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Central limit theorem for a Gaussian incompressible

flow with additional Brownian noise

Tomasz Miernowski
∗

UMPA, ENS Lyon, UMR 5669 CNRS, 46 allée d’Italie, 69364 Lyon cedex 07, France

Abstract

We generalize the result of T. Komorowski and G. Papanicolaou published in [7]. We

consider the solution of stochastic differential equation dX(t) = V(t,X(t))dt+
√

2κdB(t)

where B(t) is a standard d-dimensional Brownian motion and V(t,x), (t,x) ∈ R × R
d

is a d-dimensional, incompressible, stationary, random Gaussian field decorrelating in

finite time. We prove that the weak limit as ε ↓ 0 of the family of rescaled processes

Xε(t) = εX( t

ε2 ) exists and may be identified as a certain Brownian motion.

1 Introduction

Consider the turbulent transport of a tracer particle modeled by the stochastic differential

equation 



dX(t;ω, σ) = V(t,X(t);ω)dt+
√

2κdB(t;σ),

X(0;ω, σ) = 0,
(1.1)

where V(t,x;ω), (t,x) ∈ R × R
d is a d-dimensional random field over a certain probability

space T0 = (Ω,V,P) and B(t;σ), t ≥ 0 is a standard d-dimensional Brownian motion over

another probability space T1 = (Σ,W,Q). The constant κ ≥ 0 stands for a molecular

diffusivity of the medium. Let E and M denote the expectations in T0 and T1 respectively.

This model is widely used in physics literature to describe the motion in a turbulent

flow. We are interested in a long time, large scale behavior of passive tracer over the product
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1



probability space. Namely, we consider the macroscopic scaling x ∼ x/ε, t ∼ t/ε2. The

rescaled process Xε(·) satisfies the following stochastic equation:

dXε(t) =
1

ε
V(

t

ε2
,
Xε(t)

ε
)dt+

√
2κdB(t).

We ask the natural question about the convergence in law of Xε(t) as ε ↓ 0.

This problem has a long history and several results, varying with the assumptions con-

cerning the random velocity field V, are well known. Let V be stationary, incompressible

and centered. The first group of results deals with the velocity field having a so-called stream

matrix H, i.e.

V(t,x) = ∇xH(t,x).

Papanicolaou and Varadhan [10] and also Kozlov [8] proved the convergence of rescaled

processes given by a time-independent field V(x), x ∈ R
d, with the stationary stream matrix

H(x), under the assumption of boundedness of V and H. The similar result was proven in [9]

under the same conditions but for the time-dependent velocity field V(t,x). In [4] Fannjiang

and Komorowski give the proof of convergence for the random fields V not bounded but with

a finite p-th moment (for some p > d+ 2).

In the second group we have results concerning the time-dependence assumptions imposed

on the velocity field. Here we have for example the convergence for an Ornstein-Uhlenbeck

velocity field of finite modes (Cramona and Xu [3]) and for a class of Markovian fields with

strong mixing properties (Fannjiang and Komorowski [5]).

In this paper we follow the idea of Komorowski and Papanicolaou published in [7] which

contributes to the last group of results. Assume that the field V is Gaussian, incompressible,

stationary, centered and that it decorrelates in finite time. The authors considered the

equation (1.1) with κ = 0 (without additional Brownian noise) and proved that the laws

of the family of processes Xε(t) = εX( t
ε2 ) converge as ε ↓ 0 to that of the Brownian motion

with covariance matrix given by

Dij =

∫ ∞

0
E[Vi(t,X(t))Vj(0,0) + Vj(t,X(t))Vi(0,0)]dt, i, j = 1, . . . , d.

We show that convergence still holds in the presence of molecular diffusivity κ > 0. Namely,

we prove that the weak limit of the laws of Xε(·) over C([0,+∞); Rd) is a Brownian motion
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with covariance matrix

Dij =

∫ ∞

0
ME[Vi(t,X(t))Vj(0,0) + Vj(t,X(t))Vi(0,0)]dt+ 2κδij, i, j = 1, . . . , d.(1.2)

This result confirms the turbulent diffusion hypothesis of G. I. Taylor coming from the early

1920-s (see [15]).

Let us describe the main steps of the proof. Thanks to the key assumption of the in-

compressibility of the field V, in the proof we use the result of S. C. Port and C. Stone [11],

namely the stationarity of the Lagrangian velocity process (V(t,X(t)))t≥0. We develop, as

in [7], the idea of the ”transport operator” Q, being a linear operator acting on the space of

elements integrable with respect to P. Q preserves densities and satisfies

ME[Vi(s,X(s))Vj(0,0)] = ME [Vi(s− T,X(s− T ))Q[Vj(0,0)]] ,

for s ≥ T , where T is the decorrelation time of the field V. Establishing estimates of the

rate of convergence of the sequence {‖QnY ‖L1}n∈N for any Y measurable with respect to

{V (t, ·), t ≤ 0} and satisfying EY = 0, we prove the convergence of the integrals in (1.2). In

addition we show that for any L > 0

ME[|Xε(t) − Xε(s)|2|Xε(u) − Xε(t)|] ≤ C(u− s)1+ν ,

for any 0 ≤ s ≤ t ≤ u ≤ L and some constants C, ν > 0. This gives us the tightness of

the family {Xε(·)}, ε > 0, in the Skorohod space D([0, L],Rd) for any L > 0 and by the

continuity of trajectories also in C([0, L],Rd). Thanks to Stone [13], it gives tightness in

C([0,+∞),Rd). Finally we identify the limit as a certain Wiener measure with help of the

Strook-Varadhan martingale problem.

This idea is strongly based on [7] and we make the references to lemmas presented there.

We skip the proofs which may be generalized to our situation in a strightforward way. How-

ever, we present the complete argument for the results which are new or involve some major

adjustments.

2 Notation and formulation of the main result

By Lp := Lp(Ω,V,P) we understand the space of Lp-integrable random variables over the

space T0 equipped with the standard ‖ · ‖p norm. Let E[ · |A] denote the conditional expec-

tation with respect to some sub σ-algebra A ⊂ V.
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Let τt,x : Ω → Ω, (t,x) ∈ R × R
d, be a group of measure preserving transformations

i.e. such that the map (t,x, ω) 7→ τt,x(ω) is jointly B(R) ⊗ B(Rd) ⊗ V to V measurable,

τt,xτs,y = τt+s,x+y, τ−1
t,x (A) ∈ V and P[τ−1

t,x (A)] = P[A] for all (t,x), (s,y) ∈ R × R
d, A ∈ V.

Here B(Rd) denotes the σ-algebra of Borel subsets of R
d.

