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Numerical modelling of non-Newtonian flows usually involves the coupling between 
equations of motion charac-terized by an elliptic character, and the fluid constitutive equation, 
which defines an advection problem linked to the fluid history. There are different numerical 
techniques to treat the hyperbolic character of advection equations. In non-recirculating flows, 
Eulerian discretisations can give an accurate mesh size dependent solution within a short 
computing time. However, the existence of steady recirculating flow areas induces additional 
difficulties. Actually, in these flows neither boundary conditions nor initial conditions are 
known. In a former paper we have proved that in such flows Eulerian techniques lead to 
solutions with significant deviations from the exact one. These deviations obviously de-crease as 
the mesh density increases. In other paper, the authors have proved that some linear advection 
equations modelling non-Newtonian fluid behaviors have only one solution in steady 
recirculating flows. This solution is found imposing the solution periodicity along the closed 
streamlines, where the equation is integrated by the method of characteristics. In this paper we 
propose a characteristics algorithm for solving advection equations in general steady flows, 
which may contain recirculating areas.

Keywords: Advection equation; Two-dimensional steady recirculating flows; Method of characteristics; Non-Newtonian fluid

mechanics
1. Introduction

Numerical modelling of non-Newtonian fluid flows usually involves the coupling between motion
equations, which leads to an elliptic problem, and the fluid constitutive equation, which introduces an

advection problem related to the fluid history.
* Corresponding author.

E-mail address: francisco.chinesta@paris.ensam.fr (F. Chinesta).
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For example, in short fiber suspensions, the fiber orientation is usually described from a second-order
tensor s, which is symmetric and has a unit trace. This tensor can be written, under a certain number of

assumptions [1–3], as s ¼
a

TrðaÞ, with the evolution of tensor a given by

da

dt
¼ Xa� aXþ kðDaþ aDÞ � Dr a

�
�

I

3

�
; ð1Þ

where a is a symmetric second-order tensor, which usually verifies TrðaÞ 6¼ 1, D represents the strain rate

tensor, X is the vorticity tensor, k is a constant which depends on the fibers aspect ratio and Dr is a diffusion
coefficient that takes into account the fibers interactions.

From a physical point of view, we can consider that the eigenvalues of the orientation tensor s represent
the probability of the fibers to be aligned in the direction of the corresponding eigenvectors.

Viscoelastic fluids can also be described by differential models [4,5]. In these models the evolution of the

extra-stress tensor s is given by an advection equation. For example, the upper convected Maxwell�s model

is given by

k
ds

dt
þ s ¼ 2lD; ð2Þ

where d=dt denotes the upper convected derivative

ds

dt
¼

ds

dt
�Gradvs� sðGradvÞT ð3Þ

and k is a relaxation time.

Another example is the Pom–Pom viscoelastic model, described in [6], where the extra-stress tensor

depends on both the molecular orientation s and the molecular extension k. The evolutions of both vari-

ables are governed by the following advection equations

da

dt
¼ Xa� aXþ Daþ aD� 1

sb
a

�
�

I

3

�
; ð4Þ

s ¼
a

TrðaÞ ð5Þ

and

dk
dt

¼ kTrðsDÞ � 1

ss
ðk� 1Þ; ð6Þ

where sb and ss are two relaxation times.

All the previous equations can be written in the form

da
dt

¼ AðxðtÞÞaþ BðxðtÞÞ; ð7Þ

where a is the vectorial representation of the unknown fields. In the case of non-linear models standard

linearizations lead also to the previous linear equation.

