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In this work we present a new numerical strategy to treat the 3D Fokker-Planck equation in steady recirculating flows. This strategy combines some ideas of the method of particles, with a more original treatment of the periodicity condition, which characterizes the steady solution of the Fokker-Planck equation in steady recirculating flows, as usually encountered in some rheometric devices. Using this numerical technique the fiber orientation distribution can be computed accurately in any steady recirculating flow. The simulation results can be used to identify some rheological parameters of the suspension, using an inverse technique, as well as to analyze the validity of some simplified models widely used, which require a closure relation. Thus, in this paper several closure relations of the fourth order orientation tensor will be discussed in the context of a numerical example involving a steady recirculating flow.

Introduction

Numerical modeling of non-Newtonian flows usually involves the coupling between equations of motion, which define an elliptic problem, and the fluid constitutive equation, which introduces an advection problem related to the fluid history. In short fiber suspensions (SFS) models, the extra-stress tensor depends on the fiber orientation whose evolution can be modeled from a transport problem. In all cases the flow kinematics and the fiber orientation are coupled: the kinematics of the flow governs the fiber orientation, and the presence and orientation of the fibers modify the flow kinematics. Thus, for example, in a contraction flow of a dilute suspension, large recirculating areas appear [START_REF] Lipscomb | The Flow of Fiber Suspensions in Complex Geometries[END_REF]).

If one uses SFS flows in material forming processes, the final fiber orientation state depends on the process and exhibits flow-induced anisotropy. Thus, we need to compute the fiber orientation in order to predict the final mechanical properties of the composite parts, which depend strongly on the fiber orientation. Moreover, the numerical simulation of such flows becomes interesting if one want to identify their rheological parameters using some rheometric devices and an appropriate inverse technique.

The mechanical model governing the SFS flow is given by the following equations: [START_REF] Batchelor | Slender-body Theory for Particles of Arbitrary Cross-section in Stokes Flow[END_REF][START_REF] Batchelor | The Stress Generated in Non-Dilute Suspensions in Elongated Particles by Pure Straining Motion[END_REF], [START_REF] Hand | A Theory of Anisotropic Fluids[END_REF], Hinch andLeal (1975, 1976), [START_REF] Meslin | Viscosité en Cisaillement d'un Composites Fibres Courtes à l'Etat Fondu[END_REF])

• The momentum balance equation, when the inertia and mass terms are neglected, results

(1) where is the stress tensor.

• The mass balance equation for incompressible fluids (2) where represents the velocity field.

• The constitutive equation for a dilute suspension of high aspect-ratio particles is given, with other simplifying assumptions [START_REF] Tucker | Flow Regimes for Fiber Suspensions in Narrow Gap[END_REF]), by (3) where denotes the pressure, the unit tensor, the viscosity which depends on the chosen model as discussed in [START_REF] Meslin | Viscosité en Cisaillement d'un Composites Fibres Courtes à l'Etat Fondu[END_REF], the strain rate tensor, a scalar parameter depending on both the fiber concentration and the fiber aspect ratio, " " the tensorial product twice contracted (i.e.

) and the fourth order orientation tensor defined by (4) where is the unit vector aligned in the fiber axis direction, " " denotes the tensorial product (i.e. ), and is the orientation distribution function satisfying the normality condition

(5)

If

, with the Dirac's distribution, all the orientation probability is concentrated in the direction defined by , and the corresponding orientation tensor results .

We can also define the second order orientation tensor as (6)

It is easy to verify that if , the fourth order orientation tensor can be written as (7) whose components are defined by .

For general expressions of the previous relation is not exact, and equation ( 7) becomes a closure approximation known as the quadratic closure relation:

. However, other closure relations are usually applied [START_REF] Advani | Closure Approximations for Three-dimensional Structure Tensors[END_REF] The isotropic orientation state is defined by the uniform distribution function (11) and then, the second order orientation tensor related to that isotropic orientation state is (12)

It is easy to verify that for isotropic orientation distributions (2D or 3D) the linear closure becomes exact.

