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Abstract 

 

 

In this work we present a new numerical strategy to treat the 3D Fokker-Planck 

equation in steady recirculating flows. This strategy combines some ideas of the method 

of particles, with a more original treatment of the periodicity condition, which 

characterizes the steady solution of the Fokker-Planck equation in steady recirculating 

flows, as usually encountered in some rheometric devices. Using this numerical 

technique the fiber orientation distribution can be computed accurately in any steady 

recirculating flow. The simulation results can be used to identify some rheological 

parameters of the suspension, using an inverse technique, as well as to analyze the 

validity of some simplified models widely used, which require a closure relation. Thus, 

in this paper several closure relations of the fourth order orientation tensor will be 

discussed in the context of a numerical example involving a steady recirculating flow. 

 

 

Keywords: Short fiber suspensions; Fokker-Planck equation; Particle strategy; Steady 

recirculating flows; Closure relations 
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1. Introduction 

 

 

Numerical modeling of non-Newtonian flows usually involves the coupling between 

equations of motion, which define an elliptic problem, and the fluid constitutive 

equation, which introduces an advection problem related to the fluid history. In short 

fiber suspensions (SFS) models, the extra-stress tensor depends on the fiber orientation 

whose evolution can be modeled from a transport problem. In all cases the flow 

kinematics and the fiber orientation are coupled: the kinematics of the flow governs the 

fiber orientation, and the presence and orientation of the fibers modify the flow 

kinematics. Thus, for example, in a contraction flow of a dilute suspension, large 

recirculating areas appear (Lipscomb et al. (1988)). 

 

If one uses SFS flows in material forming processes, the final fiber orientation state 

depends on the process and exhibits flow-induced anisotropy. Thus, we need to 

compute the fiber orientation in order to predict the final mechanical properties of the 

composite parts, which depend strongly on the fiber orientation. Moreover, the 

numerical simulation of such flows becomes interesting if one want to identify their 

rheological parameters using some rheometric devices and an appropriate inverse 

technique. 

 

The mechanical model governing the SFS flow is given by the following equations: 

(Batchelor (1970, 1971), Hand (1962), Hinch and Leal (1975, 1976), Meslin (1999)) 
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• The momentum balance equation, when the inertia and mass terms are neglected, 

results 

 

                                                     (1)                                                                                           

 

where  is the stress tensor. 

 

• The mass balance equation for incompressible fluids  

 

         (2) 

 

where  represents the velocity field. 

 

• The constitutive equation for a dilute suspension of high aspect-ratio particles is 

given, with other simplifying assumptions (Tucker (1991)), by 

 

       (3) 

 

where  denotes the pressure,  the unit tensor,  the viscosity which depends on 

the chosen model as discussed in Meslin (1999),  the strain rate tensor,  a 

scalar parameter depending on both the fiber concentration and the fiber aspect ratio, 

" " the tensorial product twice contracted (i.e. ) and  the fourth 

order orientation tensor defined by  
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       (4) 

 

where  is the unit vector aligned in the fiber axis direction, " " denotes the 

tensorial product (i.e. ), and  is the orientation distribution function 

satisfying the normality condition  

 

         (5) 

 

If , with  the Dirac's distribution, all the orientation probability is 

concentrated in the direction defined by , and the corresponding orientation tensor 

results .  

We can also define the second order orientation tensor as 

 

        (6) 

 

It is easy to verify that if , the fourth order orientation tensor can be 

written as  

 

         (7) 

 

whose components are defined by . 
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For general expressions of  the previous relation is not exact, and equation (7) 

becomes a closure approximation known as the quadratic closure relation: 

. However, other closure relations are usually applied (Advani and 

Tucker (1990), Dupret et al. (1998)), among them we can consider the linear closure 

relation  

 

   (8) 

 

the hybrid closure relation  

 

       (9) 

 

where ; and finally, the natural closure relation (Dupret et al. (1998))  

 

         (10) 

 

The isotropic orientation state is defined by the uniform distribution function   

 

                   (11) 

 

and then, the second order orientation tensor related to that isotropic orientation state 

is  
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                    (12) 

 

It is easy to verify that for isotropic orientation distributions (2D or 3D) the linear 

closure becomes exact. 

 

From a physical point of view, we can consider that the eigenvalues of the second 

order orientation tensor represent the probability of finding the fiber in the direction 

of the corresponding eigenvectors. 

