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ABSTRACT: This paper presents a new method to simulate problems with moving interfaces. We use a mesh-
less method where the approximation functions can reproduce discontinuities in the field derivatives. The
position of the discontinuity is defined independent of the nodes that define the approximation. We apply our
method to the propagation of a melting boundary.
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1 INTRODUCTION

Finite element methods are commonly used to model
melting problems where the problem domain is defined
using a mesh support. When the domain evolves the
mesh becomes very distorted, and remeshing as well
as field projection between successive meshes are then
required [5]. Moreover, to represent the thermal trans-
mission conditions through the interface (melting or
solidification fronts) the interface must be represent by
facets (in 3D) or segments (2D) of the mesh skeleton,
which involves continuous remeshing in the context of
the FE approximations.

Recently, several authors proposed to use meshless
methods in order to get rid of the mesh-related prob-
lems. In fact, the term meshless methods covers sev-
eral different methods, and we classify these methods
by their ability to deal with the solidification problem
according to the three following criteria:

The first criterion is the way how the local discon-
tinuous approximation is set up. In [2], Ji uses the
Moving Least Squares (MLS) method associated with
a Partition of Unity (PUM) enrichment, and in [8],
Yvonnet uses the constrained natural method (CNEM).
In a prior work, we proposed to use the enriched repro-
ducing kernel particle approximation (ERKPA)[4, 3].

The second criterion is the way in which the problem
equations are discretized. There are two possible ways.
First, the weak formulation of the problem is used as
in the EFG [1] or XFEM method. But these two cases

require the use of an integration mesh and thus reduce
the meshless character of the methods. Second, the
strong formulation of the problem is used to discretize
the problem as in the point collocation methods. In this
paper, we use this last approach.

The third criterion is the way how the solidification
front is defined. The boundary can either be defined
by using a mesh as in the CNEM method proposed by
Yvonnet [8], or the front is defined totally independent
from the nodes that define the approximation. For this
latter case, Ventura [7] or Ji [2] proposed to use Level
Set Methods [6].

2 PROBLEM STATEMENT

Consider the biphasic Stefan problem in 1D. The do-
main Ω with boundary Γ consists of a pure solid or
liquid material. The domain Ω can thus be subdivided
into two disjoint subdomains ΩS and ΩL, where S and
L denotes whether the material is in liquid or solid
state. The position of the interface between liquid and
solid is given by the coordinate xd. Moreover, we con-
sider the material to be homogeneous and isotropic,
and it does not contain any internal source. The heat
transfer problem results:
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where CS and CL denote the volumetric heat
capacities, and kS (resp. kL) the thermal conductivity
of the material in ΩS (resp. ΩL).

The evolution of the discontinuity is given by Ste-
fan’s law:
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The temperature on the interface is defined by

T = Tm, x = xd, (4)

where Tm is the melting temperature, L the volumetric
latent heat of fusion and V the interface velocity.

For solving the thermal problem we need to pre-
scribe the initial material temperature:

T (x, t = 0) = T 0(x), x ∈ Ω (5)

In this work, we only impose one Dirichlet condition
on the boundary Γ.

T (x, t) = TΓ(x, t), x ∈ Γ, t ∈ [0, tmax] (6)

Thus, the thermal problem can be summarized as
follows:

Find T : (x, t) → T (x, t) such that
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T = Tm, x = xd

T (x, t) = TΓ(x, t), x ∈ Γ, t ∈ [0, tmax]

(7)

The Stefan’s law (Eq. (3)) allows the interface loca-
tion updating.

3 TIME DISCRETIZATION

We approximate the time derivative according to

∂T n+1

∂t
=
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∆t
, (8)

that inserted into Eq. (7), leads to the following im-
plicit scheme:
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The temperature at the time t = tn = n∆t is ap-
proximated by the ERKPA defined by

T n(x) =
N
∑

i=1

Ψn
i (x)T n

i . (10)

The shape functions Ψn
i (x) are defined with respect

to the interface position xn
d at time tn = n∆t, and xi

(i = 1 · · ·N ) denotes the coordinates of the approxi-
mation nodes that are considered to be fixed.

4 SPATIAL DISCRETIZATION

The coefficients T n+1
i have to be determined at ev-

ery time step. For this purpose, we use a collocation
method. We will see that there are two ways to impose
the melting temperature Tm at the liquid-solid inter-
face:

• In the first one we impose the condition T = Tm

by penalization,

• In the second one we use an iteration procedure
for solving the resulting non linear problem as de-
scribed later.

4.1 Initialization

At the time t = 0, the coefficients T 0
i have to satisfy

the following conditions:
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resulting in the following linear system:
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By solving this system, we obtain the coefficients

T 0
i .



4.2 Incremental procedure

Given the coefficients T n
i and the interface position at

time tn xn
d , we proceed as follows:

• The interface velocity V n is determined by
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• We determine the interface position xn+1
d at time

tn+1 using the explicit formula:

xn+1
d = xn

d + V n∆t (14)

• From the positions xn
d and xn+1

d , we construct the
shape functions Ψn

i (x) and Ψn+1
i (x), ∀i.

