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Abstract

Let n ≥ 3. We prove that the quaternion group of order 8 is realised as a subgroup of

the sphere braid group Bn(S2) if and only if n is even. If n is divisible by 4 then the

commutator subgroup of Bn(S2) contains such a subgroup. Further, for all n ≥ 3,
Bn(S2) contains a subgroup isomorphic to the dicyclic group of order 4n.

The braid groups Bn of the plane were introduced by E. Artin in 1925 [A1, A2], and
were generalised by Fox to braid groups of arbitrary topological spaces using the notion
of configuration space [FoN]. Van Buskirk showed that the braid groups of a compact
connected surface M possess torsion elements if and only if M is the sphere S2 or the real
projective plane RP 2 [VB]. Let us recall briefly some of the properties of the braid groups
of the sphere [FVB, GVB, VB].

If D2 ⊆ S2 is a topological disc, there is a group homomorphism ι : Bn → Bn(S2)
induced by the inclusion. If β ∈ Bn then we shall denote its image ι(β) simply by β. Then
Bn(S2) is generated by σ1, . . . , σn−1 which are subject to the following relations:

σiσj = σjσi if |i − j| ≥ 2 and 1 ≤ i, j ≤ n − 1

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n − 2, and

σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1 = 1.

Consequently, Bn(S2) is a quotient of Bn. The first three sphere braid groups are finite:
B1(S

2) is trivial, B2(S
2) is cyclic of order 2, and B3(S

2) is a ZS-metacyclic group (a group
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whose Sylow subgroups, commutator subgroup and commutator quotient group are all
cyclic) of order 12. The Abelianisation of Bn(S2) is isomorphic to the cyclic group Z2(n−1).
The kernel of the associated projection ξ : Bn(S2) → Z2(n−1) (which is defined by ξ(σi) = 1
for all 1 ≤ i ≤ n − 1) is the commutator subgroup Γ2 (Bn(S2)). If w ∈ Bn(S2) then ξ(w)
is the exponent sum (relative to the σi) of w modulo 2(n − 1).

The torsion elements of the braid groups of S2 and RP 2 were classified by Murasugi [M]:
if M = S2 and n ≥ 3, they are all conjugates of powers of the three elements α0 =
σ1 · · ·σn−2σn−1 (which is of order 2n), α1 = σ1 · · ·σn−2σ

2
n−1 (of order 2(n − 1)) and α2 =

σ1 · · ·σn−3σ
2
n−2 (of order 2(n− 2)) which are respectively nth, (n− 1)th and (n− 2)th roots

of Tn, where Tn is the so-called ‘full twist’ of Bn(S2), defined by Tn = (σ1 · · ·σn−1)
n. If

n ≥ 3, Tn is the unique element of Bn(S2) of order 2 and generates the centre of Bn(S2).
In [GG2], we showed that Bn(S2) is generated by α0 and α1.

For n ≥ 4, Bn(S2) is infinite. It is an interesting question as to which finite groups are
realised as subgroups of Bn(S2) (apart of course from the cyclic groups 〈αi〉). In [GG2],
we proved that Bn(S2) contains an isomorphic copy of the finite group B3(S

2) of order 12
if and only if n 6≡ 1 mod 3. The quaternion group Q8 of order 8 appears in the study of
braid groups of non-orientable surfaces, being isomorphic to the 2-string pure braid group
P2(RP 2). Further, since the projection F3(RP 2) → F2(RP 2) of configuration spaces of
RP 2 onto the first two coordinates admits a section [VB], it follows using the Fadell-
Neuwirth short exact sequence that P3(RP 2) is a semi-direct product of a free group of
rank 2 by Q8 [GG1].

While studying the lower central and derived series of the sphere braid groups, we
showed that Γ2 (B4(S

2)) is isomorphic to a semi-direct product of Q8 by a free group
of rank 2 [GG3]. After having proved this result, we noticed that the question of the
realisation of Q8 as a subgroup of Bn(S2) was explicitly posed by R. Brown in connection
with the fact that the fundamental group of SO(3) is isomorphic to Z2 [ATD]. In this
paper, we give a complete answer to this question:

Theorem. Let n ∈ N, n ≥ 3.

(a) If n is a multiple of 4 then Γ2 (Bn(S2)) contains a subgroup isomorphic to Q8.
(b) If n is an odd multiple of 2 then Bn(S2) contains a subgroup isomorphic to Q8.
(c) If n is odd then Bn(S2) contains no subgroup isomorphic to Q8.

Proof. We first suppose that n is even, so that n = 2m with m ∈ N. Let H be the
subgroup of B2m(S2) generated by x and y, where

x =(σ1 · · ·σ2m−1)(σ1 · · ·σ2m−2) · · · (σ1σ2)σ1,

y =(σ1 · · ·σm−1)(σ1 · · ·σm−2) · · · (σ1σ2)σ1 · σ
−1
2m−1(σ

−1
2m−2σ

−1
2m−1) · · ·

· · · (σ−1
m+2 · · ·σ

−1
2m−1)(σ

−1
m+1 · · ·σ

−1
2m−1).

Geometrically, x may be interpreted as the ‘half twist’ or Garside element of B2m [Bi].
Further, y may be considered as the commuting product of the positive half twist of the
first m strings with the negative half twist of the last m strings. Then x2 = T2m and
y2 = (σ1 . . . σm−1)

m(σ−1
m+1 . . . σ−1

2m−1)
m = T2m in B2m(S2) (cf. [FVB, GVB]). It is well

known that xσix
−1 = σ2m−i in B2m [Bi], and thus in B2m(S2), from which we obtain

xyx−1 = y−1. Hence H is isomorphic to a quotient of Q8. But x is of order 4, and
the induced permutation of y on the symmetric group S2m is different from that of the
elements of 〈x〉. It follows that H contains the five distinct elements of 〈x〉 ∪ {y}, and
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so H ∼= Q8. If m is even then x, y ∈ Ker (ξ), and thus H ⊆ Γ2 (Bn(S2)). This proves
parts (a) and (b).

To prove part (c), suppose that n is odd, and suppose that x, y ∈ Bn(S2) generate a
subgroup H isomorphic to Q8, so x2 = y2 and xyx−1 = y−1. In particular, x and y are of
order 4, and thus are conjugates of α

±(n−1)/2
1 by Murasugi’s classification. By considering

a conjugate of H if necessary, we may suppose that x = α
ε1(n−1)/2
1 and y = wα

ε2(n−1)/2
1 w−1,

where w ∈ Bn(S2) and ε1, ε2 ∈ {1,−1}. Replacing x by x−1 if necessary, we may suppose

further that ε1 = −ε2. Thus xy =
[

α
ε1(n−1)/2
1 , w

]

, and is of exponent sum zero. On the

other hand, xy is an element of H of order 4, and so is conjugate to α
±(n−1)/2
1 by Murasugi’s

classification. But ξ
(

α
±(n−1)/2
1

)

= ±n(n−1)
2

, which is non zero modulo 2(n−1). This yields

a contradiction, and proves part (c).

Remark. Let n ≥ 3. Using techniques similar to those of the proof of the Theorem,
one may show that the subgroup of Bn(S2) generated by σ1 · · ·σn−1 and the half twist
x is isomorphic to the dicyclic group of order 4n. In particular, if n is a power of two
then Bn(S2) contains a subgroup isomorphic to the generalised quaternion group of order
4n. Further investigation into the finite subgroups of Bn(S2) and Bn(RP 2) will appear
elsewhere.
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