 

• If we consider spheroidal fibers immersed in a dilute suspension, we can describe 

the orientation evolution by means of the Jeffery equation  (Jeffery (1922)) 

 

                (13) 

 

where  is the vorticity tensor, and  is a constant that depends on the fiber aspect 

ratio  (fiber length to fiber diameter ratio)   

 

                  (14) 

 

On the other hand the evolution of the fiber orientation distribution  is governed 

by the Fokker-Planck equation,  

 

                 (15) 
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where the material derivative is given by 

 

                  (16) 

 

Now, taking into account equations (6), (13) and (15), the equation that governs the 

evolution of the second order orientation tensor can be deduced  

 

                          (17) 

 

A similar equation can be derived for the evolution of the fourth order orientation 

tensor, which in this case involves the sixth-order orientation tensor.  

 

To take account of fiber interaction effects in semi-concentrated suspensions Folgar 

and Tucker (1984) proposed the introduction of a diffusion term in the Fokker-

Planck equation, i.e.  

 

            (18) 

 

Fiber interaction being taken into account, the equation governing the evolution of a 

then yields 

 

              (19) 
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with  

 

                             (20)  

 

The Fokker-Planck formalism circumvents the necessity of using closure relations, but 

it induces some difficulties related to its multidimensional character (the distribution 

function is defined in the physical and the configuration spaces) and moreover 

advection terms are defined in both spaces. By these reasons the number of works 

devoted to the treatment of the FP equation is relatively reduced. 

 

In general we can solve the FP equation of its associated Ito stochastic differential 

equation for a large ensemble of realizations.  The CONNFFESSIT method (Laso and 

Öttinger (1993)) was the first implementation of the stochastic approach. The Brownian 

Configuration Fields (Hulsen et al. (1997)) or the Lagrangian Particle Methods (Halin et 

al. (1998)) can be considered as some improvements of the CONNFFESSIT method 

(see Keunings (2003) for an excellent review about the micro-macro methods). 

However, the control of the statistical noise is a major issue in stochastic micro-macro 

simulations, problem that not arise in the deterministic Fokker-Planck approach. 

 

The FP equation can be solved by using meshless particle techniques (Chorin (1973)) 

which requires a particle smoothing for treating the diffusive term in a proper way 

(Chaubal et al. (1997); Ammar and Chinesta (2003)). The main advantage of this 

Lagrangian meshless description is the possibility to represent accurately highly 
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localized distribution functions without any remeshing. Other advantage of this kind of 

techniques is the accurate and natural treatment of the advection terms.    

 

Other strategies have been successfully applied in the context of the fixed mesh 

techniques (Suen et al. (2003); Lozinski and Chauvière (2003); Chauvière and Lozinski 

(2004)). In these techniques, usually, to account for the multidimension of the FP 

equation, a time-splitting is often considered to decouple the advection problem in 

physical space and the advection-diffusion problem in the conformation space. The first 

problem can be solved by a numerical method appropriate for hyperbolic partial 

differential equations (discontinuous Galerkin, SUPG, …). The advection-diffusion 

problem can be treated using different implicit techniques (wavelets-Galerkin, spectral 

techniques, …) preserving stability, accounting for distribution relatively localized as 

well as periodic boundary conditions in the conformation space. 

 

Finally, a mixed technique performing a multiscale simulation has also been proposed 

by Jendrejack et al. (2002). This technique combines the computation of the internal 

configuration evolution via stochastic simulation, with a convective updating of the 

distribution function in the physical space (using a fixed mesh) via an orthogonal 

polynomial representation of the microstructure state.   

 

In this work, however, we focus on steady recirculating flows in the physical space, and 

we have noticed that the use of a polynomial or smooth particle representations of the 

microstructure configuration induces some difficulties in the imposition of the 

periodicity condition that the steady and recirculating character of the flow implies. 

Moreover, the diffusion in short fiber suspensions models can be very small, or some 
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times simply neglected. In this case discretization techniques using particles seem to be 

more appropriate to solve the FP equation with a dominant advection character. By 

these reasons, we consider in this paper a statistical technique for solving the FP 

equation.   

 

Sometimes, industrial or rheometric flows involve recirculating areas (Towsend and 

Walters (1993)), e.g. contraction flow in extruders; or recirculate themselves (plate-

plate, cone-plate and other rheometric flows). In this case, and owing to the steady 

character of the flow, the resolution of advection equations becomes delicate, because 

neither initial nor boundary conditions are known. However, accurate solutions in those 

flows are required if one wants to identify accurately the rheological parameters of a 

complex fluid by using an inverse technique, or evaluate the accuracy of some 

assumptions involved in simplified flow models (e.g. closure relations analysis). 