From a physical point of view, we can consider that the eigenvalues of the second order orientation tensor represent the probability of finding the fiber in the direction of the corresponding eigenvectors.

• If we consider spheroidal fibers immersed in a dilute suspension, we can describe the orientation evolution by means of the Jeffery equation [START_REF] Jeffery | The Motion of Ellipsoidal Particles Immersed in Viscous Fluid[END_REF])

(13)
where is the vorticity tensor, and is a constant that depends on the fiber aspect ratio (fiber length to fiber diameter ratio)

On the other hand the evolution of the fiber orientation distribution is governed by the Fokker-Planck equation,

where the material derivative is given by ( 16)

Now, taking into account equations ( 6), ( 13) and ( 15), the equation that governs the evolution of the second order orientation tensor can be deduced (17)

A similar equation can be derived for the evolution of the fourth order orientation tensor, which in this case involves the sixth-order orientation tensor.

To take account of fiber interaction effects in semi-concentrated suspensions [START_REF] Folgar | Orientation Behaviour of Fibers in Concentrated Suspensions[END_REF] proposed the introduction of a diffusion term in the Fokker-Planck equation, i.e.

(

) 18 
Fiber interaction being taken into account, the equation governing the evolution of a then yields

The Fokker-Planck formalism circumvents the necessity of using closure relations, but it induces some difficulties related to its multidimensional character (the distribution function is defined in the physical and the configuration spaces) and moreover advection terms are defined in both spaces. By these reasons the number of works devoted to the treatment of the FP equation is relatively reduced.

In general we can solve the FP equation of its associated Ito stochastic differential equation for a large ensemble of realizations. The CONNFFESSIT method [START_REF] Laso | Calculation of Viscoelastic Flow Using Molecular Models: the CONNFFESSIT Approach[END_REF]) was the first implementation of the stochastic approach. The Brownian Configuration Fields [START_REF] Hulsen | Simulation of Viscoelastic Flows Using Brownian Configurations Fields[END_REF]) or the Lagrangian Particle Methods (Halin et al. (1998)) can be considered as some improvements of the CONNFFESSIT method (see [START_REF] Keunings | Micro-Macro Methods for the Multiscale Simulation of Viscoelastic Flow Using Molecular Models of Kinetic Theory[END_REF] for an excellent review about the micro-macro methods).

However, the control of the statistical noise is a major issue in stochastic micro-macro simulations, problem that not arise in the deterministic Fokker-Planck approach.

The FP equation can be solved by using meshless particle techniques [START_REF] Chorin | Numerical Study of Slightly Viscous Flow[END_REF])

which requires a particle smoothing for treating the diffusive term in a proper way [START_REF] Chaubal | Smooth Particle Hydrodynamics Techniques for the Solution of Kinetic Theory Problems. Part I: Method[END_REF]; [START_REF] Ammar | A Particle Strategy for Solving the Fokker-Planck Equation Governing the Fiber Orientation Distribution in Steady Recirculating Flows Involving Short Fiber Suspensions[END_REF]). The main advantage of this Lagrangian meshless description is the possibility to represent accurately highly localized distribution functions without any remeshing. Other advantage of this kind of techniques is the accurate and natural treatment of the advection terms.

Other strategies have been successfully applied in the context of the fixed mesh techniques [START_REF] Suen | A Wavelet-Galerkin Method for Simulating the Doi Model with Orientation-Dependent Rotational Diffusivity[END_REF]; [START_REF] Lozinski | A Fast Solver for Fokker-Planck Equation Applied to Viscoelastic Flows Calculations: 2D FENE Model[END_REF]; [START_REF] Chauvière | Simulation of Dilute Polymer Solution Using a Fokker-Planck Equation[END_REF]). In these techniques, usually, to account for the multidimension of the FP equation, a time-splitting is often considered to decouple the advection problem in physical space and the advection-diffusion problem in the conformation space. The first problem can be solved by a numerical method appropriate for hyperbolic partial differential equations (discontinuous Galerkin, SUPG, …). The advection-diffusion problem can be treated using different implicit techniques (wavelets-Galerkin, spectral techniques, …) preserving stability, accounting for distribution relatively localized as well as periodic boundary conditions in the conformation space.

