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Magnetic field properties in a birdcage coil

P. Boissoles and G. Caloz

March 15, 2006

Abstract

Radiofrequency magnetic fields used in MRI experiments have to sat-

isfy specific properties. First, they need to be as homogeneous as possible

to excite uniformly the nuclei. Secondly, as the nuclei, these fields need

to have a precession movement at Larmor frequency. In this paper we

present a numerical study of these properties in the case of the birdcage

coil. We derive analytic expression of the RF field through an equivalent

circuit model. Properties are validated through numerical simulations.
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1 Introduction

Since their introduction over two decades ago, birdcage coils ([1, 2, 3]) are of-
ten used in MRI experiments because they generate an adequate homogeneous
radiofrequency magnetic field. Since then several studies have used the equiva-
lent circuit method to predict first the mutual inductances between conductors
and then the resonant spectrum. Hayes et al. ([1]) showed that a N leg coil
has N/2 + 1 different resonant modes but neither gave the expression of the
magnetic field generated not got numerical simulations. Leifer ([4]) showed that
another resonant mode, called the Helmholtz mode, exists. Since then, there is
an agreement about the N/2 + 2 analytic formulas of the resonant frequencies
of a N leg coil in function of the mutual inductance and the capacitance.

Analytic expressions of the radiofrequency magnetic field and numerical sim-
ulations can be found in [5] and [6]. These results concerned only the magnetic
field associated to the first resonant mode and its homogeneity. In [7] we can
find a brief homogeneity analysis with respect to the resonant frequency but no
information on the simulations. Let us mention other models based on the Time-
Domain Finite-Difference method ([8]) to calculate the radiofrequency field gen-
erated by the coil. Of course papers using this technique do not give analytic
formulas. Moreover with this approach we can only handle rough approxima-
tions of the magnetic field since we need to use a three-dimensional structured
mesh of the antenna.

In our paper, we are introducing a model close to the ones of [1] and [6]. We
add the electrical resistance of the conductors and the tension sources. By using
the classical electrical network theory we get the same formulas for the resonant
frequencies as in [4] and an analytic expression of the magnetic field associated.
We study the homogeneity and the precession movement of the magnetic fields
associated to the different resonant frequencies through numerical simulations.

More precisely the content and the organisation of the paper are the follow-
ing. In section 2 we briefly present the circuit analysis of the birdcage coil and
give the expression of the different radiofrequency magnetic fields associated to
each resonant frequency. In section 3 the algorithm used to do the simulations
is briefly presented. In particular we explain the validation procedure. Section
4 is devoted to the two particular pulsations ωAR and ωCR. We explain why
these pulsations are not appropriate for applications in MRI. In section 5 we
study the homogeneity of the magnetic field with respect to the frequency and
to the number N of legs. Through numerical simulations we show how the
mode 1 is the only appropriate one for applications in MRI. Finally section 6 is
devoted to the precession movement of magnetic field associated to the mode 1.
In particular, we study the deviation to the circular movement when we move
inside the birdcage coil.
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2 Birdcage coil circuit analysis

We consider a N leg bandpass birdcage coil with capacitors in both endrings
and legs (see Fig. 1).
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Figure 1: Bandpass birdcage coil

Our electric equivalent circuit is based on electrical network theory. We
model each conductor as an inductance and a resistance. Thus the bandpass
birdcage coil is described as the repetition of the electric network segment shown
in Fig. 2, with left and right-most ends connected together.