 

2. Steady recirculating flows involving short fibers suspensions 

 
2.1. Imposing the solution periodicity along the closed streamlines. 

 

In order to compute the fiber orientation distribution in this kind of flows, a first 

strategy consists of computing a finite element solution of the coupled problem (Azaiez 

et al. (1997)). However, in some cases the finite element solution can exhibit significant 

deviations from the exact one, as discussed in Chaidron and Chinesta (2001). Another 

strategy proposed by Chiba et al. (1998), in absence of diffusion effects, lies in the use 

of a statistical technique. Thus, several fibers with different initial orientations are 

introduced in a point inside the recirculating flow area. The fiber orientation evolution 
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of each one can be computed by solving the Jeffery equation (13), and then the fiber 

orientation distribution can be evaluated. The evolution process is stopped when the 

steady regime is reached.  Other alternative possibility lies in looking directly for a 

periodic solution (Chinesta et al. (2003)) of when its evolution equation is integrated 

along a closed streamline. 

 

From now on, we consider both a 3D flow and a 3D fiber orientation description. If we 

use the spherical coordinate system, can be written as 

 

                     (21) 

 

which introduced into Eq. (13) results in the fiber rotation velocity  and .  

 

We are going to summarize the algorithm used to compute this periodic solution 

described in deep Chinesta et al. (2002) for which only a turn is required. We define a 

discretisation of the unit sphere surface, i.e. we consider that we have  fibers, 

each one represented by a couple , all of them initially located at the point where 

the solution is searched, and aligned in the following directions: 

 

                    (22) 
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with ,  and where  and . We can notice that 

the singularities related to  and  are avoided. Szeri and Leal (1994) prefer to 

consider a Cartesian representation of the sphere in order to avoid those singularities. 

 

Now, we track the movement of each fiber, neglecting diffusion effects that will be 

introduced later, along the closed streamline. If we denote by  the coordinates 

of the initial point (where the steady solution of the fiber orientation distribution is 

searched), an explicit integration by the method of characteristics results in  

 

                  (23) 

 

Other semi-implicit or fully implicit strategies can be also applied. Effectively, after a 

complete turn, the departure point is reached. We note by the superscript T the final 

fiber orientation, i.e.  denotes the orientation after a complete turn of the fiber 

initially aligned on the direction defined by . 

 

Now, we assume that the steady solution at point  is defined by the fraction of 

fibers oriented in each direction , which will be denoted by . Thus, the fiber 

orientation distribution could be written in the form 

 

                           (24) 
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The normality condition results 

 

              (25) 

 

After a turn, the linearity and homogeneity of the Fokker-Planck equation being taken 

into account, the resulting fiber distribution can be written in the form 

 

                 (26) 

 

Now, the probability mass concentrated at the directions  can be transferred 

using appropriate weights to preserve the normality condition to the directions 

 related to the mesh used in the initial description. Thus, for example, if 

 and , then the probability mass  could be transferred 

to the following four directions: , ,  and  

(see Ammar et al. (2004) for a deep discussion on this projection). In this way, after a 

turn along the closed trajectory, the fiber orientation distribution (26) can also be 

written in the form 

 

               (27) 

 

where the coefficients depend linearly on the  
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                  (28) 

 

where the coefficients  depend on the considered projection. 

 

Now, if we impose the periodicity of the solution 

 

                  (29) 

 

using a collocation technique, we obtain  

 

                                        (30) 

 

Eq. (30) and the normality condition (25) allow us to determine the different , and 

consequently from Eq. (24), the steady fiber orientation distribution at point . 

 

In Ammar et al. (2004) we have proved that for usual projections, Eq. (30) has one and 

only one solution. This result is not in conflict with the one stated by Leal and Hinch 

(1971), which establishes that in absence of diffusion the 3D Fokker-Planck equation, 

defined in a 3D simple shear flow, has not a steady solution. In our case, the small 

amount of diffusion - - induced by the projection step, makes possible the existence 

of a steady solution as discussed later.  