The integration of Eq. (7) in steady non-recirculating flows does not introduce significant difficulties

when an accurate numerical technique for treating hyperbolic advection equations is used. Among these

techniques, the method of characteristics takes into account that the equation solution at any point depends

only on the upstream solution. In spite of its low numerical diffusion and accuracy, this technique remains
very time-consuming. Thus, in the original version of the method of characteristics, widely used in the

context of non-Newtonian fluid flows simulation [7–13], for each point P where the solution is searched, we
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must reconstruct the upstream path until reaching the inflow boundary (where a boundary condition is
imposed) at point Q, and from the solution known at point Q the equation can be integrated, using first or

higher order finite differences, along the streamline until returning to the departure point P .
To alleviate the computing time required by the original version of the method of characteristics, some

semi-Lagrangian techniques have been proposed [14,15] and used in the framework of non-Newtonian

flows simulations (see for example [16,17] among many others). In general, these techniques have been

successfully applied for solving evolution problems. In these techniques, the solution at point x at time

t þ Dt is computed from the solution existing at time t in the position occupied by the considered point at

time t. When the solution is computed in a certain number of points (nodes), their positions at previous
times do not correspond necessarily with the nodes, and in consequence interpolations (with the associated

numerical diffusion effects) are required in order to compute the solution at those points from the solution

known at the nodes. Using these techniques, steady solutions are found from the steady state of the

evolution problems.

In a former work [18] we have proposed a semi-Lagrangian technique able to compute directly steady

solutions of the advection equation governing the fiber orientation in short fibers suspensions flows. This

strategy, based on some of the ideas found in [4] and [19], combines an upstream integration along the

characteristics associated to each node and a standard interpolation on the mesh skeleton. Thus, this
technique can be considered as a standard semi-Lagrangian strategy if different times steps are considered

for each node where the solution is searched. The steady solution is then reached after some iterations [18].

The consideration of different time steps is justified if one looks only for the steady solution.

Today, it is usual to find fully Eulerian discretisations of Eq. (7) using for example the discontinuous

finite element method, the SUPG technique, the discontinuous finite volume method,. . . (see for example

[19,20] and the references therein).

When we consider the integration of this type of equations in a steady recirculating flow, the problem

seems a priori ill defined, because neither initial nor boundary conditions are given. As described in [12],
some stabilized Eulerian techniques may induce, in some particular cases, a significant numerical diffusion

when the mesh is not fine enough. These undesirable effects can be reduced by the use of finer meshes in the

regions with high gradients or discontinuities in the solution. Moreover, the standard interpolation of

orientation tensors introduce additional difficulties as described in [18]. Thus, the required mesh must

sometimes be much finer than the mesh needed to integrate accurately the equation of motion in order to

limit the numerical diffusion effects.

In this way, the integration of Eq. (7) using characteristics type methods seems to be simpler in this type

of flows. A first possibility is the use of a semi-Lagrangian strategy. However, this strategy cannot avoid the
numerical diffusion in the recirculating areas, nor reproduce the solution discontinuity between recircu-

lating and non-recirculating flow regions. Thus, a fully Lagrangian technique seems to be the most accurate

numerical procedure, but as previously commented, advection equations in steady recirculating flows seem

to define an ill posed problem, because neither initial conditions nor boundary conditions are given.

However, in [21], we proved that in fact some linear advection equations modelling non-Newtonian fluid

behaviors define a well posed problem, and some results concerning the existence and unicity of steady

solutions were given. These solutions can be found imposing the solution periodicity along the closed

streamlines of the flow, where the advection equation is integrated by the method of characteristics. The
non-linear character of constitutive equations was considered in [22]. In this case, standard linearization

strategies were used to impose the solution periodicity of each one of the linearized problems resulting from

the iteration procedures.

In this paper we describe the numerical algorithm used to compute steady solutions of linear advection

equations (the non-linear case is reduced to the linear one by using standard linearizations) in general

steady flows containing recirculating areas. The main particularity of this strategy is to generalize classical

characteristic techniques for treating general flows containing recirculating areas.
3
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The numerical strategy described in this work has some particularities: (i) the integration by charac-
teristics is carried out independently in each element (then a parallel computation is possible); (ii) an ac-

curate integration is performed in each element, and an exact expression of the solution can be obtained in

some cases as described in [18]; (iii) the element solutions assembling is achieved by means of a fast iteration

procedure and (iv) an accurate solution in steady recirculating flows is obtained by imposing the solution

periodicity along the closed streamlines. The main contribution of this paper lies in the establishment of an

original characteristics algorithm for treating advection equations defined in steady recirculating flows.