Finally, a mixed technique performing a multiscale simulation has also been proposed

by [START_REF] Jendrejack | A Method for Multiscale Simulation of Flowing Complex Fluids[END_REF]. This technique combines the computation of the internal configuration evolution via stochastic simulation, with a convective updating of the distribution function in the physical space (using a fixed mesh) via an orthogonal polynomial representation of the microstructure state.

In this work, however, we focus on steady recirculating flows in the physical space, and we have noticed that the use of a polynomial or smooth particle representations of the microstructure configuration induces some difficulties in the imposition of the periodicity condition that the steady and recirculating character of the flow implies.

Moreover, the diffusion in short fiber suspensions models can be very small, or some flows are required if one wants to identify accurately the rheological parameters of a complex fluid by using an inverse technique, or evaluate the accuracy of some assumptions involved in simplified flow models (e.g. closure relations analysis).

Steady recirculating flows involving short fibers suspensions

2.1. Imposing the solution periodicity along the closed streamlines.

In order to compute the fiber orientation distribution in this kind of flows, a first strategy consists of computing a finite element solution of the coupled problem [START_REF] Azaiez | Investigation of the Abrupt Contraction Flow of Fiber Suspensions in Polymeric Fluids[END_REF]). However, in some cases the finite element solution can exhibit significant deviations from the exact one, as discussed in [START_REF] Chaidron | On the Periodicity of the Extra-Stress Tensor in Non-Newtonian Steady Recirculating Flows[END_REF]. Another strategy proposed by [START_REF] Chiba | Numerical Solution of Fiber Suspension Flow Through a Complex Channel[END_REF], in absence of diffusion effects, lies in the use of a statistical technique. Thus, several fibers with different initial orientations are introduced in a point inside the recirculating flow area. The fiber orientation evolution of each one can be computed by solving the Jeffery equation ( 13), and then the fiber orientation distribution can be evaluated. The evolution process is stopped when the steady regime is reached. Other alternative possibility lies in looking directly for a periodic solution [START_REF] Chinesta | On the Solution of the Fokker-Planck Equations in Steady Recirculating Flows Involving Short Fiber Suspensions[END_REF]) of when its evolution equation is integrated along a closed streamline.

From now on, we consider both a 3D flow and a 3D fiber orientation description. If we use the spherical coordinate system, can be written as ( 21)

which introduced into Eq. ( 13) results in the fiber rotation velocity and .

We are going to summarize the algorithm used to compute this periodic solution described in deep [START_REF] Chaidron | On the Solution of Non-Linear Advection Equations in Steady Recirculating Flows[END_REF] for which only a turn is required. We define a discretisation of the unit sphere surface, i.e. we consider that we have fibers, each one represented by a couple , all of them initially located at the point where the solution is searched, and aligned in the following directions:

with , and where and . We can notice that the singularities related to and are avoided. Szeri and [START_REF] Szeria | A New Computational Method for the Solution of Flow Problems of Microstructured Fluids. Part 2. Inhomogeneous Shear Flow of a Suspension[END_REF] prefer to consider a Cartesian representation of the sphere in order to avoid those singularities. Now, we track the movement of each fiber, neglecting diffusion effects that will be introduced later, along the closed streamline. If we denote by the coordinates of the initial point (where the steady solution of the fiber orientation distribution is searched), an explicit integration by the method of characteristics results in

Other semi-implicit or fully implicit strategies can be also applied. Effectively, after a complete turn, the departure point is reached. We note by the superscript T the final fiber orientation, i.e. denotes the orientation after a complete turn of the fiber initially aligned on the direction defined by .

