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ABSTRACT. Numerical modeling of non-Newtonian flows typically involves the coupling 
between the equations of motion characterized by an elliptic character, and the fluid 
constitutive equation, which is an advection equation linked to the fluid history. In this work 
we propose a coupling between the natural element method which provides the capabilities of 
Lagrangian models to describe the flow front tracking as well as to treat the convection terms 
related to the fluid microstructure evolution - without the mesh quality requirements 
characteristics of the standard finite elements method - with a new approximation of the 
Fokker-Planck equation. This approximation is efficient and accurate, and is based on the 
use of an adaptive model reduction which couples the proper orthogonal decomposition 
(Karhunen-Loève) with an approximation basis enrichment based on the use of the Krylov 
subspaces, for describing the microstructure evolution. 
KEYWORDS: Meshless techniques, Fokker-Planck equation, Molten composites, Model 
reduction 
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1. Introduction

As a consequence of the increasing use of composite materials, there has been 
much work on constitutive equations and computational mechanics for short fibers 
composites.  Since these materials are generally made of a matrix and fibers 
reinforcement, the mechanical properties of the conformed pieces depend greatly on 
the fibers orientation in the solid material. However, it turns out, that this orientation 
is determined by the forming process, so that it is interesting to develop 
mathematical models describing the flow during this conforming process and to 
develop specific numerical strategies to solve the resulting equations. 

Mechanical modeling of short fibers suspensions flows is usually achieved in the 
framework of dilute or semi-dilute suspensions of non-spherical particles in a 
Newtonian fluid. The resulting system of equations involves the coupling of an 
elliptic problem with an advection problem related to the fluid history. The elliptic 
problem is associated with the equations of motion whereas the advection equation 
describes the time evolution of the anisotropic viscosity tensor (fiber orientation) or 
more generally the microstructural state.  The second problem presents two 
difficulties: it is non-linear and hyperbolic  (see the review paper from Azaiez et al., 
2002). 

Coupled models take into account both the dependence of the kinematics with 
the fiber orientation and the orientation induced by the flow kinematics. Usually the 
coupled models are solved by means of a fixed point strategy. In this case, at each 
iteration the flow kinematics results from the solution of motion and mass 
conservation equations, using the fiber orientation field from the previous iteration. 
From the kinematics just computed, the fiber orientation is updated solving the 
advection equation governing its evolution. Advection equations have been 
integrated by using any accurate numerical technique for hyperbolic equations: the 
method of characteristics, SUPG or discontinuous finite element techniques, 
discontinuous finite volumes, .... (Pironneau, 1989). Coupled models solving 
simultaneously the flow kinematics and the fiber orientation (fully coupled models) 
are rare in literature. The main difficulty in using fully coupled models is the distinct  
character of the model equations, which requires specific numerical techniques. 

1.1. The flow kinematics resolution 

The simulation of flows involving moving or free boundaries introduces specific 
difficulties related to the flow front treatment. A first possibility to describe the fluid 
volume evolution is the use of a fixed mesh strategy. In that case, the fluid volume 
updating is carried out from a control volume technique or by using a volume-of-
fluid (VOF) technique, which introduces a new variable (the fluid presence 
function)  whose evolution is governed, as described later, by a linear advection 
equation. Some of these techniques solve the flow kinematics exclusively in the 
fluid domain, whereas other ones operate in the whole domain imposing a pseudo-
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behavior in the empty region (Azaiez et al., 2002). The use of this kind of 
techniques (fixed mesh strategies) induces additional difficulties in the flow front 
treatment, due to the fact that usual fixed mesh discretisation techniques update the 
fluid properties from their values at the previous time step. Thus, when an element 
starts its filling process, the variables related to the fluid, such as the temperature, 
the fiber orientation, ... are not defined in the empty elements, even though initial 
values are required to start the evolution process. Moreover, in all cases, the 
position and shape of the flow front is more or less uncertain, because in practice, 
during the filling simulation a great number of partially-filled elements appear. To 
improve the flow front location, some alternatives exist, as for example the level set 
method (Sussman et al., 1994), but its use is far to be trivial. 

