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The Boundary Element Method (BEM) is a discretisation technique for solving partial 
differential equations, which offers, for certain problems, important advantages over 
domain techniques. Despite the high CPU time reduction that can be achieved, some 
3D problems remain today untreatable because the extremely large number of degrees 
of freedom—dof—involved in the boundary description. Model reduction seems to be 
an appealing choice for both, accurate and efficient numerical simulations. However, in 
the BEM the reduction in the number of degrees of freedom does not imply a 
significant reduction in the CPU time, because in this technique the more important 
part of the computing time is spent in the construction of the discrete system of 
equations. In this way, a reduction also in the number of weighting functions, seems to 
be a key point to render efficient boundary element simulations.
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1. Introduction

The Boundary Element Method (BEM) is a discretisation

technique for solving partial differential equations, which

offers, for certain problems, important advantages over

domain techniques such as the finite element method [1].

One of the most interesting features of the method is the

much smaller system of equations generated (which results

full populated), due to the fact that the degrees of freedom

are related to the nodes associated with the boundary mesh.

Thus, a considerable reduction in the computing time,

mainly for 2D or 3D problems, is expected. The BEM is also

well suited for solving problems defined in unbounded

domains, as encountered in mechanics, aerodynamics or

hydrodynamics. The terms ‘boundary element’ indicates

that the domain boundary is partitioned into a series of

elements over which the unknown function is approximated

like in the finite element method.
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Despite the high CPU time reduction that can be

achieved (despite the fact that the boundary models involve

fully populated systems), some 3D problems remain today

untreatable because the extremely large number of degrees

of freedom—dof—involved in the boundary description. To

alleviate this drawback, one possibility lies in the use of a

model reduction (based on the Karhunen-Loève decompo-

sition—KLD—, also known as proper orthogonal decompo-

sition—POD—). Model reduction techniques proceed by

approximating the problem solution using the most

appropriate set of approximation functions, whose determi-

nation from the Karhunen-Loève decomposition and the use

of the Krylov subspaces related to the residual of the

governing equations will be addressed later in this paper.

Model reduction has been successfully applied in the

finite element framework for modeling dynamic models of

distributed parameters [2–6]. However, in these applications

several direct problems must be solved to extract empirical

functions that represent the system most efficiently. This set

of empirical eigenfunctions is used as functional basis of the

Galerkin procedure to lump the governing equation. Thus,

for example, the resulting lumped parameter model can be

used to obtain the solution when the boundary conditions

are changing randomly. To avoid, these preliminary costly

calculations, Ryckelynck proposed in [7] start the resolution

process from any reduced basis, using the Krylov subspaces



generated by the governing equation residual for enriching

the approximation basis, at the same time that a proper

orthogonal decomposition extracts relevant information in

order to maintain the low order of the approximation basis.

This technique was applied in [8] for solving kinetic theory

models.

However, a more ‘philosophical’ question can be

addressed: if the reduced model makes use of a number of

dof (n), lower than the initial one (N), one could expect that

for computing the n degrees of freedom involved, the use of

m weighting functions (N[mOn) could be enough. Thus,

Ryckelynck has proved that there is an appropriate choice of

a reduced number of weighting functions able to solve the

problem efficiently. He has called this technique ‘a priori

model hyper-reduction’ [9]. In the framework of the BEM,

the reduction in the number of weighting functions seems to

be essential, because in this technique the more important

part of the CPU time is spent in the construction of the

discrete system of equations.

In the present work, we will propose an efficient model

reduction, especially well adapted for treating boundary

element models. For the sake of simplicity, we will consider

a potential problem defined in a 2D unbounded domain. The

capabilities of both the reduced order modeling and the

boundary element method will be outlined.
1.1. Boundary element discretization of a potential problem

We consider the potential function u verifying the

following governing PDE

Du Z 0 in U (1)

as well as the:

† Essential boundary conditions: uZ �u on G1

† Natural boundary conditions: qZvu=vnZ �q on G2

where the domain boundary G results GZG1CG2.