Suppose now that Ṽ : Ω → R
d is a d-dimensional random vector such that the random

field given by V(t,x;ω) := Ṽ(τt,x(ω)) satisfies the following conditions:

V1) it is centered, i.e. EṼ = 0,

V2) it is Gaussian, i.e. all its finite dimensional distributions are Gaussian random vectors,

V3) it is of divergence free, i.e. divV(t,x) :=
∑d

i=1 ∂xi
Vi(t,x) ≡ 0,

V4) its correlation matrix R(t,x) := [E[Vi(t,x)Vj(0,0)]]i,j=1,...,d satisfies

|R(0,0) − R(t,x)| +
d∑

i,j=1

|∂2
ijR(0,0) − ∂2

ijR(t,x)| ≤ C

| ln
√
t2 + |x|2|1+η

,

for some constant C > 0 and all (t,x) ∈ R × R
d. According to [2], Theorem 3.4.1, this

guaranties a version of V being jointly continuous in (t,x) and of C1 class in x.

V5) the field V decorrelates in finite time, i.e. there exists T > 0 such that for all |t| ≥ T

and x ∈ R
d we have R(t,x) = 0.

Remark. For a Gaussian field G(t), where t ∈ T is some abstract parameter, we define

a d-ball as related to the pseudo-metric d(t1, t2) = [E|G(t1) − G(t2)|2]
1
2 . Let N(ε) denote

the entropy number of the field V, i.e. the minimal number of d-balls, corresponding to V,

with radius ε > 0 needed to cover R × R
d. Thanks to the condition V 4) this number can be

estimated by

N(ε) ≤ K1 exp
(
K2(d+ 1)ε

− 2
1+η

)
,(2.1)

for some constants K1,K2 > 0 independent of ε. According to [1], p. 121, (2.1) will allow us

to use some of the Borell-Fernique-Talagrand type of tail estimates later on.

Let B(·) denote the standard d-dimensional Brownian motion starting from 0, considered

over a certain probability space T1 = (Σ,W,Q), with M the mathematical expectation

corresponding to the probability measure Q.
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Let us consider a probability space T0 ⊗ T1 = (Ω × Σ,V ⊗ W,P ⊗ Q) and a stochastic

process X(·) over this space, given by the following stochastic differential equation





dX(t;ω, σ) = V(t,X(t;ω, σ);ω)dt+ dB(t;σ),

X(0;ω, σ) = 0.
(2.2)

For simplicity we suppose
√

2κ = 1 in (1.1) but the proof is still valid for any κ > 0. For

ε > 0 define Xε(t) := εX( t
ε2 ), t ≥ 0. We will prove the following result:

Theorem 1 Suppose that the d-dimensional random field V satisfies the conditions V 1) −
V 5) listed above. Then the integrals

Dij =

∫ ∞

0
ME[Vi(t,X(t))Vj(0,0) + Vj(t,X(t))Vi(0,0)]dt+ δi,j , i, j = 1, . . . , d,(2.3)

converge. The laws of the processes {Xε(t)}t≥0 induced on the space C([0,+∞),Rd) converge

weakly, as ε ↓ 0, to the law of the Brownian motion with covariance matrix D = [Dij ].

Some additional notation: for any x ∈ R, Ent(x) denotes the biggest integer

smaller than or equal to x; for any x, y ∈ R, x ∧ y denotes min(x, y).

3 Auxiliary lemmas

Consider the processes Y(·) over the probabitity space T0 ⊗ T1 given by the equations





dY0,x(t;ω, σ) = V(t,Y0,x(t;ω, σ);ω)dt+ dB(t;σ),

Y0,x(0;ω, σ) = x.

Thanks to the assumptions V 1) − V 5) we can apply the following result of Port and Stone

[11]. First of all, given x ∈ R
d, the equation above determines a unique process Y0,x. Next

we have:

Lemma 1 (cf. [11], Theorem 3, p. 501) For any t ≥ 0 the random map x 7→ Y0,x(t)

preserves measure on R
d and satisfies

Y0,x(t; τy(ω), σ) = Y0,x+y(t;ω, σ).

For all x ∈ R
d, σ ∈ Σ and t ≥ 0 the random element ω 7→ τY0,x(t;ω,σ)(ω) has the law P on Ω

�
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As a corollary we get the following lemma:

Lemma 2 Let Ũ : Ω × Σ → R be any random variable s.t. Ũ ∈ L1(T0 ⊗ T1) and define

U(t,x;ω, σ) := Ũ(τt,Y0,x(t;ω,σ)(ω), σ).

For any x ∈ R
d and Ũ ∈ L1(T0 ⊗ T1) the process {U(t,x)}t≥0 is strictly stationary over

T0 ⊗ T1.

Proof. Using the integral form of expressing Y0,x(t) it is easy to see that for any t, h ≥ 0

we have

Y0,x(t+ h;ω, σ) = Y0,x(h;ω, σ) + Y0,0(t; τh,Y0,x(h;ω,σ)(ω), σ).

Moreover, thanks to Lemma 1 it follows that the measure P ⊗ Q is preserved by the trans-

formation θh : (ω, σ) 7→ (τh,Y0,x(h;ω,σ)(ω), σ). We finish our proof essentially with the same

argument as used to prove Lemma 1, p. 240, of [7] �

Recall that random field V(t,x;ω) = (V1(t,x;ω), . . . , Vd(t,x;ω)) is Gaussian. Let us

introduce some notation. As in [7], let L2
a,b denote the closure in L2-norm of linear span of

Vi(t,x), t ∈ [a, b], x ∈ R
d, i = 1, . . . , d. By Va,b we denote the σ-algebra generated by all

random vectors from L2
a,b. Let L2⊥

a,b = L2
−∞,+∞ ⊖ L2

a,b be the orthogonal complement of L2
a,b

in L2
−∞,+∞ and V⊥

a,b the σ-algebra similarly generated by elements of L2⊥
a,b. According to [12],

Theorems 10.1 and 10.2, p.181, the σ-algebras Va,b and V⊥
a,b are independent. Let Va,b(t,x)

be the orthogonal projection of V(t,x) onto L2
a,b, i.e. each component of Va,b(t,x) is the

projection of the corresponding component of V(t,x). We define Va,b(t,x) := V(t,x) −
Va,b(t,x). Of course Va,b(t,x) is Va,b-measurable while Va,b(t,x) is V⊥

a,b-measurable. We

can also see that Va,b(t,x) is jointly continuous and C1-smooth in x, P-a.s. (see e.g. [2],

Theorem 3.4.1). Finally let Ta,b denote the probability space (Ω × Ω,Va,b ⊗ V⊥
a,b,P ⊗ P).

Over the space T0 ⊗ T0 = (Ω × Ω,V ⊗ V,P ⊗ P) we define the random field Ṽ by

Ṽa,b(t,x;ω, ω′) = Va,b(t,x;ω) + Va,b(t,x;ω′).

Let c ∈ R and consider now the process given by the following stochastic differential equation:





dX̃b,x
c (t;ω, ω′, σ) = Ṽa,b(t+ c, X̃b,x

c (t);ω, ω′)dt+ dB(t+ c;σ),

X̃
b,x
c (b) = x.

(3.1)
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If a = −∞ and b = 0 we shorten the notation by writing

X̃(·) = X̃
0,0
0 (·).(3.2)

The following lemma concerning the conditional expectation of the process along its tra-

jectory is the compilation of the adapted versions of Lemma 3, p. 241, and Lemma 4, p. 242,

of [7] and may be proved with help of the same argument as presented there.