 

2.2. Taking account of diffusion effects 
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The previous numerical technique can be extended in the context of a random walk 

strategy for treating problems involving diffusion effects (Chinesta el al. (2003)). Thus, 

we can consider F fibers initially aligned in each direction , with a weight of 

 each one. Now, the movement of each one of these fibers is subjected to three 

actions: 

 

I. The flow advection that only changes the position of the center of mass of each 

fiber 

 

                 (31) 

 

II. Due to the flow kinematics each fiber rotates according to the Jeffery equation: 

 

               (32) 

 

where the index  refers to the fiber   considered. 

 

 

III. The diffusion effects induce another angular rotation which results from a random 

process: 
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           (33) 

 

where  is a Gaussianly distributed random variable with zero mean and 

variance .  

 

Diffusion effects can be also introduced in a deterministic framework, which allows to 

reduce significantly the computation time, and whose accuracy and efficiency was 

proved in a former work (Ammar and Chinesta (2003)). In this way, the particle 

technique just described was adapted to consider smooth particles instead “Dirac” 

distributions, which allows computing the fiber distribution derivatives involved in the 

diffusion term.   

 

 

3. Numerical example  

 

3.1. Checking the accuracy  

 

Before to analyze steady recirculating flows, that is the main aim of this paper, it seems 

important to check the accuracy of the proposed strategy by comparing their predictions 

with some known exact solution. Leal and Hinch (1971) proved that in a simple shear 

flow, the 3D Fokker-Planck equation for  has no solution. In fact there are infinite 

solutions, and a particular solution can be done as soon as the probability distribution 

for each Jeffery orbit is fixed (Ammar et al. (2004)). In the Leal and Hinch paper a 
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simple shear flow is assumed, and they derive the steady solution of the fiber orientation 

distribution by introducing a very small (as small as desired) diffusion term. Now, 

imposing that the net flux of particles is zero across any Jeffery orbit, the analytic 

expression of the orientation distribution is obtained (see the Leal and Hinch paper for 

more details). This behavior is not found in the 2D case, deeply analyzed in Chinesta et 

al. (2003), where it can be proved that a steady solution exists when the diffusion is 

neglected.  

 

In order to compute the steady solution in a simple 3D shear flow, when diffusion 

vanishes, using our strategy, we impose that the searched solution must remains 

unchanged, that is , where  is computed from  using the particle 

technique described in the previous section. Of course, the computed solution is in 

excellent agreement with the Leal and Hinch solution, and the convergence can be 

reached by decreasing time step and increasing number of particles (which implies the 

reduction of , and in consequence the numerical diffusion introduced in the projection 

step). This behavior proves that: (i) the numerical diffusion related to the projection step 

allows to compute, and then the existence, of a steady solution; and (ii) the Leal and 

Hinch solution is reached by reducing diffusion, that is, increasing number of particles.  

 

3.2. Computing the 3D fiber orientation distribution neglecting diffusion effects 

 

The first simulation is concerned with the shear recirculating flow defined by the 

following velocity field 
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                  (34) 

 

This kinematics has not a rheological interest, but its simplicity allows us to compute 

exact solutions with the possibility of concluding about the numerical strategies 

accuracy. In spite of the simplicity of the flow considered, the numerical technique 

proposed and illustrated in this work can be obviously applied to any steady 

recirculating flow.  

 

In this example the diffusion effects are neglected  and the fibers have different 

aspect ratios:  and  in Figure 1, respectively. These figures depict 

the fiber orientation distribution at point . We can notice that the highest 

orientation probability concentrates around the plane xy  and the angles 

 and . This situation corresponds to a fiber orientation concentrating 

around the flow direction at the considered point. 

 

We can also notice in these figures that the intensity of the fibers concentration around 

the flow direction increases with the fiber aspect ratio. This result is in agreement with 

the theoretical result given in Poitou et al. (2000) for planar orientation problems. 

Moreover, we can verify the following symmetry condition:  

 

                                         (35) 

 

3.3. Taking account of diffusion effects 
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Figure 2 depicts the fiber orientation distribution for fibers with k=0.85 and two 

different diffusion coefficients:  and . The numerical solution involving 

diffusion effects has been computed by means of the particle stochastic technique 

described in section 2.2. 

 

3.4. Evaluating the accuracy of the closure relations in a planar orientation 

problem solved by using the Fokker-Planck equation 

 

In this case we consider the steady recirculating flow defined by Eq. (34) and a planar 

orientation state, i.e. the fibers are assumed on the plane xy, because the exact solutions 

of the Fokker-Planck equation can be easily calculated from the flow symmetry (see 

Chinesta et al. (2003) for more details). In this case, an excellent accuracy of the particle 

technique used to compute numerically the fiber orientation distribution can be noticed. 