The consideration of a moving mesh strategy (as used for example in the 
Lagrangian finite element formulations) allows to get a good evaluation of the fluid 
domain evolution, although some precautions must be taken into account in the flow 
front tracking: confluent flow fronts, interaction of the flow front with the domain 
boundary, .... The advection equations related to the fluid history can be accurately 
integrated using the method of characteristics along the nodal trajectories. However, 
as it is well known in the context of the Lagrangian finite element method, the mesh 
becomes too distorted in few iterations to guarantee an accurate field interpolation 
in the mesh elements. In order to alleviate the remeshing constraint, some meshless 
methods have been proposed. However, usual meshless techniques do not define a 
nodal interpolation, and in consequence important difficulties are found in the 
application of the essential boundary conditions. The Natural Element Method – 
NEM- (Sukumar et al., 1998), is a novel meshless method, which has the property 
of nodal interpolation, and its accuracy does not depend on the regularity of nodal 
distribution, i.e. there is not geometrical restriction in the relative position of the 
nodes. Thus, if the NEM is used in the discretisation of the variational formulation 
of motion and mass conservation equations, the nodal position can be updated from 
the velocity field of the fluid, at the same time that advection equations are 
integrated using the method of characteristics. Even in the case of very irregular 
nodal distributions, when the solution can be interpolated by using the 
approximation functional basis, no remeshing is required. Nevertheless, the 
introduction or the elimination of some nodes is an easy task (Martinez et al., 2004). 

1.2. Description of the microstructure evolution  

As previously argued, "complex fluid" is the term commonly used to describe a 
wide class of liquid-like materials, in which the relaxation time towards the 
equilibrium state occurs sufficiently slowly that significant changes in the 
microstructural configuration, and thus in the macroscopic properties, can be 
induced by the flow. Viscoelastic fluids or short fiber suspensions may be 
considered as examples of complex fluids. The Fokker-Planck formalism is a 
commonly used -description of kinetic theory problems, for describing the evolution 
of the configuration distribution function. This function represents the probability of 
finding the microstructure element in a particular configuration.  
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In the case of a short fiber suspension, the configuration distribution function 

(also known as orientation distribution function) gives the probability of finding the 
fiber in a given direction. Obviously, this function depends on the physical 
coordinates (space and time) as well as on the configuration coordinates, that taking 
into account the rigid character of the fibers, are defined on the surface of the unit 
sphere. The evolution of the distribution function is given by the Fokker-Planck 
equation, that we introduce later. 
 

We have proved in a former paper (Chiba et al., 2004) that in the context of the 
short fiber suspensions, the consideration of closure relations for deriving equations 
governing the evolution of different orientation tensors, can induce large deviations 
in the numerical solution with respect to the exact one. Thus, for example, in figure 
1 we compare the solutions obtained solving the equation governing the evolution 
of the second order orientation tensor (which involves a quadratic closure relation) 
with the one obtained imposing the periodicity of the solution of the Fokker-Planck 
equation along the closed streamlines. The first solution has been computed using a 
stabilized Taylor Discontinuous Galerkin technique, whereas the second one makes 
use of a particle strategy. In these representations the fiber orientation distribution is 
illustrated with an ellipsoid.  

 

(a) (b) 
 

Figure 1. Steady Fiber orientation distribution in a lid-driven cavity: (a) solution 
involving a quadratic closure relation (b) Fokker-Planck solution  
 

 
Thus, it seems that the use of the Fokker-Planck equation is better when very 

accurate solutions are searched. However, this equation is multidimensional due to 
the dependence of the orientation distribution on the physical and conformation 
variables. Some tentative for solving this equation exist in the bibliography: (i) the 
use of particles or smoothed particles in a meshless framework (Chinesta et al.,  
2003; Chiba et al., 1998; Chaubal et al., 1997; …), the use of different polynomial 
basis (wavelets, orthogonal polynomials, … ) or the use of hybrid approximations 
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(polynomials and particles) in the context of an operator splitting of the Fokker-
Planck advection-diffusion equation. 