Lemma 3 Let f ∈ L2(Ω,V−∞,+∞,P) and −∞ ≤ a ≤ b ≤ +∞. Then, there exists f̃ ∈
L2(Ta,b) such that f(ω) = f̃(ω, ω) and both f and f̃ have the same probability distributions.

Let c ∈ R. Then, for any C ∈ V⊥
a,b we have:

ME[f(τ0,Xb,0(t;τc,0(ω),σ)(ω))1C(ω)|Va,b] =

MEω′ [f̃(τ
0,X̃b,0

c (t;ω,ω′,σ)
(ω), τ

0,X̃b,0
c (t;ω,ω′,σ)

(ω′))1C(ω′)],

where Eω′ denotes the expectation applied to the ω′ variable only �

4 Transport operator Q and its properties

Recall that X̃ is given by (3.2). For a given (ω, σ) define a transformation Zt
ω,σ : Ω → Ω by

Zt
ω,σ(ω′) = τ0,X̃(t;ω,ω′,σ)(ω

′).

Let J t(·;ω, σ) be the probability measure on (Ω,V⊥
−∞,0) given by

J t(A;ω, σ) = P
[
(Zt

ω,σ)−1(A)
]
.

Denote by D the family of densities f ∈ L1(Ω,V⊥
−∞,0,P), f ≥ 0,

∫
Ω fdP = 1. For any f ∈ D

we define a measure on (Ω,V⊥
−∞,0) by

[Qf ][A] = M

∫

Ω
JT (A;ω, σ)f(ω)P(dω).(4.1)

Let Vs
0,T denote the σ-algebra generated by the random vectors V−∞,0(t,x), 0 ≤ t ≤ T, x ∈

R
d, and let V0

−∞,0 = τT,0(Vs
0,T ) ⊆ V−∞,0. As in [7] we conclude that for any f ∈ D, [Qf ]

is absolutely continuous with respect to P and that its Radon-Nikodym derivative is Vs
0,T -

measurable. Moreover we have [Q1] = P.
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Now we define the transport operator acting on f ∈ D:

Qf =
d[Qf ]

dP
◦ τ−T,0.(4.2)

Equivalently to Lemma 7, p. 247, of [7] we get that Q : L1(Ω,V−∞,0,P) → L1(Ω,V−∞,0,P)

is a positive linear operator, preserving densities, Q1 = 1 and it extends to a contraction

in every Lp(Ω,V−∞,0,P) space, 1 ≤ p ≤ ∞. Now we will prove the following lemma, which

displays the usefulness of transport operator Q.

Lemma 4 Let f, g ∈ L1(Ω) be random variables V−∞,0 and V−∞,0-measurable respectively.

Let t ≥ T > 0. Then, we have

ME[f(τt,X(t;ω,σ)(ω))g(ω)] = ME[f(τt−T,X(t−T ;ω,σ)(ω))Qg(ω)].

Proof. To shorten the notation, from now on dP, dQ, dP′ and dQ′ will stand for P(dω),

Q(dσ), P(dω′) and Q(dσ′) respectively and we will omit the argument σ. If not indicated

otherwise, all the integrals should be understood as the integrals over the whole space Ω×Σ.

Using Lemma 3 we may write

ME[f(τt,X(t;ω)(ω))g(ω)] = ME[ME[f(τt,X(t;ω)(ω))|V−∞,0]g(ω)] =(4.3)

∫∫
f(τt,X̃(t;ω,ω′)(ω

′))g(ω)dP′dQ′dPdQ =

∫∫
f(τt,X̃T,0(t;τ0,X̃(T )(ω),τ0,X̃(T )(ω

′))(τ0,X̃(T )(ω
′)))g(ω)dP′dQ′dPdQ.

The last equality above comes from the fact that

X̃(t;ω, ω′) = X̃(T ;ω, ω′) + X̃T,0(t; τ0,X̃(T ;ω,ω′)(ω), τ0,X̃(T ;ω,ω′)(ω
′)).

Let pω,ω′

(s,x, t,y) denote the density of probability distribution of the process X̃s,x(t;ω, ω′),

t ≥ s. If we introduce the notation y := X̃(T ;ω, ω′) we may rewrite (4.3) in the form

∫∫∫

Rd

f(τt,X̃T,0(t;τ0,y(ω),τ0,y(ω′))(τ0,y(ω′)))pω,ω′

(0, 0, T,y)g(ω)dydP′dQ′dPdQ,(4.4)

for t ≥ T . Since t ≥ T , where T is the decorelation time of the field V, from the definition

of X̃ we get that in fact X̃T,0(t; τ0,y(ω), τ0,y(ω′)) = XT,0(t; τ0,y(ω′)). Hence (4.4) is equal to

∫∫∫

Rd

f(τt,XT,0(t;ω′)(ω
′))pω,τ0,−y(ω′)(0, 0, T,y)g(ω)dydP′dQ′dPdQ =

8



∫∫∫

Rd

f(τt−T,XT,0(t;τ−T,0(ω′))(ω
′))pτ−T,−y(ω),τ−T,−y(ω′)(0, 0, T,y)g(τ−T,−y(ω))dydP′dQ′dPdQ =

∫∫∫

Rd

f(τt−T,X(t−T ;ω′)(ω
′))pω,ω′

(−T,−y, 0, 0)g(τ−T,−y(ω))dydP′dQ′dPdQ.

Define

Q′g(ω) =

∫∫

Rd

pω,ω′

(−T,−y, 0, 0)g(τ−T,−y(ω))dydP′dQ′(4.5)

for any V−∞,0-measurable g. It is easy to see that it is an equivalent way of expressing the

transport operator Q introduced before. We get the assertion of our lemma �

As a corollary we have

Lemma 5 Let p ≥ 0, N, k ∈ N and sk+2 ≥ sk+1 ≥ . . . ≥ s1 ≥ NT , i = 1, . . . , d. Assume

that Y ∈ L1(Ω,V−∞,0,P). Then

ME

[∣∣∣∣∣

∫ sk+2

sk+1

V(ρ,X(ρ))dρ

∣∣∣∣∣

p

V(s1,X(s1)) . . .V(sk,X(sk))Y

]
=

ME

[∣∣∣∣∣

∫ sk+2−NT

sk+1−NT
V(ρ,X(ρ))dρ

∣∣∣∣∣

p

V(s1−NT,X(s1−NT )) . . .V(sk−NT,X(sk−NT ))QNY

]

�

5 Rate of convergence of {QnY }n≥0

In this section we will prove the following lemma which will constitute the main tool in

establishing diverse estimates later on.

Lemma 6 Let Y ∈ L2(Ω,V−∞,0,P) be a random variable such that EY = 0. Then for any

s > 0 there exists a constant C depending only on s and ‖Y ‖L2 such that

‖QnY ‖L1 ≤ C

ns
, for all n ∈ N.