Many of the experimental and industrial flows show recirculating areas or recirculate themselves. As an

example, in a lid-driven cavity problem, the flow recirculates under the influence of a moving plate. In a
contraction or in an expansion flow (as encountered, for example, in extrusion processes), various recir-

culating areas are observed [23–25]. Actually, many rheometric devices involve this type of flows. Most of

these phenomena are associated with a steady state of 2D flows. By this reason, we consider in this paper

2D steady flows which take place, obviously, in 3D geometries. In spite of the fact that the flow is assumed

2D, the advection equation defined in those flows involve variables defined in the 3D space (for example the

fiber orientation).

Notation:

• We denote a vector by an underline, e.g. a, with components ai.
• In the same way, the components of a matrix a are expressed by aij.
2. Steady solution of linear advection equations in steady non-recirculating flows

We consider the general form of linear advection equations given by Eq. (7), where we assume that

vector a contains n scalar unknowns, i.e. a 2 Rn

a ¼

a1
a2
..
.

an

0
BBB@

1
CCCA: ð8Þ

The matrix A and the vector B may depend on the spatial coordinates (the flow kinematics depends on the
spatial coordinates).

The streamlines result from the integration of

dx
dt

¼ vðxðtÞÞ; ð9Þ

which represents the characteristics of Eq. (7).

We describe now the main idea of the numerical algorithm proposed in this paper. For this purpose, we

consider two points A and B, both located on the same flow streamline. B is also assumed to be in a

downstream position with respect to the position of A.

We define the Ik vector, verifying Iki ¼ dik (where d refers to the Kronecker�s function). Since Eq. (7) is

linear, its solution can be written as the addition of the general solution ah of the homogeneous differential

equation

dah
dt

¼ AðxðtÞÞah ð10Þ

and a particular solution of the non-homogeneous differential equation (Eq. (7)).
4



As a linear combination of solutions is also a solution of the homogeneous equation, we can integrate by
the method of characteristics, from A to B, the following n advection equations

dakh
dt

¼ AðxðtÞÞakh 8k 2 ½1; . . . ; n� ð11Þ

with the initial conditions given by

akhðt ¼ 0Þ ¼ akhðAÞ ¼

ak1ðAÞ
ak2ðAÞ

..

.

akk�1ðAÞ
akkðAÞ
akkþ1ðAÞ

..

.

aknðAÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼ Ik ¼

0

0

..

.

0

1

0

..

.

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

: ð12Þ

The solutions of these equations are noted by akh, where the index �h� indicates that these solutions are
related to the homogeneous equation. Now, we can express the general solution ah of the homogeneous

equation, from a linear combination, i.e.

ah ¼
Xk¼n

k¼1

akakh; ð13Þ

where ak, k ¼ ½1; . . . ; n�, represent the n scalar unknowns.

To obtain a particular solution ap of Eq. (7), we integrate this equation from an arbitrary initial con-

dition, for example apðt ¼ 0Þ ¼ apðAÞ ¼ 0.

The general solution of the linear advection equation a results

a ¼ ah þ ap ¼ ap þ
Xk¼n

k¼1

akakh: ð14Þ

Now, if we are looking for the solution at the point B we can write

aðBÞ ¼ ahðBÞ þ apðBÞ ¼ apðBÞ þ
Xk¼n

k¼1

akakhðBÞ ¼ CAB þ DABa; ð15Þ

where CAB ¼ apðBÞ, the kth-column of DAB corresponds to the solution akh at the point B, and the vector a
is defined by

a ¼

a1
a2
..
.

an

0
BBB@

1
CCCA: ð16Þ

Obviously, the solution at the point A is given by

aðAÞ ¼ ahðAÞ þ apðAÞ ¼ apðAÞ þ
Xk¼n

k¼1

akakhðAÞ ¼ 0þ
Xk¼n

k¼1

akIk ¼ a: ð17Þ
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And finally we can write

aðBÞ ¼ CAB þ DABaðAÞ: ð18Þ

We can notice that, as expected, the solution at the point B depends only on the solution at the point A.