 
However, in all the cases, a lot of polynomials or particles are introduced in the 

approximation despite that their contribution in the final solution can be sometimes 
negligible.  In this work we propose a new approximation, efficient and accurate, 
based on the use of an adaptive model reduction which couples the proper 
orthogonal decomposition (Karhunen-Loève) with an approximation basis 
enrichment based on the use of the Krylov subspaces (Ryckelynck, 2003).     

 

2. Mechanical model 

The mechanical model governing the short fiber suspension (SFS) flow is given 
by the following equations: (Batchelor, 1970; Batchelor, 1971;  Hinch and Leal, 
1975; Hinch and Leal, 1976) 
 
 The momentum balance equation, when the inertia and mass terms are 

neglected, results 
 

0Div                                                         [1]           
 

where  is the stress tensor. 

 
 The mass balance equation for incompressible fluids  

 
0vDiv            [2] 

 
where v  represents the velocity field. 

 
 The constitutive equation for a dilute suspension of high aspect-ratio particles is 

given, with other simplifying assumptions (Tucker, 1991), by 
 

DaNDIp p :2         [3] 

 
where p  denotes the pressure, I  the unit tensor,  the viscosity which 
depends on the chosen model as discussed in Meslin and Poitou (1999), D  the 
strain rate tensor, pN  a scalar parameter depending on both the fiber 
concentration and the fiber aspect ratio, " : " the tensorial product twice 
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contracted (i.e. klijkl
ij

DaDa : ) and a  the fourth order orientation tensor 

defined by  
 

da  )(          [4] 

 
where  is the unit vector aligned in the fiber axis direction, " " denotes the 

tensorial product (i.e. jiij
), and )(  is the orientation distribution 

function satisfying the normality condition  
 

1 )( d           [5] 

 
If ˆ , with ) (  the Dirac's distribution, all the orientation 

probability is concentrated in the direction defined by ˆ , and the corresponding 

orientation tensor results ˆˆˆˆâ .  

We can also define the second order orientation tensor as 
 

da  )(           [6] 

 
It is easy to verify that if )ˆ()( , the fourth order orientation tensor 
can be written as  
 

aaa            [7] 

 
whose components are defined by klijijkl aaa . 
For general expressions of )(  the previous relation is not exact and equation 
[7] becomes a closure approximation known as the quadratic closure relation. 
However, other closure relations are usually applied (Advani and Tucker, 1990; 
Dupret et al., 1998), among  them we can consider the linear closure relation  
 

)(
6
1                             

)(
24
1

iljkikjlijkljkiljlikklij

jkiljlikklijijkl

aaaaaa

a
             [8] 

 
the hybrid closure relation  
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)                 

(
6
1

)(
24
1

)1(

iljkikjlijkl

jkiljlikklij

jkiljlikklij

klijijkl

aaa

aaafafaa          [9] 

 
where )det(41 af -en 2D-; and finally, the natural closure relation (Dupret 
et al., 1998)  
 

 )(
3
1))(det(

6
1

jkiljlikklijjkiljlikklijijkl aaaaaaaa   [10] 

 
The main limitation in using the evolution equations governing the evolution of 
the different orientation tensors is due to the necessity of introducing a closure 
relation, whose incidence on the computed results may be significant. 

 
The isotropic orientation state in 2D is defined by the uniform distribution 
function   

 

2
1          [11] 

 
and then, the second order orientation tensor related to that isotropic orientation 
state is  
 

2

I
a                       [12] 

 
It is easy to verify that for uniform orientation distributions (2D or 3D) the 
linear closure becomes exact. 
 

From a physical point of view, we can consider that the eigenvalues of the 
second order orientation tensor represent the probability of finding the fiber in 
the direction of the corresponding eigenvectors. 