Proof. This proof is a modification of the proof of Lemma 10, p. 249, of [7]. According to

[6], the part of JT (dω′;ω, σ) which is absolutely continuous with respect to P, has a density

given by the formula ∫

Rd

νT
0 (dx;ω, ω′, σ)

GT (0;ω, τ0,x(ω′), σ)
,(5.1)
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where νT
0 (U ;ω, ω′, σ) stands for the cardinality of those y ∈ U for which ψt(y;ω, ω′, σ) = 0

and

GT (x;ω, ω′, σ) = det∇xψt(x;ω, ω′, σ),

where

ψt(x;ω, ω′, σ) = x + X̃(t;ω, τ0,x(ω′), σ).(5.2)

Similarly as in [7], using the integral form of expressing X̃ (coming from (3.1)) we get that

d

dt
∇xψt(0;ω, ω′, σ) = ∇xV−∞,0(t, X̃(t;ω, ω′, σ);ω)[∇ψt(0;ω, ω′, σ) − I]+

+∇xV
−∞,0(t, X̃(t;ω, ω′, σ);ω′)∇ψt(0;ω, ω′, σ)

and

∇xψ0(0;ω, ω′, σ) = I.

Let α(ρ) be a smooth function, increasing on ρ ≥ 0, satisfying α(−ρ) = α(ρ), α(0) = 0, and

α(ρ) =
√
ρ for ρ ≥ 1. Let ϕ(x) = α(|x|) for x ∈ R

d. Fix γ ∈ (1
2 , 1) and for any λ > 0 let us

introduce a set

Kn(λ) =

[
ω ∈ Ω : sup

0≤t≤T
[|V−∞,0(t,x)| + |∇xV−∞,0(t,x)|] ≤ λ(ϕ(x) + logγ n)

]
.

According to the Remark of Section 2 and the Theorem 5.4, p. 121, of [2], we may find Λ > 0

such that for λ ≥ Λ we will have

P[Ω \Kn(λ)] = P[Kn(λ)c] ≤ C exp
(
C1λ

2
2+η

)
exp

(
− λ2

4σ2
n

)
≤ C exp

(
− λ2

8σ2
n

)
,

where

σ2
n = sup

0≤t≤T,x∈Rd

E

[ |V−∞,0(t,x)|2 + |∇xV−∞,0(t,x)|2
(ϕ(x) + logγ n)2

]
=

1

log2γ n
E
[
|V−∞,0(t,0)|2 + |∇xV−∞,0(t,0)|2

]
=

C

log2γ n
.

Hence

P[Kc
n] = P[Ω \Kn(λ)] ≤ C01 exp{−C02λ

2 log2γ n}

for some constants C01, C02 > 0. Take ν ∈ (0, 1) such that Λ
Λ+1e

ν(Λ+1)T < 1 and νΛ < 1.

Define also two families of sets by

Lm =

[
ω ∈ Ω : sup

0≤t≤T
[|V−∞,0(t,x)| + |∇xV

−∞,0(t,x)|] ≤ ν|x| + logγ m

]
,
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Sp =

[
σ ∈ Σ : sup

0≤t≤T
|B(t;σ)| ≤ log2γ p

]
.

Using the fact that the field V(t,x)√
t2+|x|2+1

is P-a.s. bounded, we get limm→+∞ P[Lm] = 1. From

the properties of Brownian motion we get

Q[Sc
p] = Q[Σ \ Sp] = Q[ sup

0≤t≤T
|B(t;σ)| ≥ log2γ p] ≤ C

log4γ p
,

for any p ≥ 2 and some constant C > 0.

The properties of α imply that there exists a constant Cν such that ϕ(x) ≤ ν|x| + Cν .

For ω ∈ Kn(Λ), ω′ ∈ Lm and σ ∈ Sp we get
∣∣∣∣∣
d(X̃(t) − B(t))

dt

∣∣∣∣∣ =
∣∣V−∞,0(t,x;ω) + V−∞,0(t,x;ω′)

∣∣ ≤

ν(Λ + 1)|X̃(t)| + ΛCν + Λ logγ n+ logγ m ≤

ν(Λ + 1)|X̃(t) − B(t)| + ν(Λ + 1) log2γ p+ ΛCν + Λ logγ n+ logγ m.

Hence, by Gronwall inequality

sup
0≤t≤T

|X̃(t) − B(t)| ≤ eν(Λ+1)T − 1

ν(Λ + 1)

[
ν(Λ + 1) log2γ p+ ΛCν + Λ logγ n+ logγ m

]

and since σ ∈ Sp we get

sup
0≤t≤T

|X̃(t)| ≤ eν(Λ+1)T − 1

ν(Λ + 1)

[
ν(Λ + 1) log2γ p+ ΛCν + Λ logγ n+ logγ m

]
+ log2γ p.(5.3)

Using the estimates from above we write

d

dt
|∇xψt(0)| ≤

∣∣∣∣
d

dt
∇xψt(0)

∣∣∣∣ ≤

≤
∣∣∣∇xV−∞,0(t, X̃(t);ω)

∣∣∣ [|∇ψt(0)| + 1] +
∣∣∣∇xV

−∞,0(t, X̃(t);ω′)
∣∣∣ |∇xψt(0)| ≤

≤ sup
0≤t≤T

∣∣∣∇xV−∞,0(t, X̃(t);ω)
∣∣∣ [|∇xψt(0)| + 1] + sup

0≤t≤T

∣∣∣∇xV
−∞,0(t, X̃(t);ω′)

∣∣∣ |∇xψt(0)| ≤

≤ [ν(Λ + 1) sup
0≤t≤T

|X̃(t)| + ΛCν + Λ logγ n+ logγ m]|∇xψt(0)|+

+[ν(Λ + 1) sup
0≤t≤T

|X̃(t)| + ΛCν + Λ logγ n] ≤ a|∇xψt(0)| + b,

where a and b come from the estimate (5.3) of sup0≤t≤T |X̃(t)|. Again from the Gronwall

inequality we get

sup
0≤t≤T

|∇xψt(0)| ≤ (a+ b)eaT − b

a
≤ (a+ b)eaT

a
≤ 2eaT =

11



= 2 exp

[
T
[
exp(ν(Λ + 1)T )

](
ν(Λ + 1) log2γ p+ ΛCν + Λ logγ n+ logγ m

)]
≤

≤ C21e
C22 logγ neC23 logγ meC24 log2γ p

for ω ∈ Kn(Λ), ω′ ∈ Lm and σ ∈ Sp.

Let B(0, R) denote the ball of radius R centered in 0 ∈ R
d. We will now investigate the

size of the set [x : ψT (x) = 0] for ω ∈ Kn(Λ), ω′ ∈ Lm and σ ∈ Sp. We have a following

lemma which may be prooved in the same way as Lemma 11, p. 252 of [7].