As the solution at a point B only depends on the solution in an arbitrary point upstream A, every
streamline can be divided in several intervals and the solution of Eq. (18) can be found in all these intervals

simultaneously and independently.

Thus, we consider m points on a streamline Pi, i 2 ½1; . . . ;m�, which define m� 1 intervals in non-

recirculating flows. We assume that these points are ordered in the flow direction, i.e. Pi is located upstream

with respect to the position of Piþ1, although the explicit knowledge of the connectivity will not be required

in the algorithm proposed later in this work.

If we apply Eq. (18) in each interval, we obtain

aðPiÞ ¼ CPi�1Pi þ DPi�1PiaðPi�1Þ 8i 2 ½2; . . . ;m�; ð19Þ

where aðP1Þ is defined by the inflow boundary condition whose knowledge is required due to the hyperbolic

character of the problem.

Eq. (19) can be written in the matrix form

I 0 0 � � � 0 0

�DP1P2 I 0 � � � 0 0

0 �DP2P3 I � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � �DPm�1Pm I

0
BBBBBBBB@

1
CCCCCCCCA

aðP1Þ
aðP2Þ
aðP3Þ
..
.

aðPmÞ

0
BBBBBBB@

1
CCCCCCCA

¼

aðP1Þ
CP1P2

CP2P3

..

.

CPm�1Pm

0
BBBBBBB@

1
CCCCCCCA
; ð20Þ

where I is the unit matrix. In many situations exact expressions of CPi�1Pi and DPi�1Pi can be obtained [18].

The following relation is also verified

aðPmÞ ¼ CPm�1Pm þ DPm�1PmaðPm�1Þ ¼ CPm�1Pm þ DPm�1PmðCPm�2Pm�1 þ DPm�2Pm�1aðPm�2ÞÞ
¼ � � � ¼ CPm�1Pm þ DPm�1PmCPm�2Pm�1 þ � � � þ DPm�1Pm � � �DP2P3CP1P2 þ DPm�1Pm � � �DP1P2aðP1Þ
¼ CP1Pm þ DP1PmaðP1Þ; ð21Þ

which derives directly from Eq. (19) and where

CP1Pm ¼ CPm�1Pm þ DPm�1PmCPm�2Pm�1 þ � � � þ DPm�1Pm � � �DP2P3CP1P2 ð22Þ

and

DP1Pm ¼ DPm�1Pm � � �DP1P2 : ð23Þ

This expression reproduces the integration by the method of characteristics along the streamline from the
point P1 until reaching the point Pm.

Eq. (21) will not be used in the numerical algorithm because it requires the knowledge of the points

connectivity. However, this expression will be useful in the next section.

2.1. Linear solver

In order to solve Eq. (20) we propose an iterative solver which converges at maximum in m� 1 iter-

ations, and which does not require the explicit construction of that linear system of equations.
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The iteration process proceeds from the following solution estimation

a0ðP1Þ ¼ aðP1Þ;
a0ðP2Þ ¼ 0;
a0ðP3Þ ¼ 0;

..

.

a0ðPmÞ ¼ 0;

8>>>>><
>>>>>:

ð24Þ

where the superscript ‘‘0’’ refers to the first iteration.

From this solution we can compute its first updating from Eq. (19)

a1ðPiÞ ¼ CPi�1Pi þ DPi�1Pia0ðPi�1Þ 8i 2 ½2; . . . ;m� ð25Þ
and the jth-updating is given by

ajðPiÞ ¼ CPi�1Pi þ DPi�1Piaj�1ðPi�1Þ 8i 2 ½2; . . . ;m�: ð26Þ
In the first iteration, the exact solution is, at least, already computed in the point directly connected with the

point located on the inflow boundary. In the iteration i, the exact solution will be necessarily found in the

point Piþ1, using the exact solution found in the point Pi in the previous iteration. Thus, in m� 1 iterations

the system will be completely solved. We can notice, that in the case of an ordered list of points in the flow

direction, the solution is obtained in only one iteration, i.e. a1ðPiÞ ¼ aðPiÞ 8i 2 ½2; . . . ;m�.
From an algebraic point of view, this solver corresponds to a particular form of the Jacobi�s method.