 
If we consider spheroidal fibers immersed in a dilute suspension, we can 
describe the orientation evolution by means of the Jeffery equation  (Jeffery, 
1922) 

 

     :   DDk
dt
d

     [13]  
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where  is the vorticity tensor, k  is a constant that depends on the fiber aspect 
ratio r  (fiber length to fiber diameter ratio)   

 
11 22 rrk         [14] 

 
On the other hand the evolution of the fiber orientation distribution  is 
governed by the Fokker-Planck equation,  
 

0)(
)(

dt
d

dt
d

                    [15] 

 
where the material derivative is given by 

 

Gradv
tdt

d                       [16] 

 
Now, taking into account equations [6], [13] and [15], the equation that governs 
the evolution of the second order orientation tensor can be deduced  

 

DaDaaDkaa
dt
ad

:2         [17] 

 
A similar equation can be derived for the evolution of the fourth order 
orientation tensor, which in this case involves the sixth-order orientation tensor.  
To take account of fiber interaction effects in semi-concentrated suspensions 
Folgar and Tucker (1984) proposed the introduction of a diffusion term in the 
Fokker-Planck equation, i.e.  

 

 
)(

)(
)(

rD
dt
d

dt
d

     [18] 

 
Fiber interaction being taken into account, the equation governing the evolution 
of a then yields 
 

N
I

aDDaDaaDkaa
dt
ad

r4:2       [19] 

 

D
D

N
3  in3
2  in2

        [20] 
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3. The alpha-Natural Element Method  

In the last decade considerable research efforts have been paid to the 
development of a series of novel numerical tools that have been referred as meshless 
or meshfree methods. These methods do not need explicit connectivity information, 
as required in standard FEM. The geometrical information is generated in a process 
transparent to the user, alleviating the pre-processing stage of the method. They also 
present outstanding advantages in modelling complex phenomena, such as large 
deformation problems, forming processes, fluid flow, etc, where traditional and 
more experienced techniques, like the FEM, fail due to the need of excessive 
remeshing.   

 
The Natural Element Method (NEM) is one of the latest meshless technique 

applied in the field of linear elastostatics. It has unique features among meshless 
Galerkin methods, such as interpolant character of shape functions and exact 
application of essential boundary conditions (see the review paper from Cueto et al., 
2003). In addition to its inherent meshless structure, these capabilities make the 
NEM an appealing choice also for application in the simulation of fluid flows. The 
NEM is based on the natural neighbour interpolation scheme, which in turn relies on 
the concepts of Voronoi diagrams and Delaunay triangulations (see figure 2a), to 
build Galerkin trial and test functions. These are defined as the natural neighbour 
coordinates (also known as Sibson’s coordinates) of the point under consideration, 
that is, with respect to figure 2b, the value at point x of the shape function associated 
with the node 1, is defined by: 

 

)(
)()(1 abcdArea

abfeAreax     [21]

     
 

(a)  
(b) 

 
Figure 2. (a) Delaunay  and Voronoi diagrams, (b)  Natural neighbour interpolants 
 

These functions are used to build the discrete system of equations arising from 
the application of the Galerkin method in the usual way. It has been proved, that the 
angles of the Delaunay triangles are not influencing the quality of the results, in 
opposition to the FEM. In addition, the NEM has interesting properties such as 
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linear consistency and smoothness of the shape functions (natural neighbour 
coordinates are C  everywhere except at the nodes, where they are C0). But perhaps 
the most interesting property of the Natural Element Method is the Kronecker delta 
property, i.e. i(xj)= ij. In opposition to the vast majority of meshless methods, the 
NEM shape functions are strictly interpolants. This property allows an exact 
reproduction of linear (even bilinear in some 3D cases) displacement fields on the 
boundary of convex domains, since the influence of interior points vanishes along 
convex boundaries. This is not true in non-convex ones, where some specific 
treatment is required. The alpha-shape concept allows to circumvent this difficulty 
when it is used in the context of a natural neighbour interpolation (Cueto et al., 
2003). 

 
The application of the NEM for complex fluid flow simulations has been 

recently proposed in Martinez et al. (2003). The main advantage of using the NEM 
in the framework of an updated Lagrangian formulation for simulating free or 
moving surface flows is the fact that the nodal position can be updated from the 
flow kinematics, without remeshing requirements, allowing the accurate description 
of large transformations and the history effects.  