Lemma 7 For ω ∈ Kn(Λ), ω′ ∈ Lm and σ ∈ Sp the random set [x : ψT (x) = 0] is nonempty

and there exists a constant C31 > 0 independent of n, m, p such that

[x : ψT (x) = 0] ⊆ B(0, C31(logγ n+ logγ m+ log2γ p)) �

For ω′ ∈ Lm and x1 ∈ B(0, C31(logγ n+ logγ m+ log2γ p)) we have

|V−∞,0(t,x; τ0,x1(ω
′))| = |V−∞,0(t,x + x1;ω

′)| ≤

≤ ν|x + x1| + logγm ≤ ν|x| + νC31(logγ n+ logγ m+ log2γ p) + logγ m ≤

≤ ν|x| + (1 + νC31)(logγ n+ logγ m+ log2γ p) ≤ ν|x| + C31(logγ n+ logγ m+ log2γ p),

provided C31 chosen sufficently large, since ν ∈ (0, 1). Hence τ0,x1(Lm) ⊂ LEnt(M)+1, where

logγ M = C31(logγ n+ logγ m+ log2γ p).

⋃

|x|≤C31(logγ n+logγ m+log2γ p)

τ0,x(Lm) ⊆ LEnt(M)+1.

Using all these we have

∫

Rd

νT
0 (dx;ω, ω′σ)

GT (0;ω, τ0,x(ω′), σ)
≥ C41

∫

Rd

νT
0 (dx;ω, ω′σ)

|∇xψT (0;ω, τ0,x(ω′), σ)|d ≥

≥ C42
1

eC23 logγ(Ent(M)+1)

1

eC22 logγ n

1

eC24 log2γ p
≥ C43

1

eC44 logγ n

1

eC45 logγ m

1

eC46 log2γ p
,

for ω ∈ Kn(Λ), ω′ ∈ Lm and σ ∈ Sp. Hence

[Qf ][A] =

∫

Ω

∫

Σ
JT (A;ω, σ)f(ω)P(dω)Q(dσ) ≥

∫

A
Γ(ω′)P(dω′)

∫

Ω

∫

Σ
f(ω)∆(ω, σ)P(dω)Q(dσ),

12



where

Γ(ω′) = C51
1

eC45 logγ m
for ω′ ∈ Lm+1 \ Lm,

∆(ω, σ) =
1

eC44 logγ n

1

eC46 log2γ p
for ω ∈ Kn+1 \Kn, σ ∈ Sp+1 \ Sp.

Finaly we obtain the formula equivalent to the formula (50) of [7]:

Qf(ω′) ≥ Γ(τ−T,0(ω′))

∫

Ω

∫

Σ
f(ω)∆(ω, σ)dPdQ.

Now denote Yn = QnY . Choose the minimum of
∫
Σ

∫
Ω Y

+
n ∆dPdQ and

∫
Σ

∫
Ω Y

−
n ∆dPdQ;

say it is the first one. We have then

‖Yn+1‖L1 ≤ ‖QY +
n ‖L1 − ‖QY −

n ‖L1 −
∫

Σ

∫

Ω
Y +

n ∆dPdQ

∫

Ω
ΓdP ≤

‖Yn‖L1 −
∫

Sn

∫

Kn

Y +
n ∆dPdQ

∫

Ω
ΓdP ≤

‖Yn‖L1 − e−C44 logγ ne−C46 log2γ n

∫

Sn

∫

Kn

Y +
n dPdQ

∫

Ω
ΓdP =

‖Yn‖L1 + e−C44 logγ ne−C46 log2γ n

∫

Ω
ΓdP×

×
(∫

Sn

∫

Kc
n

Y +
n dPdQ +

∫

Sc
n

∫

Kc
n

Y +
n dPdQ +

∫

Sc
n

∫

Kn

Y +
n dPdQ −

∫

Σ

∫

Ω
Y +

n dPdQ

)
.

Since
∫
Ω YndP = 0 we get

∫
Ω Y

+
n dP = 1

2‖Yn‖L1 . From this and the Schwartz inequality we

have ∫

Sn

∫

Kc
n

Y +
n dPdQ +

∫

Sc
n

∫

Kc
n

Y +
n dPdQ =

∫

Kc
n

Y +
n dP ≤

√
P[Kc

n]‖Y +
n ‖L2 ≤

≤ C61e
−C62 log2γ n‖Y ‖L2 ,

∫

Sc
n

∫

Kn

Y +
n dPdQ = Q[Sc

n]

∫

Kn

Y +
n dP ≤ C

log4γ n

√
P[Kn]‖Yn‖L2 ≤ C

log4γ n
‖Y ‖L2 ,

for some positive constants. We conclude with

‖Yn+1‖L1 ≤ ‖Yn‖L1

(
1 − C70e

−C72 logγ n
)

+ C71e
−C73 log2γ n,

where the constants depend only on ‖Y ‖L2 . Following the same argument we get

‖Yn‖L1 ≤ C71

n∑

k=1

e−C73 log2γ k
n∏

p=k+1

(
1 − C70e

−C72 logγ p
)

+ ‖Y ‖L1

n∏

p=1

(
1 − C70e

−C72 logγ p
)
.
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Since 1 − x ≤ e−x, the k-th term in the sum above may be estimated by:

C71e
−C73 log2γ k exp



−C70

n∑

p=k+1

e−C72 logγ p



 .

We will estimate the last expression in two separate cases. For k > [n
2 ] we may estimate it

by
C81

nC82 log2γ−1(n
2
)
.

For k < [n
2 ]

n∑

p=k+1

e−C72 logγ p =

n∑

p=k+1

1

pC72/ log1−γ p
≥ n1−r,

where r ∈ (0, 1) and n is sufficiently large. Hence the k-th term of the sum is estimated by

C91e
−C71n1−r

. This is the end of the proof of our lemma �

Remark. One can see that the proof above remains valid for the sequence of Lp-norms

of the iterates QnY for any p ∈ (1, 2).

6 Tightness

To establish the tightness of the family {Xε(t)}t≥0, ε > 0, we will use the following lemma

(see [7], Lemma 12, p. 259):

Lemma 8 Suppose that {Yε(t)}t≥0, ε > 0 is a family of processes with trajectories in

C[0,∞), such that Yε(0) = 0 for ε > 0. Suppose further that for any L > 0 there exist

constants p, C, ν > 0 such that for any 0 ≤ s ≤ t ≤ u ≤ L

ME
[
|Yε(t) − Yε(s)|2|Yε(u) − Yε(t)|p

]
≤ C(u− s)1+ν .(6.1)

Then the family {Yε(t)}t≥0, ε > 0, is tight. �

We will show that the process {Xε(t)} satisfies the condition (6.1) with p = 1 and ν = 1
2 .