This strategy can be improved considering the Gauss–Seidel�s solver

ajðPiÞ ¼ CPi�1Pi þ DPi�1PiajðPi�1Þ 8i 2 ½2; . . . ;m�: ð27Þ
We can also notice that the Gauss–Seidel solver corresponds to a direct integration by the method of

characteristics when the connectivity of the points is known.

2.2. Discussion in the context of a finite element discretisation of the equations of motion

Actually, the algorithm just described does not represent a significant improvement with respect to the

numerical techniques based on the method of characterisitics, for integrating advection equations in steady

non-recirculating flows. However, two particularities can be noticed in the technique just described when it

is considered in the context of finite elements discretisations of the equations of motion which define the

flow kinematics. Usually, the flow velocity is obtained from the solution of the motion equations by using a

mixed formulation of finite elements verifying the LBB conditions. Then, the list of m points previously

considered could be defined by the intersections of a particular streamline and the skeleton of the finite

element mesh. In this case, the advection equation solution, as previously described, can be computed simul-
taneously in each element crossed by the streamline. This is a first advantage if one uses parallel compu-

tation platforms. The second particularity is related to the fact that the contributions of all elements are

automatically taken into account and in many cases the integration in each element can be carried out using

exact solution expressions as described in [18].

Furthermore, this technique can be used also for the treatment of steady recirculating flows as we de-

scribe in the next section. Thus, the same technique can be applied to treat general flows, where recircu-

lating and non-recirculating flow regions can exist simultaneously.
3. Steady solution of linear advection equations in steady recirculating flows

In the case of steady recirculating flows, the streamlines are closed. In order to solve linear advection

equations along closed streamlines we must impose the solution periodicity as explained in [21]. The
7



technique introduced in the previous section can be extended to obtain, within a short computing-time, an
accurate solution of advection equations in steady recirculating flows.

For this purpose, we consider that a particular closed streamline intersects the finite elements mesh

skeleton in m� 1 points. At first, we assume that the list of points is ordered. Later on, a more general

numerical algorithm, which does not need ordered points, will be proposed.

In the present case we have m� 1 intervals associated with the m� 1 points. If we proceed in each ele-

ment as explained in the previous section, we have

aðPiÞ ¼ CPi�1Pi þ DPi�1PiaðPi�1Þ 8i 2 ½2; . . . ;m� ð28Þ

with Pm � P1, implying aðPmÞ ¼ aðP1Þ, which describes the periodicity condition. Now, we introduce the
periodicity in Eq. (21)

aðP1Þ ¼ CPm�1Pm þ DPm�1PmCPm�2Pm�1 þ � � � þ DPm�1Pm � � �DP2P3CP1P2 þ DPm�1Pm � � �DP1P2aðP1Þ
¼ CP1Pm þ DP1PmaðP1Þ: ð29Þ

This equation can be rewritten in the form

ðI � DPm�1Pm � � �DP1P2ÞaðP1Þ ¼ CPm�1Pm þ DPm�1PmCPm�2Pm�1 þ � � � þ DPm�1Pm � � �DP2P3CP1P2 ; ð30Þ

which allows us to compute the solution at the point P1 verifying the periodicity constraint.

To find the solution using the Eq. (30) directly, the connectivity information is required. To avoid the

explicit construction of the connectivity table, an iterative algorithm is proposed.

Thus, in that case, we can compute the solution related to an arbitrary choice of the solution at P1

a0ðP1Þ ¼ aH: ð31Þ

The solution at the points P2; . . . ; Pm is obtained at maximum in m� 1 iterations, by using the iteration
algorithm previously described

ajðPiÞ ¼ CPi�1Pi þ DPi�1PiajðPi�1Þ 8i 2 ½2; . . . ;m�: ð32Þ

Obviously, the solution obtained at the point Pm is different from the initial one aH arbitrarily chosen. We

can define the residual associated with the initial estimation RðaðP1ÞÞ
RðaðP1ÞÞ ¼ aðPmÞ � aðP1Þ ¼ aðPmÞ � aH: ð33Þ