4. Coupling the alpha-NEM with a particle approach of the Fokker-Planck 
equation 

The use of the natural element method allows an accurate and robust 
approximation of the fields involved in the weak form of the motion equations when 
the anisotropic viscosity is assumed to be known (computed at the previous step 
when an explicit algorithm or a fixed point scheme in the implicit case is used). In 
order to approach to the verification of the LBB condition two possibilities exist: (i) 
the use of a natural neighbor interpolation for the velocity field and a discontinuous 
pressure approximation, that despite the fact that it does not verify the LBB 
condition, no locking problems have been noticed, or (ii)  the use of mixed 
approximations verifying the LBB condition, that can be constructed for example in 
the framework of the partition of unity (Cueto et al. 2004).  More details concerning 
this approach, when it is combined with the integration of the advection equation 
governing the evolution of the second order orientation tensor, can be found in 
Martinez et al. (2003). 

In order to couple the alpha-NEM with a particle strategy for solving the 
Fokker-Planck equation, we assume at each node at the initial time a set of N 
particles (virtual fibers) with the orientations (for the sake of simplicity only the 2D 
case is considered in this paper) defined by the angle  respect to the x-axis: 
 

,2
N

ii   1,,0 Ni         [22] 
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Thus, the center of mass of each one of these N fibers is moving with the fluid, 

and at each time they are located on the considered “material” node. Of course, the 
orientation of these fibers evolves in time according to the Jeffery’s equation [13]. 
 

In the 2D case the unit vector describing the orientation of each particle can be 
expressed by  
 

sin
cos

         [23] 

 
that introduced in the Jeffery’s equation results in 
 

sin
cos

sin
cos

2
1

2
1

sincos

sin
cos

2
1

2
1
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0
2
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that pre-multiplying by  cossin  gives the expresion of the fiber rotation 
velocity 
 

sin
cos

2
1

2
1

cossin                              

sin
cos

0
2
1

2
10

cossin

y
v

x
v

y
u

x
v

y
u

x
u

k

x
v

y
u

x
v

y
u

    [24] 

Thus, the dependence of the rotation velocity on: (i) the fiber orientation ; (ii) 
the gradient of velocities and (iii) the fiber aspect ratio, becomes explicit in equation 
[24], and by simplicity we indicate these dependencies by 
 

,,kvGrad         [25] 
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The algoritm can be written in the form 

For each time step n
 For each node k 

Compute the gradient of velocity at that node from the
velocity field computed at the previous step: 

1

1
n
kx

nvGrad

Update the particle position: tvxx n
k

n
k

n
k

11

For each one of the  N fibers associated with the node k:
 Compute the rotation velocity:   

1
,

1
1

,

1

, ,,
1

n
kix

n
n

ki

n

ki kvGrad
n
k

  Update its orientation:  

t
n

ki
n

ki
n

ki

1

,
1

,,

Compute the components of the fourth order orientation
tensor at that node k: da n

k
n

k
  , 

with  1)(
1-Ni

0i
,

n
ki

n
k N

, being its discrete form: 
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verifying the symmetry relations:  

2111121111211112 aaaa ; 

212112122112221112211122 aaaaaa ; ... 

 With the fourth-order orientation tensor just computed at each 
node, we can proceed to update the flow kinematics by solving the 
anisotropic Stokes problem in the framework of an alpha-NEM 
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discretisation. The only new term related to the fiber presence in 
the flow kinematics variational formulation is: 

 

DAD

D
D
D
D

aaaa
aaaa
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DDDD
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DaDaDaDaD

DaDaDaDaDDaD

DaDaDaDaDaDa

T

ijijijijklijkl

22

21

12

11

2222222122122211

2122212121122111

1222122112121211

1122112111121111

22211211

22222221222112221211221122

22212221212112211211211121

22122221122112121211121112

22112221112112111211111111

2222212112121111

                     

                     

                     

::

:

 

 
resulting the extra-stress term: dDANID p

T
 22  

 
 Figure 3 depicts at the 19th time step of a suspension flow simulation in an 
extrusion die ( 0.8k ,10 .,007.0 pNst ): (a) the velocity field and (b) the fiber 
orientation, when an isotropic fiber orientation is assumed at the initial time. In this 
representation the ellipses axes represents the principal orientation directions, being 
their lengths proportional to the orientation intensity. These axes and their length 
have been obtained as the eigenvectors and eigenvalues related to the second order 
orientation tensor which is computed at each node using the following relations: 
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 In a former paper (see Martinez et al., 2003), the coupling between the alpha-
NEM and an integration by characteristics of the equation governing the evolution 
of the second order orientation tensor was considered, in the context of a similar 
scheme, where the evolution equation was integrated along the nodal trajectories.  
 