Let us introduce the notation

V(ρ) := V(ρ,X(ρ;ω, σ);ω)

and similarly for each component Vi, i = 1, ..., d of the field V. To begin with, we show that

14



Lemma 9 For any L > 0 there exists a constant C > 0 such that for any 0 ≤ s ≤ t ≤ u ≤ L,

ε > 0 we have

ME
[
|Xε(t) − Xε(s)|2

]
≤ C(t− s).(6.2)

Proof. The left hand side of the inequality above may be rewritten in the form

ME



∣∣∣∣∣ε
∫ t

ε2

s

ε2

V(ρ)dρ+ ε

[
B(

t

ε2
;σ) − B(

s

ε2
;σ)

]∣∣∣∣∣

2

 ≤(6.3)

2ME


ε2

∣∣∣∣∣

∫ t

ε2

s

ε2

V(ρ)dρ

∣∣∣∣∣

2

+ 2ME

[∣∣∣∣ε
[
B(

t

ε2
;σ) − B(

s

ε2
;σ)

]∣∣∣∣
2
]
.

For any ε > 0 the process {εB( t
ε2 )}t≥0 has the law of the standard Brownian motion in R

d,

so

ME

[∣∣∣∣ε
[
B(

t

ε2
;σ) − B(

s

ε2
;σ)

]∣∣∣∣
2
]

=

d∑

i=1

ME

[[
ε

[
Bi(

t

ε2
;σ) − Bi(

s

ε2
;σ)

]]2
]

= d(t− s).

The first term of the right hand side of (6.3) may be estimated as follows. Using the station-

arity of {V(t)}t≥0 (see Lemma 2) we may write

ME


ε2

∣∣∣∣∣

∫ t

ε2

s

ε2

V(ρ)dρ

∣∣∣∣∣

2

 = ε2

d∑

i=1

ME

[
2

∫ t

ε2

s

ε2

∫ η

s

ε2

Vi(ρ)Vi(η)dρdη

]
=(6.4)

2ε2
d∑

i=1

∫ t−s

ε2

0
dη





Ent( η
T

)∑

k=1

∫ η−(k−1)T

η−kT
ME [Vi(η − ρ)Vi(0)] dρ



+

+2ε2
d∑

i=1

∫ t−s

ε2

0
dη

∫ η−Ent( η
T

)T

0
ME [Vi(η − ρ)Vi(0)] dρ.

Then, from the Schwartz inequality for the last term above we have:

2ε2
d∑

i=1

∫ t−s

ε2

0
dη

∫ η−Ent( η
T

)T

0
ME [Vi(η − ρ)Vi(0)] dρ ≤(6.5)

2ε2
d∑

i=1

∫ t−s

ε2

0
T‖Vi‖2

L2
dη ≤ 2ε2

d∑

i=1

T‖Vi‖2
L2

t− s

ε2
= C(t− s),

for a constant C > 0. Now we will estimate the first sum of the right-hand side of (6.4).

Notice that for ρ ∈ [η − kT, η − (k− 1)T ] we have η − ρ ∈ [(k− 1)T, kT ]. From Lemma 5 we

get

ME [Vi(η − ρ)Vi(0)] = ME
[
Vi(η − ρ− (k − 1)T )Qk−1Vi(0)

]
.
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Using the stationarity of {V(t)}t≥0 and the estimation coming from Lemma 6 we may ma-

jorize the k-th term of the sum under consideration by C
k2 , for some constant C > 0 depending

only on ‖V‖2
2. Hence the whole sum will be bounded from above by C ′(t− s). This finishes

the proof of (6.2) �

Since the sum
∑∞

k=1
1
k2 is convergent, from the argument above we can deduce the fol-

lowing corollary:

Corollary 1 The integrals

∫ ∞

0
ME [Vi(ρ,X(ρ))Vj(0,0)] dρ

for i, j = 1, 2, . . . , d converge �

To make use of Lemma 8 we will now establish the estimates of:

ME
[
|Xε(u) − Xε(t)| |Xε(t) − Xε(s)|2

]
≤(6.6)

2ME



∣∣∣∣∣ε
∫ u

ε2

t

ε2

V(ρ)dρ

∣∣∣∣∣

∣∣∣∣∣ε
∫ t

ε2

s

ε2

V(ρ)dρ

∣∣∣∣∣

2

+ 2ME

[∣∣∣∣∣ε
∫ u

ε2

t

ε2

V(ρ)dρ

∣∣∣∣∣

∣∣∣∣ε
[
B(

t

ε2
) − B(

s

ε2
)

]∣∣∣∣
2
]

+

+2ME



∣∣∣∣ε
[
B(

u

ε2
) − B(

t

ε2
)

]∣∣∣∣

∣∣∣∣∣ε
∫ t

ε2

s

ε2

V(ρ)dρ

∣∣∣∣∣

2

+

+2ME

[∣∣∣∣ε
[
B(

u

ε2
) − B(

t

ε2
)

]∣∣∣∣
∣∣∣∣ε
[
B(

t

ε2
) − B(

s

ε2
)

]∣∣∣∣
2
]

= I + II + III + IV.

We will estimate each of the four terms of the utmost right hand side of (6.6) separately.

From (6.2) and the Schwartz inequality we get that both II and IV can be estimated from

above by C(u− s)
3
2 . Now turn to the I term of (6.6). Define

Γ1,k :=

∣∣∣∣∣ε
∫ u−s

ε2
−ρ−(k−1)T

t−s

ε2
−ρ−(k−1)T

V(τ)dτ

∣∣∣∣∣ , Γ2,k := Vi(η − ρ− (k − 1)T ).

We transform I in the similar way as we did in (6.4) to get

I ≤ 4ε2
d∑

i=1

∫ t−s

ε2

0
dη

Ent( η
T

)∑

k=1

∫ η−(k−1)T

η−kT
ME

[
Γ1,kΓ2,kQ

k−1(Vi(0))
]
dρ+

+4ε2
d∑

i=1

∫ t−s

ε2

0
dη

∫ η−Ent( η
T

)T

0
ME [Γ1,1Γ2,1Vi(0)] dρ.
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We will now estimate ME
[
Γ1,kΓ2,kQ

k−1(Vi(0))
]
. We have

ME
[
Γ1,kΓ2,kQ

k−1(Vi(0))
]

=(6.7)

∫

Γ1,k≤kν(u−t)
1
2

Γ1,kΓ2,kQ
k−1(Vi(0)) +

∫

Γ1,k>kν(u−t)
1
2

Γ1,kΓ2,kQ
k−1(Vi(0)),

where the constant ν > 0 will be determined later. The first integral above will be less or

equal to C
k2 (u− t)

1
2 . Since by (6.2) we have

P ⊗ Q[Γ1,k > kν(u− t)
1
2 ] ≤ 1

k2ν(u− t)
‖Γ1,k‖2

L2 ≤ C

k2ν
,

we may write for the second term of (6.7)
∣∣∣∣∣

∫

Γ1,k>kν(u−t)
1
2

Γ1,kΓ2,kQ
k−1(Vi(0))

∣∣∣∣∣ ≤

(P ⊗ Q[Γ1,k > kν(u− t)
1
2 ])β1(MEΓ2

1,k)
1
2 (MEΓ

1
β2
2,k)

β2‖Qk−1(Vi(0))‖
L

1
β3

≤ C(u− t)
1
2

k2
,

for some β1, β2, β3 > 0, β1 + β2 + β3 + 1
2 = 1, νβ1 > 0. From the same argument it follows

that ∫ η−Ent( η
T

)T

0
ME [Γ1,1Γ2,1Vi(0)] ≤

∫ T

0
C(u− t)

1
2 ≤ C ′(u− t)

1
2 .