Now, we assume that the steady solution at point is defined by the fraction of fibers oriented in each direction , which will be denoted by . Thus, the fiber orientation distribution could be written in the form (24)

The normality condition results

(25)

After a turn, the linearity and homogeneity of the Fokker-Planck equation being taken into account, the resulting fiber distribution can be written in the form (26)

Now, the probability mass concentrated at the directions can be transferred using appropriate weights to preserve the normality condition to the directions related to the mesh used in the initial description. Thus, for example, if and , then the probability mass could be transferred to the following four directions: , , and

(see [START_REF] Ammar | About Some Unresolved Problems in the Numerical Modelling of Short Fiber Suspensions[END_REF] for a deep discussion on this projection). In this way, after a turn along the closed trajectory, the fiber orientation distribution (26) can also be written in the form (27) where the coefficients depend linearly on the (28)

where the coefficients depend on the considered projection.

Now, if we impose the periodicity of the solution (29) using a collocation technique, we obtain

Eq. ( 30) and the normality condition (25) allow us to determine the different , and consequently from Eq. ( 24), the steady fiber orientation distribution at point .

In [START_REF] Ammar | About Some Unresolved Problems in the Numerical Modelling of Short Fiber Suspensions[END_REF] we have proved that for usual projections, Eq. ( 30) has one and only one solution. This result is not in conflict with the one stated by [START_REF] Leal | The effect of weak Brownian rotations on particles in shear flow[END_REF], which establishes that in absence of diffusion the 3D Fokker-Planck equation, defined in a 3D simple shear flow, has not a steady solution. In our case, the small amount of diffusion --induced by the projection step, makes possible the existence of a steady solution as discussed later.

Taking account of diffusion effects

The previous numerical technique can be extended in the context of a random walk strategy for treating problems involving diffusion effects (Chinesta el al. (2003)). Thus, we can consider F fibers initially aligned in each direction , with a weight of each one. Now, the movement of each one of these fibers is subjected to three where the index refers to the fiber considered.

III.

The diffusion effects induce another angular rotation which results from a random process:

(33)

where is a Gaussianly distributed random variable with zero mean and variance .

Diffusion effects can be also introduced in a deterministic framework, which allows to reduce significantly the computation time, and whose accuracy and efficiency was proved in a former work [START_REF] Ammar | A Particle Strategy for Solving the Fokker-Planck Equation Governing the Fiber Orientation Distribution in Steady Recirculating Flows Involving Short Fiber Suspensions[END_REF]). In this way, the particle technique just described was adapted to consider smooth particles instead "Dirac" distributions, which allows computing the fiber distribution derivatives involved in the diffusion term.

Numerical example

Checking the accuracy

Before to analyze steady recirculating flows, that is the main aim of this paper, it seems important to check the accuracy of the proposed strategy by comparing their predictions with some known exact solution. [START_REF] Leal | The effect of weak Brownian rotations on particles in shear flow[END_REF] proved that in a simple shear flow, the 3D Fokker-Planck equation for has no solution. In fact there are infinite solutions, and a particular solution can be done as soon as the probability distribution for each Jeffery orbit is fixed [START_REF] Ammar | About Some Unresolved Problems in the Numerical Modelling of Short Fiber Suspensions[END_REF]). In the Leal and Hinch paper a simple shear flow is assumed, and they derive the steady solution of the fiber orientation distribution by introducing a very small (as small as desired) diffusion term. Now, imposing that the net flux of particles is zero across any Jeffery orbit, the analytic expression of the orientation distribution is obtained (see the Leal and Hinch paper for more details). This behavior is not found in the 2D case, deeply analyzed in Chinesta et al. (2003), where it can be proved that a steady solution exists when the diffusion is neglected.