 When the diffusion effects are accounted, we can proceed in a stochastic 
manner, adding a random rotation term to the purely advective Jeffery rotation. 
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However, in this case we need to increase the number of fibers involved in the 
computation. In fact, we have proved in Chinesta et al. (2003) that at each angle we 
need to consider a lot of number of fibers, which makes inefficient this kind of 
simulation. The other possibility  lies in the definition of an advective rotation 
velocity which takes into account the diffusion effects in the context of a smooth 
particle approximation, as described in Ammar and Chinesta (2004).   

 The main drawback of these kind of approximations is the large number of 
functions or particles involved in the computation, despite the fact that sometimes 
they are not relevant in the searched solution. The problem of the model reduction is 
then addressed. 
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Figure 3.  Extrusion flow simulation: (a) velocity field and (b) fiber orientation. 

5. Reduced order modeling

As just commented, some 2D or 3D problems remain today untreatable because 
the extremely large number of degrees of freedom –dof- involved. To alleviate this 
drawback, one  possibility lies in the use of a model reduction (based on the 
Karhunen-Loève decomposition –KLD-, also known as proper orthogonal 
decomposition –POD- ). Model reduction techniques have been successfully applied 
in the finite element framework for modelling dynamic models of distributed 
parameters (Park and Cho, 1996). However, in these applications several direct 
problems must be solved to extract empirical functions that represent the system 
most efficiently. This set of empirical eigenfunctions is used as functional basis of 
the Galerkin procedure to lump the governing equation. Thus, for example, the 
resulting lumped parameter model can be used to obtain the solution when the 
boundary conditions are changing randomly. To avoid, these preliminary costly 
calculations, Ryckelynck proposed (Ryckelynck, 2003) to start the  resolution 
process from any reduced basis, using the Krylov subspaces generated by the 
governing equation residual for enriching the approximation basis, at the same time 
that a proper orthogonal decomposition extracts relevant information in order to 
maintain the low order of the approximation basis. Moreover, he has proved that 
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there is an appropriate choice of a reduced number of weighting function able to 
solve the problem efficiently. He has called this technique “A priori model hyper-
reduction”, (Ryckelynck, 2004) but this approach in not concerned in the present 
work. 

5.1. The Karhunen-Loève  decomposition 

We assume that the evolution of a certain field is known txu , . In practical
applications, this field is expressed in a discrete form, that is, it is known at the 
nodes of a spatial mesh and for some times p

i
p

i utxu , . We can also write 

introducing a spatial interpolation Pptptxuxu p ,,1 ; ,  . The main
idea of the Karhunen-Loève (KL) decomposition is how to obtain the most typical 
or characteristic structure x  among these pxu p  , . This is equivalent to
obtaining a function x  that minimizes 

Pp

p

Ni

i
ii

p xxu
1 1

2
 [26] 

that is equivalent to maximize  defined by 
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 [27] 

The maximisation leads to: 

~  ;  ~    ~1

11 11
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which can be rewritten in the form  

~     ;  ~  ~    1

11 1 1
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p
jj

p
i

p xxxxxuxu
P

 [29] 

Defining the vectors a  such that its i-component is ixa , Eq. [29] takes the 
following matrix form 
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        ~   ;  ~  ~ kk
TT

             [30] 
 
where the two points correlation matrix is given by 
 

Pp

p

Tpp
Pp

p
j

p
i

p
ij uu

P
kxuxu

P
k

11

1  1             [31] 

 
which is symmetric and positive definite. If we define the matrix Q  containing the 

discrete field history: 
 