Finally we have

I ≤ 4ε2
d∑

i=1

∫ t−s

ε2

0
dη




Ent( η
T

)∑

k=1

C(u− t)
1
2

k2
+ C ′(u− t)

1
2


 ≤ C ′′(t− s)(u− t)

1
2 ≤ C ′′(u− s)

3
2 .

Now, with the help of Hölder inequality , the proof of the estimation of the third term in

(6.6)may be reduced to the problem of showing that


ME

∣∣∣∣∣ε
∫ t

ε2

s

ε2

V(ρ)dρ

∣∣∣∣∣

3



2
3

≤ C(t− s).

Since

ME

∣∣∣∣∣ε
∫ t

ε2

s

ε2

V(ρ)dρ

∣∣∣∣∣

3

= ε2ME

[∣∣∣∣∣ε
∫ t

ε2

s

ε2

V(ρ1)dρ1

∣∣∣∣∣

∫ t

ε2

s

ε2

∫ t

ε2

s

ε2

Vi(ρ2)Vi(ρ3)dρ2dρ3

]
,

it suffices to show the inequality in the case of ρ1 ≥ ρ2 ≥ ρ3 (other cases are also covered

by the symmetry of the term under the last integral above). But now we can use the same

method as presented in the proof of estimate of I and we finaly get

III ≤ C(u− s)
3
2 .
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This ends the proof of the inequality

ME
[
|Xε(u) − Xε(t)| |Xε(t) − Xε(s)|2

]
≤ C(u− s)

3
2

and by the Lemma 8 the family of the laws of processes {Xε(t)}t≥0, ε > 0, is tight on

C([0,+∞),Rd).

7 Limit identification

To finish the proof of our theorem we have to show that there exists only one process that

can be the weak limit of the family {Xε(t)}t≥0 as ε ↓ 0. We prove this with the help of

Strook-Varadhan martingale identification theorem. We start with the following lemma:

Lemma 10 (cf. [7], Lemma 13, p. 260) For any γ ∈ (0, 1), M ∈ N, ψ : (Rd)M → R+

continuous and bounded, 0 ≤ s1 ≤ . . . ≤ sM ≤ s and i = 1, . . . , d, there exists a constant

C > 0 such that for any ε > 0 and 0 ≤ s ≤ t ≤ L

|ME[(Xi
ε(t+ εγ) − Y i

ε (t))ψ(Xε(s1), . . . ,Xε(sM ))]| ≤ Cε.

Proof. We have

|ME[(Xi
ε(t+ εγ) −Xi

ε(t))ψ(Xε(s1), . . . ,Xε(sM ))]| =(7.1)
∣∣∣∣∣ME

[(
ε

∫ t

ε2
+εγ−2

t

ε2

Vi(ρ)dρ

)
ψ(Xε(s1), . . . ,Xε(sM ))

]∣∣∣∣∣+

∣∣∣∣ME

[
ε

(
Bi

(
t+ εγ

ε2

)
−Bi

(
t

ε2

))
ψ(Xε(s1), . . . ,Xε(sM ))

]∣∣∣∣ .

The second term above is equal to
∣∣∣∣ME

[
ε

(
Bi

(
t+ εγ

ε2

)
−Bi

(
t

ε2

))]
ME [ψ(Xε(s1), . . . ,Xε(sM ))]

∣∣∣∣ = 0.

The first term of the right hand side of (7.1) may be rewritten in the form

ME

[
ε

∫ εγ−2

0
Vi(ρ)Ψdρ

]
,

where Ψ is a V−∞,0-measurable random variable for any σ ∈ Σ. We get

ME

[
ε

∫ εγ−2

0
Vi(ρ)Ψdρ

]
≤

Ent( εγ−2

T
)∑

k=1

ε

∫ (k+1)T

kT
ME[Vi(ρ)Ψ]dρ+ ε

∫ T

0
ME[Vi(ρ)Ψ]dρ.
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The last integral above is of order ε. Since ME[Vi(ρ)] = 0 we may estimate as we already

did in the previous section:

Ent( εγ−2

T
)∑

k=1

ε

∫ (k+1)T

kT
ME[Vi(ρ)Ψ]dρ =

Ent( εγ−2

T
)∑

k=1

ε

∫ (k+1)T

kT
ME[Vi(ρ)(Ψ − MEΨ)]dρ =

Ent( εγ−2

T
)∑

k=1

ε

∫ (k+1)T

kT
ME[Vi(ρ− (k − 1)T )Qk−1(Ψ − MEΨ)]dρ ≤

Ent( εγ−2

T
)∑

k=1

ε

∫ (k+1)T

kT

C

k2
dρ ≤ C ′ε�

Now we have

Lemma 11 Under the assumptions of Lemma 10, for any ε > 0 we have

|ME[[(Xi
ε(t+ εγ) −Xi

ε(t))(X
j
ε (t+ εγ) −Xj

ε (t)) − εγDij ]ψ(Xε(s1), . . . ,Xε(sM ))]| = o(εγ),

for i, j = 1, . . . , d, where the matrix [Dij ] is given by (2.3), i.e.

Dij =

∫ ∞

0
ME[Vi(t)Vj(0) + Vj(t)Vi(0)]dt+ δij .

Proof. Notice that

ME[(Xi
ε(t+ εγ) −Xi

ε(t))(X
j
ε (t+ εγ) −Xj

ε (t))ψ(Xε(s1), . . . ,Xε(sM ))] =(7.2)

ME

[
ε2
∫ t+εγ

ε2

t

ε2

∫ t+εγ

ε2

t

ε2

Vi(ρ)Vj(ρ
′)dρdρ′ψ

]
+

ME

[
ε2
(
Bi

(
t+ εγ

ε2

)
−Bi

(
t

ε2

))(
Bj

(
t+ εγ

ε2

)
−Bj

(
t

ε2

))
ψ

]
+

ME

[
ε2
∫ t+εγ

ε2

t

ε2

Vi(ρ)

(
Bj

(
t+ εγ

ε2

)
−Bj

(
t

ε2

))
dρψ

]
+

ME

[
ε2
∫ t+εγ

ε2

t

ε2

Vj(ρ)

(
Bi

(
t+ εγ

ε2

)
−Bi

(
t

ε2

))
dρψ

]
=

= I + II + III + IV.

It is easy to see that |II − εγδijME[ψ]| = 0. Following [7] we also get the estimate:

|I − εγ
∫ +∞

0
[Vi(t)Vj(0) + Vj(t)Vi(0)]dtME[ψ]| = o(εγ)(7.3)
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To finish the proof of the lemma we are left with the proof of the fact that the terms III

and IV in (7.2) are of magnitude o(εγ). Once again we may find a V−∞,0-measurable random

variable Ψ such that III may be rewritten in the form

∣∣∣∣∣ε
2

∫ εγ−2

0
ME

[
Vi(ρ)Bj(ε

γ−2)Ψ
]
dρ

∣∣∣∣∣ .