Now a Newton�s technique is used to update aðP1Þ in order to obtain a null residual

0 ¼ RðaðP1Þ þ DaðP1ÞÞ ¼ RðaðP1ÞÞ þ
oR

oaðP1Þ
DaðP1Þ: ð34Þ

The linearity of the correction defined by Eq. (34) results from the linear dependence of the residual on

aðP1Þ. To prove this linear dependence we substitute in the residual definition (Eq. (33)) the relation between

the solutions at Pm and P1 (Eq. (21))

RðaðP1ÞÞ ¼ CP1Pm þ DP1PmaðP1Þ � aðP1Þ; ð35Þ

from which the tangent matrix results

K
T
¼ oR

oaðP1Þ
¼ DP1Pm � I : ð36Þ
8



Thus, the solution correction at the point P1 results from Eqs. (33), (34) and (36)

DaðP1ÞÞ ¼ � oR

oaðP1Þ

� ��1

RðaðP1ÞÞ ¼ �ðDP1Pm � IÞ�1ðaðPmÞ � aHÞ: ð37Þ

However, if the list of points is not ordered, the expression of DP1Pm cannot be obtained. To avoid this

difficulty, we can obtain the tangent matrix numerically in the following way: we compute, using the in-

tegration algorithm previously described, which converges at maximum in m� 1 iterations, the n solutions

at Pm associated with the following n initial values

aðP1Þ ¼ aH þ �Ij 8j 2 ½1; . . . ; n�; ð38Þ
where � is a parameter small enough. The n solutions at Pm are expressed by ajðPmÞ, whereas aðPmÞ refers to
the solution related to aðP1Þ ¼ aH.

It is easy to verify that the jth column of K
T
contains

fajðPmÞ � ðaH þ �IjÞg � faðPmÞ � aHg
�

: ð39Þ

Thus, the solution of nþ 1 linear problems (related to the solutions aðPmÞ and ajðPmÞ, j 2 ½1; . . . ; n�) allows
us to compute the steady solution of linear advection equations defined along the closed streamlines in the

recirculating flows, verifying the periodicity condition. n represents the fluid model variables, that rarely

exceeds tens.
4. General 2D flows: localization of steady recirculating flow areas

We will prove in this section that as soon as the stream function is known, steady recirculating flow areas

can be easily located, as described below, in 2D flows. If a vorticity-stream function formulation is applied

to define the flow kinematics, then the stream function is directly obtained. However, if a velocity–pressure

mixed formulation is used, then the stream function must be computed from the velocity field, taking into

account that in 2D incompressible flows the velocity derives from the stream function w

u ¼ ow
oy

;

v ¼ � ow
ox

;

8><
>: ð40Þ

where u and v are the velocity vector components. A direct consequence of Eq. (40) is

Dw ¼ o2w
ox2

þ o2w
oy2

¼ ou
oy

� ov
ox

¼ curlv � ez; ð41Þ

where ez is the unit vector defining the out-plane direction. Thus, if the velocity field is known, the velocity

derivatives can be computed, and the solution of Eq. (41) leads to the stream function solution. The so-

lution of Eq. (41) can be computed easily using a standard finite element Galerkin formulation. Appro-

priate boundary conditions must be imposed in order to verify the prescribed velocities.

For irrotational flows curlv ¼ 0, and the stream function verifies the Laplace�s equation

Dw ¼ o2w
ox2

þ o2w
oy2

¼ 0 ð42Þ

and applying the principle of the maximum, the highest and lowest values of w are located on the flow

domain boundary. In consequence, each value of w found inside the fluid domain, corresponds with a value
9



of w found on the inflow and outflow boundaries. Thus, each point inside the flow domain is on a

streamline which goes from the inflow boundary to the flow exit.