The weighed residual expression related to the previous

problem isð
U

Duu* dU Z

ð
G2

ðq K �qÞu* dG K

ð
G1

ðu K �uÞq* dG (2)

which integrating by parts, introducing the fundamental

solution as weighting function, assuming the interpolation

of u on the domain boundary defined from N nodal values,

and performing the resulting integrals numerically (see [1]

for more details concerning the standard discretization

procedure) it results

H U Z GQ (3)

where U contains the nodal potentials and Q their normal

derivatives. Effectively, at the nodes located on G1 the

potential is known, being its normal derivative known at

the nodes located on G2. Grouping at the left member
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the unknowns, Eq. (3) takes the final form

AX Z F (4)

where the size of A is N!N.
1.2. The Karhunen-Loève (KL) decomposition

We assume that the evolution of a certain field is known

uðx; tÞ. In practical applications this field is known in a

discrete form, that is, it is known at the nodes of a spatial

mesh and for some times uðxi; t
pÞhu

p
i . We can also write

upðxÞhuðx; tZpDtÞ; cp2[1,.,P]. The main idea of the

KL decomposition is how obtain the most typical or

characteristic structure fðxÞ among these upðxÞ. This

is equivalent to obtain a function fðxÞ maximizing a
defined by

a Z

PpZP
pZ1

PiZN
iZ1 fðxiÞu

pðxiÞ
� �2PiZN

iZ1 ðfðxiÞÞ
2

(5)

The maximisation leads to

XpZP

pZ1

XiZN

iZ1

~fðxiÞu
pðxiÞ

" # XjZN

jZ1

fðxjÞu
pðxjÞ

" #" #

Z a
XiZN

iZ1

~fðxiÞfðxiÞ; c ~f (6)

where ~fðxÞ denotes the variation of fðxÞ. Eq. (6) can be

rewritten in the form

XiZN

iZ1

XjZN

jZ1

XpZP

pZ1

upðxiÞu
pðxjÞfðxjÞ

( )
~fðxiÞ

" #

Z a
XiZN

iZ1

~fðxiÞfðxiÞ; c ~f (7)

Introducing a vector notation, Eq. (7) takes the following

matrix form

~f
T
kf Z a ~f

T
f; c ~f 0kf Z af (8)

where the eigenvectors do not depend on time, i.e. fðxÞ. The

two points correlation matrix k is given by

kij Z
XpZP

pZ1

upðxiÞu
pðxjÞ (9)

whose matrix form results

k Z
XpZP

pZ1

upðupÞT (10)

which is symmetric and positive definite.



If we define the matrix Q containing the discrete field

history:

Q Z

u1
1 u2

1 / uP
1

u1
2 u2

2 / uP
2

« « 1 «

u1
N u2

N / uP
N

0
BBBBB@

1
CCCCCA (11)

is easy to verify that the matrix k in Eq. (9) results

k Z Q QT (12)

where the diagonal components are given by

k
ii

Z ðQ QT Þii Z
XjZP

jZ1

ðu
j
iÞ

2 (13)

Thus, the functions defining the most characteristic

structure of upðxÞ are the eigenfunctions fkðxÞhfk

associated with the highest eigenvalues.
2. ‘A posteriori’ reduced modeling
2.1. Constructing the reduced model

If some direct simulations have been carried out

previously, we can determine uðxi; t
pÞhu

p
i , c i2[1,.,N],

c p2[1,.,P], and from that, the n eigenvectors related to

the eigenvalues greater than an arbitrarily threshold value

small enough. Thus, with the eigenvalues assumed ordered,

if akO10K10a1, c k2[1,.,n], (a1 being the highest

eigenvalue), we will consider the n eigenvectors defined by

their nodal values: fk ZfkðxiÞ, c i2[1,.,N], c
k2[1,.,n]

Now, we can try to use these n eigenvectors for

approximating the solution of a problem slightly different

to the one that has served to define uðxi; t
pÞhu

p
i . For this

purpose we need to define the matrix B

B Z

f1ðx1Þ f2ðx1Þ / fnðx1Þ

f1ðx2Þ f2ðx2Þ / fnðx2Þ

« « 1 «

f1ðxNÞ f2ðxNÞ / fnðxNÞ

0
BBBB@

1
CCCCAi (14)

For the sake of simplicity, we consider, from now on, that

the linear system (4) contains all the nodal potentials as

unknowns, i.e. X ZU . Thus we could write

U Z
XiZn

iZ1

zifi Z Bz (15)

from which

AU Z F 0A Bz Z F (16)
3

and multiplying both terms by BT it results

BT ABz Z BT F (17)

which proves that the final system of equations is of low

order, i.e. the size of BT A B is n!n, with n/N, and the

size of both z and BT F is n!1.