In Fig. 2, Lb represents the self-inductance of a single leg, La the self-
inductance of a single endring arc, Ca the capacitance of the capacitor between
two legs and Cb represents the capacitance of the capacitor between two opposite
endring arcs. This model includes the lowpass and highpass coils as special cases
when 1/Ca or 1/Cb is set to zero.
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Figure 2: A section of the birdcage equivalent circuit
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By applying the Kirchhoff law, we can derive the general system of equations
satisfied by the current of the endrings. In the configurations used in practice,
we show in [9] and [11] that we can solve explicitly this system and give the
expression of the N/2 + 2 resonance pulsations: ωAR, ω1, ..., ωN−1, and ωCR.
The two modes associated to ωAR and ωCR differ from the others. Indeed equal
currents flow in each end ring and do not produce a transverse magnetic field
in the sample region. These modes are called the anti-rotating (AR) and the
co-rotating (CR) ring modes. The resonant pulsations satisfy the symmetry
relation (see [1, 4]):

∀ 1 6 k 6 N, ωN−k = ωk. (1)

So in the next sections we will only study the radiofrequency magnetic field
associated to the pulsations ωAR, ωCR and ωk, 1 6 k 6 N/2.

The expression of the radiofrequency field associated to the pulsation ωk

(also called the mode k) outside the conductors is given by the Biot-Savart
formula:

Bk =
µ0I0

4π

N
∑

j=1





∫ θj+1

θj

dθ

[a2(θ, L/2)]3/2





(z − L/2)R cos θ
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where θj and a2(θ, Z) are given by:







θj =
2π(j − 1)

N
,

a2(θ, Z) = (x − R cos θ)2 + (y − R sin θ)2 + (z − Z)2.

(3)

The expression of the field associated to ωAR is obtained by setting k = 0 in eq
2. The one of the field associated to ωCR is obtained by setting k = 0 in eq 2
and by changing the minus before the second integral in a plus.

3 Numerical method

From the birdcage coil circuit analysis presented in section 2 we have written a
Matlab program to calculate the different resonant pulsations and the radiofre-
quency field associated.
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As mentionned in the introduction the formula of the resonant pulsations
involves the mutual inductance between conductors. In particular we need to
know with accuracy the shape of the leg and the ring. To compute the mutual
inductances we use the method detailed in [11]. We have validated the method
through numerical simulations which were compared to experimental results.

As we can see from eq 2 the part of the program devoted to the radiofre-
quency field needs only the value of k, N , L, R, and the coordinates (x, y, z).
To efficiently compute the magnetic field we have developed the different inte-
grals in eq 2 using the elliptic integrals (see [10]). A detailed analysis is given
in [9]. This part of our program has been validated by comparison to analytic
results in the case of isolated leg and ring. Moreover we have checked that the
calculated field satisfies the equations

div Bk = 0, rotBk = 0, (4)

which are consequences of the Biot-Savart formula. Here div and rot denote the
classical divergence and rotational differential operators.

The characteristics of the lowpass birdcage coil used for the results presented
here are:

{

L = 12.8 cm, R = 4.45 cm, N = 16,
Ca = 180 pF, Cb = 0 pF.

(5)

4 Pulsations ωAR and ωCR

For the pulsations ωAR and ωCR an equal current is flowing in each end ring
and no current in the legs of the coil. Thus the homogeneity of the magnetic
fields associated to these pulsations does not depend of N , the number of leg.
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Figure 3: Norm of BAR (a) and BCR (b) field

We note BAR the field associated to the pulsation ωAR and BCR the one
associated to ωCR. To study the homogeneity of these fields, we plot in Fig. 3
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their Euclidean vector norm in the plane perpendicular to the birdcage axis in
its middle. We can see that their norm is a function of the radius, that is they
are not homogeneous at all. These two magnetic fields are not appropriate for
applications in MRI, where we need a constant field in the center of the antenna.