However, when curlv 6¼ 0 the principle of maximum cannot be applied and the highest and lowest stream

function values can be located inside the flow domain, in whose neighborhood we find values of the stream

function which are not found on the inflow boundary. Then, the points with a value of the stream function

which does not correspond with the values existing on the inflow boundary are located on closed

streamlines. In this way, the steady recirculating flow areas can be identified easily.
5. Numerical tests

In this section, two examples concerning very simple flows and advection equations will be analyzed in

order to conclude about the accuracy of the numerical strategy proposed in the previous sections. The first

one concerns a non-recirculating flow whereas the second one is a recirculating flow. For both problems the

exact solutions are known which allows us to quantify the numerical error and the accuracy. In the next

section a short fiber suspension flow in a 4:1 planar contraction containing a steady recirculating area, is
analyzed.

5.1. A rigid body uniform motion

The first flow is defined in the domain ½0; 1� � ½0; 0:5� by the following velocity field

u ¼ 1;
v ¼ 0;

�
ð43Þ

where the following scalar advection equation is considered

da
dt

¼ �Aaþ B; ð44Þ

A and B are assumed constants, A ¼ B ¼ 1, and the condition aðx ¼ 0; yÞ ¼ 0 is imposed on the inflow

boundary x ¼ 0.

The homogeneous equation is

dah
dt

¼ �Aah; ð45Þ

whose general solution ah is

ah ¼ ae�At: ð46Þ
The particular solution ap of Eq. (44) associated with a null initial condition, i.e. apðt ¼ 0Þ ¼ 0, is

ap ¼
B
A
ð1� e�AtÞ: ð47Þ

Thus, the general solution of Eq. (44) is

a ¼ ah þ ap ¼ ae�At þ B
A
ð1� e�AtÞ; ð48Þ

where a results to be the initial condition imposed on the inflow boundary.

A first finite element mesh containing 470 elements (see Fig. 1) is considered in order to compute the

stream function associated with the velocity field defined by Eq. (43). In this case the stream function is

w ¼ y, and the streamlines are defined by the family of lines y ¼ cte 2 ½0; 0:5�.
10



Fig. 1. Solution of the equation on the streamline y ¼ 0:25.
If we consider two points P and Q on the streamline y ¼ k, whose coordinates are ðxp; kÞ and ðxQ; kÞ
(xQ > xp) respectively, the time tPQ taken by an imaginary particle to cover the distance between these two

points, taking into account the uniform velocity field considered, is given by

tPQ ¼ xQ � xP
u

: ð49Þ

Thus, from Eq. (48) we can write

aQ ¼ aPe�AtPQ þ B
A
ð1� e�AtPQÞ ð50Þ

or using the notation introduced in the previous sections

aQ ¼ CPQ þ DPQaP ; ð51Þ
where CPQ ¼ B

A ð1� e�AtPQÞ and DPQ ¼ e�AtPQ .
Now, we consider the streamline related to w ¼ 0:25, which corresponds to the line y ¼ 0:25. This line

intersects the finite element mesh, shown in Fig. 1, in 48 points ðm ¼ 48Þ. If we look for the solution using

the numerical strategy proposed in this paper, we obtain the solution represented in Fig. 1. In this figure,

we represent the solution of the equation in each intersection point between the mesh skeleton and the
11



Fig. 2. Contraction problem: normalized velocity of the fluid.
considered streamline ðw ¼ 0:25Þ. Obviously, as we have used the exact expressions of CPi�1Pi and DPi�1Pi , the

solution obtained coincides with the exact solution of Eq. (44):

a ¼ B
A
ð1� e�AtÞ ð52Þ

with t ¼ x=u.
If CPi�1Pi and DPi�1Pi are computed numerically using the method of characteristics, some numerical errors

are introduced, and the accuracy depends on the order of the finite difference formula considered in the

integration along the characteristics (a fourth-order Runge–Kutta technique with step control to guarantee

the numerical stability is used in the numerical applications presented in this work).
12



Fig. 3. Contraction problem: reconstructed stream function.
5.2. A rigid body rotation motion

In this case the same scalar advection equation is considered, Eq. (44), but now it is defined in the re-

circulating flow defined by

u ¼ �ðy � 0:5Þ;
v ¼ ðx� 0:5Þ

�
ð53Þ

with x; y 2 ½0; 1�.
The stream function related to this velocity field is w ¼ � 1

2
ððx� 0:5Þ2 þ ðy � 0:5Þ2Þ. Thus, the stream-

lines are the family of circles defined by w ¼ cte 2 ½�0:25; 0�. For jwj < 0:25
2

the streamlines do not inter-
sect the domain boundary. Thus, these streamlines are closed and the only condition available to
13



Fig. 4. Solution of the equation along the streamline w ¼ 2 for A ¼ 0:1 and B ¼ 1.
their integration is the periodicity of the solution, imposed by the steady flow. For jwj > 0:25
2

the stream-

lines intersect the flow domain boundaries, and the integration can be carried out as in the previous ex-

ample.