P
NNN

P

P

uuu

uuu
uuu

Q
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2
2
2

1
2

1
2
1

1
1

               [32] 

 
is easy to verify that the matrix k  in  Eq. [31] results 
 

TQQk                  [33] 

 
where the diagonal components are given by 
 

Pj

j

j
i

ii

T
ii

uQQk
1

2
                [34] 

 
In the same way we have 

 
QQkM T T                 [35] 

 
whose eigenvectors  are of dimension P, and they depend on the time: 
 

   M                 [36] 
 

The relation between the eigenvectors 
k

 and 
k

 is 
 

k
kk

Q 1                 [37] 
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relation which derives from  
 

kkk
TQQk                      [38] 

 
and from Eq. [36] 
 

kkk
T

kkk
T

k
QQQQQM  Q                  [39] 

 
The previous relations implies  

 

k

k

k Q

Q

 

 
                [40] 

 
being kk . Eq. [37] is obtained accounting that 
 

kk

T

kkkk

TT

kkkk

T QQQQQ        
2

   [41] 

 
Thus, the functions defining the most characteristic structure of  xu p  are the 

eigenfunctions 
kk x  associated with the highest eigenvalues.  

 
5.2 “A posteriori” reduced modeling 

 
If some direct simulations are carried out, we can determine 

PpNiutxu p
i

p
i ,,1 , ,,1 ,,  , and from these the n eigenvectors 

related to the n-highest eigenvalues nkNixikk
,,1 , ,,1 ,  .   Now, 

we can try to use these n eigenfunctions for approximating the solution of a problem 
slightly different to the one that has served to define p

i
p

i utxu , .  For this 
purpose we need to define the matrix B   
 

NnNN

n

n

xxx

xxx
xxx

B
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22221

11211

             [42] 

 
Now, if we consider the system of equations resulting from the discretization in the 
form  
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FUA          [43] 
 
then, assuming that the unknown vector contains the nodal degrees of freedom, it 
can be expressed as 
 

ni

i
ii BU

1

                [44] 

 
it results 
 

FBAFUA                   [45] 
 
and multiplying both terms by TB  it results 
 

FBBAB TT                   [46] 
 
which proves that the final system of equations is of low order, i.e. the dimensions 
of BABT   are nn , with Nn ,  and the dimensions of both   and FBT  are 

1n . 
 

5.3 Reduced model adaptativity: an “a priori” model reduction approach 
 
In order to compute reduced model solutions without an “a priori” knowledge, 

we propose to start with a low order approximation basis, using some simple 
functions or using the eigenvectors of a “similar” problem. Now, we compute S 
iterations of the evolution problem using the reduced model [46] without changing 
the approximation basis. After each S iterations the complete discrete system [43] is 
constructed, and the residual R  evaluated: 

 
FUAR                  [47] 

 
If the norm of the residual is small enough, we can continue for other S iterations 

using the same approximation basis. On the contrary, if the residual norm is too 
large, we need to enrich the approximation basis. This enrichment is built using 
some Krylov’s subspaces  , ,  , 2 RARAR , which are added to the most 

representative information extracted from the previous solutions 121 ,, , S
  as 

well as from the solutions of “a similar” problem, up to the current step 


1
sim

 , SS
sim

. The resulting most significant eigenvectors define the matrix .  

Then the evolution process is restarted using the enriched basis defined by:  
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RARARB 2 ,  ,, . After each reduced basis modification, both the previous 

solutions and the ones associated to a “similar problem”, are projected into the new 
basis.  

 
5.4 Numerical example 
 
 We consider the Fokker-Planck equation [15] governing the 2D evolution of the 
fiber orientation in a simple shear flow ( )0,( yvT ) involving a suspension of short 
fibers with k=0.2. When an isotropic initial fiber distribution is considered, i.e. 

21)0(t , it evolves in time as depicted in figure 4, where we can notice that 
fibers align in the flow direction. This solution has been obtained with a finite 
difference technique using 360 degrees of freedom and an appropriate upwind 
stabilization of the advection term.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Evolution of the fiber orientation distribution in a simple shear flow. 
 
