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Liquid Composites Moulding (LCM) processes simulation requires an accurate treatment of the advection equation governing the evolution of different properties related directly or indirectly to the fluid injected into the mould. The incubation time constitutes an example of those properties. It is defined as the time elapsed since the reactive mixing, and its accurate prediction is of major importance for simulating the curing reaction. In the case of complex moulds (with multiple injection points, racetracking effects, different permeability areas, …) the incubation time on the melt front could be different to the injection time. Due to the fact that the incubation time is not defined in the empty part of the mould, its updating needs a particular treatment. This paper proposes new numerical strategies for the calculation of the incubation time in mould filling simulation of moulds containing reinforcements.

Introduction

Liquid Composites Moulding (LCM) processes are based in the reinforcement impregnation with a low viscosity resin, from which composites parts are conformed after the curing reaction. The polymerization starts when the resin components are mixed just before the injection (see Figure 1). The process simulation involves an accurate treatment of the advection equation, which governs the evolution of different fluid properties: fluid presence function, temperature, concentration of reactive, incubation time, etc [START_REF] Sánchez | Towards an efficient numerical treatment of the transport problems in the resin transfer molding simulation[END_REF].

Gas

In general, two alternative Eulerian numerical techniques using a fixed mesh have been developed to simulate the evolution of the flow front. These include volume-offluid techniques (since the earliest works of (Hirt et al., 2003) to other more recent alternatives introduced by [START_REF] López | A Volume Of Fluid Based on Multidimensional Advection and Spline Interface Reconstruction[END_REF] or [START_REF] Pilliot | Second-order Accurate Volume-Of-Fluid Algorithms for Tracking Material Interfaces[END_REF], for instance) and level set methods introduced by (Osher et al., 2004). In a previous work (García et al., 2003), we proposed a new numerical technique to update the advection equation that governs the fluid presence function, which is used to know the position of the flow front at each time step.

The elapsed time since the reactive mixing, also known as incubation time, depends on the history of each fluid element. An accurate numerical simulation able to compute the age of the fluid located at each point of the mould is very useful for simulating the curing reaction, as well as for detecting inappropriate filling processes: high gradients in the incubation time could imply high gradients in the curing rate with the associated undesirable thermo-mechanical coupling [START_REF] Sánchez | A process performance index based on gate-distance and incubation time for the optimization of gate locations in Liquid Composite Molding processes[END_REF].

Due to the fact that the incubation time is not defined in the empty part of the mould, its updating needs a particular treatment [START_REF] Chinesta | Some difficulties in the flow front treatment in fixed mesh simulations of composites forming processes[END_REF]. This paper proposes new numerical strategies for the calculation of the incubation time in mould filling simulation of moulds containing reinforcements.

Mechanical Modeling

The resin flow through a porous medium can be modelled by Darcy´s law. The fluid flow problem is defined in a volume
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where the fluid at time t occupies the volume

) (t f .
Assuming constant and orthotropic preform permeability and a constant resin viscosity, the variational formulation related to the Darcy flow results

* 0 f t K p p d [2]
where K is the preform permeability tensor, the resin viscosity and p the pressure. The flow velocity derives from the pressure gradient, according to the Darcy's law: K v p . The prescribed conditions on the boundary of
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on the mould walls.

The pressure (or the flow rate) is prescribed on the injection nozzle.

The pressure vanishes on the flow front.

The location of the fluid into the whole domain is defined by the characteristic function I defined by
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We note the incubation time by E. The value of the incubation time is assumed zero at the injection nozzle and varies throughout the filled part of the mould, but it is not defined in the empty domain:
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The evolution of both the volume fraction, I, and the incubation time, E, are given by the general linear advection equation:

S J v t J dt dJ [5]
When the incubation time is considered J=E and S=1, and in the other case J=I and S=0.

Since the incubation time E is not defined in the empty part of the mould, equation [5] cannot be integrated in the whole domain. To circumvent this difficulty, as we will prove later, we redefine the incubation time as EI.

Thus, the numerical algorithm for computing the flow kinematics proceeds in four stages:

1. Compute the pressure field using a finite element discretisation of the variational formulation [2] extended to the whole domain imposing a null pressure at the nodes not connected with, at least, a full filled element. 2. Compute the velocity field from the Darcy's law. 3. Update the resin presence function, integrating equation [5] with J=I and S=0. 4. Update the incubation time solving the transport equation [5] with J=EI and S=I.

First order discretization of the advection equation.

We consider the general form of the advection equation [5]. In order to apply the first order Laisant-Raviart scheme we write this equation in the conservative form where e-and e+ are the element boundaries from which the fluid is coming or leaving the considered element, respectively. Usually, the field J is assumed constant in each element, being then discontinuous across the element boundaries. In this form the evaluation of the boundary integrals in Eq. [7] requires some assumption. An appropriate choice consists in assuming on the outflow boundary the value existing in the element and on the inflow boundary the value existing in the neighbor upstream element from which the fluid is coming. These assumptions can be written as: (we assume from now on, and without any loss in generality, that the fluid is coming from a single upstream element). Thus, Eq.