2.2. Alleviating the discrete system construction

Despite that Eq. (17) notices the reduction accomplished

in the size of the linear system of equations that must solved

at each iteration, in the boundary element method the

construction of matrix A is expensive from a computing

time point of view. To alleviate the considerable compu-

tational efforts needed in the construction of A we suggest to

reduce the number of test functions used in the variational

formulation weighting, in the framework of the hyper-

reduction proposed by Ryckelynck in [9]. Several criteria

exist for selecting these integration functions [9]. When the

problem solution is smooth enough, the use of mz3n

weighting functions (being n the number of unknowns

involved in the reduced model) provides very accurate

results.

ðB redÞT A redBz Z ðB redÞT F (18)

where the reduced matrix A red is m!N; and the reduced

matrix B redðm!nÞ is computed from the truncated

eigenvectors.
3. Reduced model adaptativity: an ‘a priori’ model

reduction approach

In order to compute reduced model solutions without an

‘a priori’ knowledge, Ryckelynck proposed [7] to start with

a low order approximation basis, using some simple

functions (e.g. the initial condition in transient problems)

or using the eigenvectors of a ‘similar’ problem previously

solved. Now, we note by B ðrÞ the approximation basis that

has been updated r times. We compute S time steps of the

evolution problem using the reduced model (17) (or (18) if

the hyper reduction is considered) without changing the

present approximation basis B ðrÞ. After each S time steps the

linear system (16) is assembled, and the residual R is then

evaluated:

R Z AU KF Z A B ðrÞzðrÞ KF (19)

If the norm of the residual is small enough, jjRjj!3, with

3 a threshold value small enough, we can continue for other

S time steps using the same approximation basis B ðrÞ, and

the problem solution at this step z
ðrÞ
pS stocked (related to the

approximation basis B ðrÞ at the time step pS). On the

contrary, if the residual norm is too large, jjRjj!3, we need

to enrich the approximation basis and compute again the last



Fig. 1. Definition of the problem geometry.
S steps. This enrichment is built using some Krylov’s

subspaces fR;AR;A2R;.g, which are added to the most

representative information extracted from the previous

solutions z
ðrÞ
qS (with the integer q!p), as well as from the

solutions of ‘a similar’ problem (if it exists) up to the current

time z
ðrÞ
sim;tS (tRp). In both cases the superscript indicates

that these reduced order solutions are expressed in the

basis B ðrÞ. This information is extracted by applying the

Karhunen-Loève decomposition to z
ðrÞ
qS and z

ðrÞ
sim;tSðcq!p;

ctRpÞ, whose most representative eigenvectors define the

matrix V . Then the evolution process is restarted for

computing again the last S steps, using the enriched basis

defined by: B ðrC1ÞZ fB ðrÞV ;R;AR;A2Rg (we consider

usually only the first three Krylov’s subspaces). After

each reduced basis modification, both the previous solutions

and the ones related to the similar problem (when they exist)

are projected into the new basis. Thus, one can write:

zðrC1Þ Z ½ðB ðrC1ÞÞTB ðrC1Þ�K1B ðrC1ÞT B ðrÞzðrÞ (20)

Remark. The application of the Karhunen-Loève decompo-

sition to the reduced solutions instead to the nodal

description has two advantages: (i) the eigenvalue problem

has a lower dimension, and (ii) as the functions in B verify

the problem boundary conditions, then any low order

solution z determines a complete solution Bz satisfying

these boundary conditions.
4. Numerical example

A potential problem defined in an unbounded domain is

simulated, which consists of two cylinders moving as

indicated in Fig. 1. The upper cylinder moves with a

velocity of v along the x-axis meanwhile the lower cylinder

remains at rest. If we assume that an inviscid and

incompressible fluid occupies the unbounded domain U,

and that no vorticity is generated by discontinuities or by the

boundary, the fluid velocity can be expressed from the

gradient of a certain potential function u. The normal

derivative of the potential is prescribed on the cylinders

boundaries to guarantee that the fluid does not penetrate the

cylinders, that is qZvu=vnZv$n, being n the unit outward

vector defined on the cylinder surface and v the cylinder

translation velocity. Thus, the problem can be defined from:

Du Z 0 in U

q Z
vu

vn
Z v$n on Gupper

q Z
vu

vn
Z 0 on Glower

8>>>><
>>>>:

(21)

where Gupper and Glower denote the surface of the upper and

lower cylinders, respectively.