• Then, we determine the coefficients T n+1
i satis-

fying Eq. (9). To solve it, there are two different
approaches that we describe in the following para-
graphs.

4.3 Penalization method

Let Σn be the set of the N−1 nodes that are the farthest
away from the interface and let xid the coordinate of
the node closest to the interface. By using a collocation
discretization of Eq. (9), we obtain the following linear
equations:

If xj ∈ Γ:
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for the node xid :
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We impose the condition T (xd) = Tm by penalization,
being α the penalization coefficient. By solving this
system, we obtain the coefficients T n+1

i .

4.4 Iterative method

Another technique for prescribing the condition
T (xd) = Tm lies in changing Eq. (17) by:

∫

ΩSD

C(x)

(

N
∑

i=1

Ψn+1
i (x)T n+1

i − Ψn
i (x)T n

i

)

dx −

∆t

(

N
∑

i=1

(

kLΨn+1
i,x (xSDf ) − kSΨn+1

i,x (xSDi)
)

T n+1
i

)

+

|[q]|
n+1

= 0

where xSDf and xSDi are the coordinates of the
boundaries of the subdomain ΩSD, and |[q]| denotes
the jump of heat flux through the interface defined by:
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In order to solve the resulting non-linear problem,

we apply an iterative Newton technique, where the
residual R is defined:

R = T n+1(xn+1
d ) − Tm (19)

5 NUMERICAL EXAMPLE

Consider the domain Ω = [0, 1], with an initial tem-
perature T 0 greater than the melting temperature Tm.
At time t0, we impose a temperature T1 lower than Tm

at the boundary x = 0. This leads to a generation and
propagation of a solidification front. See [8] for the
analytic solution of the interface evolution.

In our numerical example, we consider the domain
Ω filled with water at the initial temperature T 0 = 4◦C.
The thermal characteristics of water can be found in
[8]. At time t0, we impose the temperature T1 =
−10◦C on the boundary x = 0. In order to solve the
numerical problem, we will impose the analytical solu-
tion at the boundary x = 1. The approximation of the
temperature T is built from 40 nodes that are uniformly
distributed, and we are using a time step of ∆t = 2s.

We can notice that the results obtained by using the
penalization and the iterative method are very close.
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Fig. 1. Temperature field T (x) at t = 20 s (a), t = 32 s (b),
t = 64 s (c).
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Fig. 2. Evolution of the interface position xf (t).
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Fig. 3. Error on the interface position predicted by using the
penalization (left) and the iteration (right) techniques.

The error related to the predicted interface position is
lower than 1% (see Figs. 3a and 3b). Figure 1 proves
that we reproduce the temperature field accurately. The
enrichment of the approximation function allows then
capturing the change of the temperature slope across
the interface.

6 CONCLUSION

In this work we have solved a 1D thermal problem
involving a moving interface by using a collocation
method in combination with an ERKPA approxima-
tion. This technique can also be applied in 2D by using
for example a Fast Marching method for the interface
updating.

REFERENCES

1. T. Belytschko, Y. Kronggauz, D. Organ, and M. Fleming.
Meshless methods: an overview and recent developments.
Comput. Meths. Appl. Mech. Engrg., 139:3–47, 1996.

2. H. Ji, D. Chopp, and J.E. Dolbow. A Hybrid Extended Finite
Element / Level Set Method for Modeling Phase Transforma-
tions. Int. J. Numer. Meths. Eng., 54(8):1209–1233, 2002.

3. P. Joyot, J. Trunzler, and F. Chinesta. Discontinuous deriva-
tive enrichment in reproducing kernel particle approximations
(rkpa). In the 7th International ESAFORM Conference on Ma-
terial Forming, pages 69–72. Norwegian University of Science
and Technology, Sigurd Stören, ISBN 82-92499-02-04, 2004.

4. P. Joyot, J. Trunzler, and F. Chinesta. Enriched repro-
ducing kernel approximation: Reproducing functions with
discontinuous derivatives. In Marc Alexander Griebel,
Michael; Schweitzer, editor, Meshfree Methods for Partial Dif-
ferential Equations II, volume 43 of Lecture Notes in Compu-
tational Science and Engineering, pages 93–108, 2004. ISBN:
3-540-23026-2.

5. R. Lewis and K. Ravindran. Finite element simulation of metal
casting. Int. J. Numer. Meths. Eng., 47:29–59, 2000.

6. J.A. Sethian. Evolution, implementation and application of
level set and fast marching methods for advancing fronts. J.
Comput. Phys., 169:503–555, 2001.

7. G. Ventura, J.X. Xu, and T. Belytschko. A vector level
set method and new discontinuity approximations for crack
growth by efg. Int. J. Numer. Meths. Eng., 54:923–944, 2002.

8. J. Yvonnet, D. Ryckelynck, P. Lorong, and F. Chinesta. The
meshless constrained natural element method (C-NEM) for
treating thermal involving moving interfaces. 2005.

https://www.researchgate.net/publication/253950945