Figure 3 shows the fiber orientation distribution at the point  for fibers with 

different aspect ratios when the diffusion coefficient vanishes, i.e. . 

 

Now, the steady solution of the fiber orientation distribution being known, the fourth 

and second order orientation tensors can be computed using Eqs. (4) and (6). These 

tensors will be considered as the reference solutions and they will be denoted by and 

 respectively. Moreover, from the expression of the second order orientation tensor 

we can obtain also the expressions of the fourth order orientation tensor using different 

closure relations: quadratic closure , linear closure , hybrid closure  and the 

natural closure . Figure 4 depicts the error in the evaluation of the different 
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components of the fourth order orientation tensor for the different closure relations and 

fiber aspect ratios. This error is defined as the positive relative difference between the 

reference value of the considered component and the one obtained using each closure 

relation. Also in Figure 4, picture (d), a global error, defined by Eq. (36) is depicted. 

 

                           (36) 

 

 

Now, we are going to introduce the diffusion effects through different values of the 

parameter  for fibers with  and k=0.95. Figure 5 shows the fiber orientation 

distributions for different diffusion coefficients.  

 

Figure 6 depicts the error in norm associated to each closure relation. We can conclude 

from these results that the lowest value of k produces rather small variation of the fiber 

orientation distribution (compare Figures 5(a) and 5(b)), which induces a very low 

accuracy of the quadratic closure relation. So, we can expect that for low values of the 

fiber aspect ratio or for high diffusion coefficients the quadratic closure relation will be 

the worst one. Although the quadratic closure relation becomes rather accurate as the 

value of k is further increased, it remains to be the worst among the closure relations 

considered in this numerical example for . 

 

3.5. Evaluating the accuracy of the closure relations in a planar orientation by 

solving the equation governing the evolution of the second order orientation tensor 
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If the solution of Eq. (19), for the kinematics defined in equation (34), is computed at 

point (0,1) using the closure relations given by equations (7), (8), (9) and (10) and the 

numerical algorithms proposed in Chinesta and Chaidron (2001) and Chaidron and 

Chinesta (2002), the resulting second order orientation tensors for both k=0.6 and 

k=0.95 are shown in Figure 7. 

 

Figure 8 depicts the error using the norm defined by equation (37) when the different 

numerical solutions shown in Figure 7 are compared with the exact one, that is very 

close to the one computed by using the stochastic simulation presented in previous 

section. 

 

                                                  (37) 

 

These results introduce some new and unexpected evidences. From figure 8 we can 

conclude that when the quadratic closure relation is introduced in the equation 

governing the evolution of the second order orientation tensor, the error associated with 

the computed steady solution decreases as the diffusion coefficient increases, despite 

the fact that the accuracy of the quadratic closure relation has, as proved in figure 6 the 

inverse tendency.  Moreover, for a given diffusion coefficient, the error associated with 

the use of the quadratic closure relation seems to be slightly higher for the most 

elongated fibers (k=0.95).  
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4. Conclusions 

 

A new numerical strategy to compute steady solutions of the fiber orientation 

distribution in steady recirculating flows involving short fiber suspensions have been 

applied to compute 2D and 3D steady solutions of the Fokker-Planck equation. This 

technique uses some of the ideas of the particle method, in combination with the 

periodicity condition imposed by the steady and recirculating character of the flow. The 

highly accurate solutions can be used in rheological applications as well as to analyse 

some simplified models obtained using closure relations in the orientation averages. 
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Figure 1. Fiber orientation distribution at point (1,0) 
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Figure 2. Fiber orientation distribution at point (1,0)  
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Figure 3. Fiber orientation distribution for fibers with different aspect ratios and . 
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Figure 4. Closure approximation errors: (a) ; (b) ; (c)  and (d) global error, 
for  
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Figure 5. Orientation distribution for different diffusion coefficients; (a) ; (b) 
. 
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Figure 6. Error in norm of the fourth order orientation tensor for different closure 
approximations; (a) k=0.6; (b) k=0.95. 
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Figure 7. Second order orientation tensor computed by solving the equation governing 

its evolution and different closure relations for k=0.6 and k=0.95. 
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Figure 8. Error in norm of the second order orientation tensor for different closure 
approximations; (a) k=0.6; (b) k=0.95. 

 
 
 