 From this evolution we can extract the most relevant information using the KL 
decomposition, which results in the four eigenvectors )(2.0k

n  related to the 

eigenvalues in the interval ],10[ maxmax
8 . These eigenfunctions are depicted in 

figure 5. 
 

it
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Figure 5. Eigenfunctions related to the evolution shown in figure 4. 

Now, we consider the same flow, but for a suspension involving fibers with 
k=0.8, and we compute the fiber orientation evolution using the eigenfunctions 
previously obtained (for the other fibers aspect ratio). Thus, we write 

4

1

2.08.0, )()(),(
i

i

k
ii

kred tt [48] 

that introduced in the 2D Fokker-Planck equation  

0)(
dt
d  [49] 

leads to a linear system of ODE that are integrated using an appropriate finite 
difference technique, allowing the computation of coefficients )(ti  

 The reduced order solution obtained at four different times is compared in figure 
6 with the reference ones, from which we can notice that a significant deviation 
appears up to a certain time. Associated with this deviation we can expect a residual, 
that as previously described, could be used to define the different Krylov’s 
subspaces. To illustrate this enrichment procedure we assume that at a certain time 
step tc we control the residual, that is assumed large enough to assure the necessity 
of a basis enrichment. The beta coefficients at that time are )( ci t  from which we 

can compute the solution  ),(8.0,
c

kred t  using Eq. [48]. As the previous reduced 
order solution is also known )( 1ci t , whose associated orientation distribution 

results ),( 1
8.0,

c
kred t , we can compute the time derivative in Eq. [49]: 
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t
tt

dt
d c

kred
c

kred ),(),( 1
8.0,8.0,

      [50] 

 
 The second term in Eq. [49] is evaluated using stabilized finite differences at 
time ct with respect to the angular coordinate. In this way the residual is perfectly 
defined, and taking into account the angular discretization, it can be written in a 
vector form )( ctR . Now, in order to define the other Krylov’s subspaces, we need 
to define the matrix related to the Fokker-Planck evolution problem. From equations 
[48] and [49] we can write 
 

0  DA          [51] 
 
where  the columns of the matrix A  contain the eigenfunctions )(2.0k

i , assuming 
a discretization in the angular coordinate. Thus, the ij-component of A  contains the 

i-component of the j-eigenvector, i.e. )(2.0
i

k
j . The matrix D  results from the 

stabilized discretization of the advection operator in Eq. [49].  As both matrix are 
not square, we proceed to multiply both terms in Eq. [51] by  TA  
 

0   DAAA TT         [52] 
 
that using an implicit temporal discretization, results  
 

)()(  C 1cc tt          [53] 
 
which leads to the definition of the n-Krylov’s subspace 
 

RCKS n
n          [54] 
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Figure 6.  Fiber orientation distribution for a suspension of fibers with k=0.8: 
reduced order solutions versus the reference ones. 
 

Now,  we consider the approximation basis enrichment using the first three 
Krylov’s subspaces shown in figure 7, that have been computed at the time related 
to the solution depicted in figure  6 (subfigure right-down). 

 

1tt 2tt

3tt 3tt
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Figure 7.  Three first Krylov’s subspaces related to the low order solution at time t4. 

 
When the evolution of the fiber orientation distribution is computed again using 

the basis obtained by adding to the previous one the three Krylov’s subspaces 
shown in figure 7, we obtain at the last time step (t4) the solution shown in figure 8. 
In this case the enriched low-order solution (curve in red) fits much more better the 
reference solution than the one obtained by using the low-order basis before the 
enrichment (doted blue curve). 

 

 
 

Figure 8.  Low-order solution (with –red curve- and without –blue curve- basis 
enrichment) versus the reference solution (continuous blue curve) at time t4. 
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6. Conclusions 

 The use in tandem of a NEM for solving the macroscopic flow kinematics 
and a more specific technique for solving the kinetic theory problem related to the 
microstructure evolution seems to be a powerful tool for simulating complex flows.  
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