5 Homogeneity

5.1 Homogeneity with respect to k

To discuss the homogeneity of the field Bk with respect to k we plot in Fig. 4
the magnetic field patterns in the plane perpendicular to the birdcage axis in its
middle for k between 1 and 8 = N/2. To compare the different fields we have
normalized them.
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Figure 4: Norm of Bk field for different modes k

We see that the first mode is the only one for which the field is homogeneous
in the central area. In order to verify the magnetic field homogeneity and to
justify the choice of the mode 1 in MRI, we plot the mode k field along the y
axis for k between 1 and 8 on Fig. 5. We remark that only the field associated
to the mode 1 is not zero at the center of the birdcage coil. It is the only one
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with energy and homogeneity property in the center. That is why it is precisely
the one used in MRI.
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Figure 5: Norm of Bk field for different modes k

Now we will study homogeneity of the B1 field along the z axis. For this,
we plot on Fig. 6.a the magnetic field pattern for the mode 1 in the plane of
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Figure 6: Norm of B1 field in the plane xz (a) and along the z axis (b)
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equation y = 0 containing the birdcage axis. As mentioned in the literature we
verify that the field is still homogeneous at the center of the birdcage coil. More
precisely, Fig. 6.b shows that in the area defined by a z coordinate between
−L/8 = −0.016 cm and L/8 the mode 1 field is homogeneous.

5.2 Homogeneity with respect to N

Since we know that the B1 field is the most homogeneous one, we will study
how this homogeneity varies with respect to N , the number of legs. For this,
we plot on Fig. 7 the magnetic field pattern in the plane perpendicular to the
birdcage axis in its middle for N between 2 and 12. The more legs the coil has,
the more homogeneous the field is.
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Figure 7: Norm of B1 field for different values of N

6 Precession movement

This section is devoted to the study of the precession movement of the B1 field.
For this we consider the real field, that is ℜ

(

Bke−iω1t
)

and not the complex one
anymore. First, in Fig. 8 we start at the center of the coil: (x, y, z) = (0, 0, 0).
The different diagrams show that the B1 field has a circular movement at the
center of the coil. Moreover we see that the trajectory of B1 moves in the xy
plane, thus B1 is orthogonal to the birdcage axis, which is an important property
too.

In Fig. 9 to Fig. 12, along the x axis we consider successively x = R/4,
x = R/2, x = 3R/4, and x = 9R/10. For each point we plot a 3D view of the
movement, the projection in the xy plane, and the L2 norm. The first third
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Figure 8: Trajectory of B1 field at point (0, 0, 0)

cases are very close to the circular movement as shown by the table 1. Moreover
as in the first case we can show that the trajectory of B1 remains orthogonal
to the birdcage axis. In MRI experiments the static field used is parallel to
the birdcage axis so these simulations ensured that the radiofrequency field is
perfectly orthogonal to the static field along the x axis.

Coordinate Major axis Minor axis Relative quotient
(0, 0, 0) 152,7210 152,7210 0,0000 %

(R/4, 0, 0) 153,2308 153,0630 0,1095 %
(R/2, 0, 0) 154,3967 153,8768 0,3367 %
(3R/4, 0, 0) 157,8201 156,0395 1,1282 %
(9R/10, 0, 0) 225,4329 190,6530 15,4280 %

Table 1: Variation of the major and minor axis with respect to x

In the last figure, the major and minor axis at the point (0, 0, 9R/10) are very
different and the movement is not close to a circle at all. We observe the same
relative quotients when moving along the y axis. We can prove that the relative
quotient is less than 1 when moving along the z axis for z between −3L/8 and
3L/8. In conclusion, in a cylinder with a radius of 3R/4 and height of 3L/4,
the B1 field has a movement close to the circular one, up to 1%.
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Figure 9: Trajectory of B1 field at point (R/4, 0, 0)
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Figure 11: Trajectory of B1 field at point (3R/4, 0, 0)
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7 Conclusion

In this paper we have presented a numerical study of the main properties that
the radiofrequency magnetic field should have in MRI experiments. We have
shown why the mode 1 is the only one suitable in MRI. In particular we have
justified the usual assumption of circular movement found in the literature.
We also have presented a study of homogeneity for the radiofrequency field
associated to the first mode with respect to the number of legs. A mathematical
analysis of these properties and much more theorical developments can be found
in [9].

Let us mention that the method and the algorithm described in this paper
can be used to study the properties of any other birdcage coil without modifica-
tions. It will be interesting to adapt our method to study other MRI antenna.
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