous enrichment techniques.

Fig. 1. Construction of the Sibson shape functions. On left, the point x is
located inside the domain. On right, the point x is located on the boundary.

IV. NEM

In this section, after a brief review of the Voronoï-based in-

terpolants, the utility of the technique for handling moving in-

terfaces is presented. We briefly touch upon the foundation of

Sibson’s natural neighbor coordinates (shape functions) that are

used in the NEM. For a more in-depth discussion on the Sibson

interpolant and its application for solving second-order partial

differential equations, the interested reader can refer to [8] and

the references therein. The NEM interpolant is constructed on

the basis of the Voronoï diagram. The Delaunay tessellation is

the topological dual of the Voronoï diagram.

Consider a set of nodes [for

the sake of simplicity, we will consider only two-dimensional

(2-D) models, but all the results can be directly extended to the

three-dimensional (3-D) case]. The Voronoï diagram is the sub-

division of into regions (Voronoï cells) defined by

(7)

where denotes the Euclidean distance. Thus, points in

are closer to the node than to any other node in the cloud. Let

consider a point inside the domain studied (Fig. 1). To calcu-

late the value of the Sibson coordinates of with respect

to a natural neighbor (see Fig. 1), the set of neighbor nodes

is determined. Nodes are natural neighbors of if the

point is within the circumcircle of the triangle

coming from the Delaunay tessellation. In Fig. 1, only natural

neighbors of are represented. The second-order Voronoï cell

is given by

(8)

In Fig. 1, the second-order cell related to the point

and the node is the polygon (afghe). If we denote , the

surface of the cell , the Sibson coordinate is given

by

(9)

For example, in the case of the Fig. 1, is given by

(10)

If the point coincides with the node , i.e., , then

, and all other shape functions are zero, i.e.,
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being the Kronecker delta). If a node is not a neighbor

of the point , the function vanishes. The support of the

function is bounded.

The properties of positivity, interpolation, and partition of

unity are then verified [8]

and and (9)

The natural neighbor shape functions also satisfy the local

coordinate property, namely

(10)

which combined with (9), implies that the natural neighbor in-

terpolant spans the space of linear polynomials (linear com-

pleteness). Sibson natural neighbor shape functions are at

any point except at the nodes, where they are only . The

continuity can be improved by using special classes of natural

neighbor shape functions. Another important property of this

interpolant is its strict linearity over the boundary of convex do-

mains [8]. An illustration is depicted in Fig. 1 (right): As the

areas of the Voronoï cells associated with the nodes located on

the domain boundary become infinite, the contribution of in-

ternal nodes (with a finite area) vanish in the limit when the

point approaches the convex boundary, and the shape functions

associated with nodes and become linear on the segment

. This is not true in the case of nonconvex boundaries,

but the use of a special treatment such as a visibility criterion

in the context of the NEM generalizes this property to any kind

of domain boundary. The resulting technique (which involves

a visibility criterion to limit the number of neighbor nodes) is

called the constrained natural-element method (C-NEM) [4].

To handle fixed or moving interfaces the C-NEM proceeds by

defining the different interfaces as a collection of linear seg-

ments (or triangular facets in three dimensions), which can be

viewed as opaque boundaries. Now, the C-NEM functional in-

terpolation is defined by considering at point the contribution

of all neighbor and visible nodes (the interfaces being consid-

ered as opaque). Thus, we can write

(12)

where is the number of natural neighbors visible from point

. The computation of the constrained natural neighbor shape

functions is similar to the natural neighbor shape func-

tion, when one proceeds using the constrained Voronoï diagram

[4]. Due to the inherent meshless character, these interfaces can

be added in arbitrary clouds of nodes and the nodes defining

the interface can move freely on the background cloud without

any geometrical restriction. In this context, the constructed ap-

proximation is strictly continuous across any interface, being

its normal derivative discontinuous. To illustrate this behavior,

we consider the situation depicted in Fig. 3, where the point

moves from to . If is in then the interpolated field

is constructed using the neighbor visible nodes from point (

Fig. 2. Sibson shape function related to a node surrounded by eight other
nodes.

Fig. 3. Interface tracking: reproducing transmission conditions.

is assumed opaque). If is on , according to the previous dis-

cussion, the interpolated field is strictly linear because it only

depends on the two neighbor nodes located on . Finally, when

is in , the interpolated field is defined using the neighbor

and visible nodes from point . The con-

tinuity of the interpolated field is then guaranteed, but a discon-

tinuity appears in the normal derivative, because of a sudden

change in the neighbor nodes across the interface.

V. MOVEMENT

In the framework of the NEM, updating, addition or suppres-

sion of nodes is quite easy. So, to move a part in , we pro-

ceed as follow. First, nodes are distributed on the whole domain

without considering the moving part . Then, the moving

part is added to the domain with all its associated nodes. Then,

whatever the position of in , all the nodes of shad-

owing by are suppressed. The problem is solved with the

remaining nodes of and the nodes of . This technique is
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Fig. 4. Electromagnet under study and the distribution of nodes used for the
discretization with the NEM.

Fig. 5. Evolution of the flux versus the angle.

Fig. 6. Evolution of the attractive torque versus the angle.

simple to carry out whatever the movement (translation, rota-

tion, or a combination of both).

VI. NUMERICAL EXAMPLE

The electromagnet depicted in Fig. 4, which involves a

moving part, is analyzed. The static part is composed of a

ferromagnetic core with two coils in series. The moving part

is made up ferromagnetic material. The relative permeability

of the ferromagnetic material is constant and equal to 1000.

The nodal distribution used for the discretization of the elec-

tromagnet is illustrated in Fig. 4. When the coil is supplied and

the moving part rotates around the point 0 (see Fig. 4), we have

calculated the flux (Fig. 5) and the attractive torque (Fig. 6).

The torque is calculated using the Maxwell stress tensor. The

results obtained are very coherent because the torque is close

to the torque calculated using another method based on the

derivative of the coenergy (i.e., by derivating the flux versus

the angle)

(12)

where is the torque, is the flux, both calculated at the

angular position, and is the angle step. Concerning the

computational effort, it is not possible at present to compare of

both the FEM and the NEM because due to the novelty of the

last one (i.e., the numerical algorithms are not yet optimized).

The construction of the NEM shape functions are more expen-

sive that those of the FEM; however, the accuracy of the NEM

is significantly higher and no remeshing is required when one

uses the NEM (remeshing procedures are expensive in two di-

mensions and very delicate in three dimensions). In a former

work [9], we have proposed a new fast algorithm for computing

the NEM shape functions that is not much more expensive that

the one used in the FEM context.

VII. CONCLUSION

In this work, we have proved the ability of a novel meshless

method, the C-NEM, for simulating electromagnetic devices in-

volving moving interfaces in two dimensions. All the construc-

tions described in this paper can be directly extended to the 3-D

case for nodal interpolation [10]. We are conscious that the ex-

tension to the 3-D treatment (i.e., edge elements) of electromag-

netic models requires more in deep developments.
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