In order to compute the steady solution in a simple 3D shear flow, when diffusion vanishes, using our strategy, we impose that the searched solution must remains unchanged, that is , where is computed from using the particle technique described in the previous section. Of course, the computed solution is in excellent agreement with the Leal and Hinch solution, and the convergence can be reached by decreasing time step and increasing number of particles (which implies the reduction of , and in consequence the numerical diffusion introduced in the projection step). This behavior proves that: (i) the numerical diffusion related to the projection step allows to compute, and then the existence, of a steady solution; and (ii) the Leal and Hinch solution is reached by reducing diffusion, that is, increasing number of particles.

Computing the 3D fiber orientation distribution neglecting diffusion effects

The first simulation is concerned with the shear recirculating flow defined by the following velocity field (34)

This kinematics has not a rheological interest, but its simplicity allows us to compute exact solutions the possibility of concluding about the numerical strategies accuracy. In spite of the simplicity of the flow considered, the numerical technique proposed and illustrated in this work can be obviously applied to any steady recirculating flow.

In this example the diffusion effects are neglected and the fibers have different aspect ratios: and in Figure 1, respectively. These figures depict the fiber orientation distribution at point . We can notice that the highest orientation probability concentrates around the plane xy and the angles and . This situation corresponds to a fiber orientation concentrating around the flow direction at the considered point.

We can also notice in these figures that the intensity of the fibers concentration around the flow direction increases with the fiber aspect ratio. This result is in agreement with the theoretical result given in [START_REF] Poitou | Numerical Simulation of the Steady Recirculating Flows of Fiber Suspensions[END_REF] for planar orientation problems.

Moreover, we can verify the following symmetry condition:

(35) In this case we consider the steady recirculating flow defined by Eq. ( 34) and a planar orientation state, i.e. the fibers are assumed on the plane xy, because the exact solutions of the Fokker-Planck equation can be easily calculated from the flow symmetry (see [START_REF] Chinesta | On the Solution of the Fokker-Planck Equations in Steady Recirculating Flows Involving Short Fiber Suspensions[END_REF] for more details). In this case, an excellent accuracy of the particle technique used to compute numerically the fiber orientation distribution can be noticed.

Taking account of diffusion effects

Figure 3 shows the fiber orientation distribution at the point for fibers with different aspect ratios when the diffusion coefficient vanishes, i.e.

. Now, the steady solution of the fiber orientation distribution being known, the fourth and second order orientation tensors can be computed using Eqs. ( 4) and ( 6). These tensors will be considered as the reference solutions and they will be denoted by respectively. Moreover, from the expression of the second order orientation tensor we can obtain also the expressions of the fourth order orientation tensor using different point (0,1) using the closure relations given by equations ( 7), ( 8), ( 9) and ( 10) and the numerical algorithms proposed in [START_REF] Chinesta | On the Solution of Linear Advection Equations in Steady Recirculating Flows[END_REF] and [START_REF] Chaidron | On the Solution of Non-Linear Advection Equations in Steady Recirculating Flows[END_REF], the resulting second order orientation tensors for both k=0.6 and k=0.95 are shown in Figure 7.

Figure 8 depicts the error using the norm defined by equation (37) when the different numerical solutions shown in Figure 7 are compared with the exact one, that is very close to the one computed by using the stochastic simulation presented in previous section.

(37)

These results introduce some new and unexpected evidences. From figure 8 we can conclude that when the quadratic closure relation is introduced in the equation governing the evolution of the second order orientation tensor, the error associated with the computed steady solution decreases as the diffusion coefficient increases, despite the fact that the accuracy of the quadratic closure relation has, as proved in figure 6 the inverse tendency. Moreover, for a given diffusion coefficient, the error associated with the use of the quadratic closure relation seems to be slightly higher for the most elongated fibers (k=0.95).

Conclusions

A new numerical strategy to compute steady solutions of the fiber orientation distribution in steady recirculating flows involving short fiber suspensions have been applied to compute 2D and 3D steady solutions of the Fokker-Planck equation. This technique uses some of the ideas of the particle method, in combination with the periodicity condition imposed by the steady and recirculating character of the flow. The highly accurate solutions can be used in rheological applications as well as to analyse some simplified models obtained using closure relations in the orientation averages. 
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