This problem is solved firstly for a certain distance

between both cylinders greater than d 0 using 25 time steps to
4

cover the approximation and moving away stages. The

approximation is performed using 300 nodes, which implies

the same number of degrees of freedom. A direct problem is

solved at each time step, from which the potential on each

cylindrical surface is determined, defining the matrix Q

containing the discreet representation of these 25 solutions

according to Eq. (11). From the solution of the associated

eigenvalue problem (8) the most representative eigenvectors

can be derived (those related to the eigenvalues greater than

10K8a1). Fig. 2 depicts the three most characteristic

functions (after normalization), where the potential is

represented on the surfaces. Fig. 3 shows the evolution of

the weight of each one of these functions during the

approximation and moving away stages, that is the

evolution of the degrees of freedom of the reduced

approximation basis. We can notice that the first eigenfunc-

tion is the most representative, and that only the first three

eigenfunctions are required to describe accurately the

evolution of the solution during these 25 time steps. Now,

we consider the problem, where the distance between both

cylinders is reduced to d 0 (see Fig. 1). Moreover, the

approximation and moving away stages will be computed

using 227 time steps instead of the 25 ones used to analyze

the similar problem just described. Due to the potential

smoothness on both cylinder surfaces, we consider only 3xn

weighting functions (each one related to a certain node),

where n denotes the number of degrees of freedom in the

reduced approximation basis. For sharper solutions the

determination of the most appropriate weighting functions

requires a deeper analysis [9].

In this case, the solution is performed starting from the

reduced basis (containing the three eigenfunctions depicted

in Fig. 2) obtained from the similar problem previously

computed. After each 10 time steps the quality of the

solution is checked, and when a residual higher than a

threshold value is obtained, the basis is enriched from the

three first Krylov’s subspaces as described in Section 3. The

use of this enrichment in tandem with the Karhunen-Loève

decomposition to extract the relevant information from the

previous history and from the ‘future’ solution of the similar

problem-when it exists-(according to the scheme presented

in Section 3) allows to maintain the low order of



Fig. 2. Three first eigenfunctions.

Fig. 3. Evolution of the weight of each eigenfunction in the solution (degree

of freedom in the reduced approximation basis) during the approximation

and moving away stages.

5

the approximation basis. Fig. 4 compares the evolution of

the computed potential at a certain node using the full model

(standard boundary element model)—continuous curve—

with the one computed using the reduced approximation

basis which contains less than 15 approximation functions

circles-. As it can be noticed in this figure the quality of the

low order solution is checked after each 10-time steps (blue

circles). Moreover, the reduction in the number of weighting

functions alleviates significantly the computing time. In the

particular case analyzed here, the problem can be solved

very accurately using only 15 degrees of freedom with an

error lower than 0.1 per cent.
5. Conclusions

The reduction model strategy proposed in this paper,

which combines a model reduction based on the Karhunen-
Fig. 4. Evolution of the potential at a certain node. Comparison between the

full boundary element solution and the one obtained using a reduced

approximation basis containing less than 15 degrees of freedom.



Loève decomposition with approximation basis enrichment,

allows to accurate and fast resolution of boundary element

models. Moreover, the CPU time is drastically reduced, as

proved in [9], by using the concept of hyper-reduction,

which lies in the use of a reduced number of weighting

functions to determine the degrees of freedom involved by

the reduced order approximation. The numerical example

treated, despite of its simplicity, proves the potentiality of

this numerical technique. The extension of this technique

for solving models involving time derivatives as well as

moving domains is a work in progress.
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shock fitting for optimization of a blunt body geometry, 38th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

July 7–10, Indianapolis, IN; 2002.

[5] Balsa-Canto E, Alonso AA, Bangaa JR. A novel efficient and reliable

method for thermal process design and optimization. Part I: theory.

J Food Eng 2002;52:227–34.
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