Notice that up to a term of order o(εγ) we have

ε2
∫ εγ−2

0
|ME

[
Vi(ρ)Bj(ε

γ−2)Ψ
]
|dρ =

εγ
1

Ent( εγ−2

T )T

∫ Ent( εγ−2

T
)T

0
|ME

[
Vi(ρ)Bj(ε

γ−2)Ψ
]
|dρ.

Since εγ−2 → +∞ as ε ↓ 0 it suffices to show that

lim
N↑+∞

1

N

∫ NT

0
|ME [Vi(ρ)Bj(NT )Ψ] |dρ = 0.

We may write
1

N

∫ NT

0
|ME [Vi(ρ)Bj(NT )Ψ] |dρ =(7.4)

1

N

∫ T

0
|ME [Vi(ρ)Bj(NT )Ψ] |dρ+

1

N

∫ NT

T
|ME [Vi(ρ)Bj(NT )Ψ] |dρ =

1

N

∫ T

0
|ME [Vi(ρ)Bj(NT )Ψ] |dρ+

1

N

∫ (N−1)T

0
|ME [Vi(ρ)Bj((N − 1)T )QΨ] |dρ.

Continue this way and we get that (7.4) is equal

1

N

N−1∑

k=0

∫ T

0
|ME

[
Vi(ρ)Bj((N − k)T )QkΨ

]
|dρ.(7.5)

Now let Ψ̃ = Ψ − MEΨ. Since Q1 = 1, (7.5) may be rewritten in the form

1

N

N−1∑

k=0

∫ T

0
|ME

[
Vi(ρ)Bj((N − k)T )QkΨ̃

]
|dρ+

1

N

N−1∑

k=0

∫ T

0
|ME [Vi(ρ)Bj((N − k)T )]ME[QkΨ̃]|dρ.

But

ME [Vi(ρ)Bj((N − k)T )] = M[E[Vi(ρ)]Bj((N − k)T )] = 0,
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since E[Vi(ρ)] = 0. The first term above may be estimated with help of Lemma 6. We have

‖QkΨ̃‖Lq ≤ C
k2 for any q ∈ [1, 2), k ∈ N, the constant C > 0 depending only on q and ‖Ψ̃‖Lq .

And we estimate (7.5) from above by

1

N

N−1∑

k=0

T‖Vi‖
L

4q
3q−4

‖Bj((N − k)T )‖L4‖QkΨ̃‖Lq ≤ C ′

N

N−1∑

k=0

√
N − k

k2
≤ C ′′

√
N

−→
N↑+∞

0.

This ends the proof of Lemma 11 �

Lemma 12 For any γ ∈ (0, 1) and 0 < γ′ < γ there exists a constant C > 0 such that

ME[|Xε(t+ εγ) − Xε(t)|4] ≤ Cε2γ′

.

Proof. We have

Xε(t+ εγ) − Xε(t) = ε

∫ t

ε2
+εγ−2

t

ε2

Vi(ρ)dρ+ ε

(
Bi

(
t+ εγ

ε2

)
−Bi

(
t

ε2

))
.

Define

A = ε

∫ t

ε2
+εγ−2

t

ε2

Vi(ρ)dρ, B = ε

(
Bi

(
t+ εγ

ε2

)
−Bi

(
t

ε2

))
.

It suffices to find the estimates of the type i) ME[|A4|] ≤ C1ε
2γ′

, ii) ME[|A3B|] ≤ C2ε
2γ′

, iii)

ME[|A2B2|] ≤ C3ε
2γ′

, iv) ME[|AB3|] ≤ C4ε
2γ′

, v) ME[|B4|] ≤ C5ε
2γ′

for some constants

C1, . . . , C5 > 0. It is easy to see that once we have established i) and v) we get ii) − iv) by

Schwartz inequality. But v) is obvious. To prove i) we have to find an appropriate estimate

from above of the term

ε4
∫ εγ−2

0
dρ1

∫ ρ1

0
dρ2

∫ ρ2

0
dρ3

∫ ρ3

0
ME[Vi(ρ2)Vi(ρ3)Vi(ρ4)Vi(0)]dρ4,(7.6)

and this is exactly the result of Lemma 15 of [7] �

Now let f ∈ C∞
0 (Rd). Let ψ be as in Lemma 11 and let tm = s + mεγ . From the Tay-

lor expansion formula we have

ME[(f(Xε(t)) − f(Xε(s)))Ψ] =

∑

m:s<tm<t

ME {〈[Xε(tm+1) − Xε(tm)], (∇f)(Xε(tm))〉Ψ}+

1

2

∑

m:s<tm<t

ME {〈[Xε(tm+1) − Xε(tm)] ⊗ [Xε(tm+1) − Xε(tm)], (∇⊗∇f)(Xε(tm))〉Ψ}+
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1

6

∑

m:s<tm<t

ME {〈[Xε(tm+1) − Xε(tm)] ⊗ [Xε(tm+1) − Xε(tm)] ⊗ [Xε(tm+1) − Xε(tm)],

(∇⊗∇⊗∇f)(Xε(θm))〉Ψ} ,

where θm is a point in the segment [Xε(tm),Xε(tm+1)]. The first term of the sum above

is estimated with help of Lemma 10 by the term of magnitude o(εγ). The third one, by

Hölder inequality and Lemma 12, may be estimated from above by Cε
3γ′

2 . Choosing carefully

γ ∈ (0, 1) and γ′ ∈ (0, γ) we get again the term of magnitude o(εγ). The second term we may

rewrite in the form

1

2

∑

m:s<tm<t

ME {〈[Xε(tm+1)−Xε(tm)] ⊗ [Xε(tm+1)−Xε(tm)] −Dε, (∇⊗∇f)(Xε(tm))〉Ψ}+

1

2

∑

m:s<tm<t

ME {〈Dε, (∇⊗∇f)(Xε(tm))〉Ψ} ,

where

Dε = ME[[Xε(tm+1) − Xε(tm)] ⊗ [Xε(tm+1) − Xε(tm)]].

And this, by Lemma 11, up to the terms of order o(εγ) is equal to:

1

2

∑

m:s<tm<t




d∑

i,j=1

εγDijME[∂2
ijf(Xε(tm))Ψ] + o(εγ)


 .(7.7)

Thus we get that the limit of the family of processes {Xε(t)}t≥0 as ε ↓ 0 must have the law

µ on the space C([0,+∞),Rd) such that for any f ∈ C∞
0 (Rd),

f(x(t)) − 1

2

d∑

i,j=1

Dij

∫ t

0
∂2

ijf(x(ρ))dρ, t ≥ 0

is a martingale under µ. By the theorem of Strook and Varadhan (see e.g. [14]) it may be

identified as a diffusion with the covariance matrix D = [Dij ]. This is the end of the proof

of our theorem �
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