[7] simplifies to: where q + and q -are the flow rates leaving and coming the considered element respectively. If we define the associated fluid volumes by t q and t q we can simplify Eq. [9]
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Updating the resin volumetric fraction and incubation time

In this case we must particularize the previous analysis by taking J=I and S=0 which leads to

0 I v t I dt dI [11]
where I is defined in Eq. We can notice that when an element start its filling process the second term in the right member vanishes, and if we consider the time step small enough the volume coming from the upstream neighbor element will be also very It is easy to verify that the previous expression can reproduce accurately different situations: the starting of the filling, the filling process, and its post-filled stage.

Numerical examples: finite element solution versus the incubation time computed by a particles tracking

In order to analyze the accuracy of the results obtained from Eqs. [18][19][20] we have compared those results with the ones obtained by tracking several fluid particles introduced in the mould with the resin. For this purpose different meshes have been considered, containing 8, 32, 200 and 800 elements. Figure 2 illustrates two of these meshes.

Figure 2. Two meshes used to solve the incubation time evolution

The inflow boundary is located at x=1, and in each simulation 4000 particles are injected through the inflow boundary. If we assume known a particle position x at time t whose age is denoted by E(t), its new age and position at time t+ t results E=E+ t and x= x+ v t, respectively. In the mould filling simulation we will consider two time steps: (i) the one that allows filling completely a column of elements at each time step (in this case there are not partially filled elements), and (ii) a constant time step that induces the existence of partially filled elements during the mould filling simulation.

In order to compare the solutions (incubation time) we compute for each particle the difference between its age with the one related to the element in which the particle is located at the time related to the complete mould filling. From these differences we can compute the error defined by: Figure 6 shows similar results that figure 4 using a mesh of 32 elements. We can notice the reduction in the error. Figure 7 shows similar results that figure 5 using a mesh of 32 elements. We can observe the reduction in the error. We can also notice, comparing the third picture in figures 6 and 7, that the use of a time step lower than the optimized one induces higher error. The simulations depicted in figures 10 and 11 are obtained using a mesh containing 800 elements. 

p N i f i f i N t x E t

Conclusions

From these results we can conclude about the accuracy and low numerical diffusion of the numerical strategy proposed in the discretisation of . The results are significantly improved, in relation to standard discontinuous finite element discretisations, mainly in the neighborhood of the flow front where the incubation time updating introduced some additional difficulties related to the fact that it is not defined in the empty domain.

Figure 1 .

 1 Figure 1. Resin injection system

  mesh element contained in the fluid region f (t). Integrating by parts and taking into account the fluid incompressibility, it results

  Figure 3 depicts the evolution of the error when the number of elements involved in the finite element discretization increases. This figure proves the convergence of the proposed strategy, for any time step verifying the stability condition (CFL).

Figure 3 .Figure 4 .

 34 Figure 3. Convergence analysis of the finite element simulation

Figure 5

 5 Figure 5 depicts similar results when the injection is carried out using a constant time step, different to the optimized time step.

Figure 5 .

 5 Figure 5. From up to down: age of particles, finite element solution and difference between both at the particle positions. Time step lower than the optimized one.

Figure 6 .

 6 Figure 6. From up to down: age of particles, finite element solution and difference between both at the particle positions. Optimized time step. Mesh with 32 elements.

Figure 7 .

 7 Figure 7. From up to down: age of particles, finite element solution and difference between both at the particle positions. Time step lower than the optimized one.

Figures 8

 8 Figures8 and 9show similar results that figures 6 and 7 when a mesh of 200 elements is considered.

Figure 8 .

 8 Figure 8. From up to down: age of particles, finite element solution and difference between both at the particle positions. Optimized time step. Mesh with 200 elements.

Figure 9 .

 9 Figure 9. From up to down: age of particles, finite element solution and difference between both at the particle positions. Time step lower than the optimized one.

Figure 10 .

 10 Figure 10. From up to down: age of particles, finite element solution and difference between both at the particle positions. Optimized time step. Mesh with 800 elements.

Figure 11 .

 11 Figure 11. From up to down: age of particles, finite element solution and difference between both at the particle positions. Time step lower than the optimized one.

  

  

  

  e is the element volume (or its area in 2D models).Using a first order explicit time discretization, the previous equation reduces
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where

  In the same way, the fact that the flow is coming from a neighbor upstream element implied that that element is fulfilled, i.e.

		To circumvent this apparent numerical difficulty we propose combine equations
	[11] (multiplied by E) and [13] (multiplied by I):
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		The discrete expression [10] can be considered by taking J=EI and S=I
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e I . These conditions can be introduced in the above expressions by using an appropriate delta parameter:
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