Now, if we apply the strategy proposed previously for steady recirculating flows, the solution a ¼ 1 is
obtained at each intersection point between the closed streamline and the mesh skeleton. This solution

corresponds to the steady solution of Eq. (44)

aðt ! 1Þ ¼ B
A
¼ 1: ð54Þ
14



6. A rheological application: short fibers suspension flow in a 4:1 planar contraction

Fig. 2 represents the normalized velocity field
v
kvk

� �
in a symmetric 4:1 planar contraction involving a

short fibers suspension flow (see [12] for more details). The inflow velocity is vTðx; y ¼ 8Þ ¼ ð0;�1Þ and a
null traction condition is assumed on the outflow boundary y ¼ 0. We can notice that the numerical

simulation predicts a steady recirculating area in the contraction corner, in good agreement with the ex-

perimental visualizations [26]. Fig. 3 depicts the stream function computed from the solution of Eq. (41).

We can notice that the values of the stream function which do not belong to the inflow boundary, w > 4,

identify precisely the recirculating flow area.
Fig. 5. Fiber orientation prediction obtained using the generalized characteristics technique.
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Fig. 6. Fiber orientation prediction obtained using the stabilized finite element method.
Firstly, we consider the advection equation (44) with the initial condition given by aðx; y ¼ 8Þ ¼ 0. In

Fig. 4, the solution of Eq. (44) for A ¼ 0:1 and B ¼ 1 is depicted at the intersection points between the mesh

skeleton and the streamline defined by w ¼ 2:0. In the recirculating area, the solution a ¼ 10 is found,

which obviously corresponds with the steady solution.

Now, we consider a more practical application involving a short fibers suspension flow in a 4:1 con-

traction, whose kinematics is depicted in Fig. 2. We assume that the fibers are locally aligned in the flow
direction on the inflow boundary, i.e.

aðx; y ¼ 8Þ ¼ 0 0
0 1

� �
ð55Þ
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Fig. 7. Fiber orientation prediction obtained using the stabilized finite element method versus the exact solution (local alignment of the

fibers with the flow).
and we compute the solution of the advection equation governing the fiber orientation (Eq. (1) with Dr ¼ 0

and k ¼ 1). In this case the orientation solution results to be the local alignment of the fibers with the flow

as proved in [12]. Fig. 5 depicts the solution obtained at each node of the mesh using the strategy proposed

in the previous sections. At each node the eigenvector associated with the highest eigenvalue (which is

approximately 1 in every point) is depicted. The numerical orientation prediction is in perfect agreement

with the exact solution which predicts a local alignment of the fibers on the flow direction. Now, if we

compute the fiber orientation using the SUPG finite element method [27], then the solution obtained (see

Fig. 6) shows significant deviations with respect to the exact orientation, mainly in the recirculating flow
area. In this figure, we represent the orientation tensor by means of an ellipse. The ellipse axis direc-

tions correspond to the eigenvectors of the orientation tensor and the semi-axis sizes correspond to the
17



eigenvalues. The ellipse thickness indicates a fiber misalignment with respect to the most probable orien-

tation direction. Fig. 7 depicts the superposition of Figs. 5 and 6, from which significant deviations in the

prediction of the most probable fiber orientation direction using the SUPG technique are noticed.

Even if the CPU time required by the characteristics type strategies is higher than the computation time

required by stabilized Eulerian techniques, the accuracy of the first ones is in general better if we proceed

with a coarse mesh. The only possibility to improve the accuracy of Eulerian techniques is based on local

remeshing, which requires appropriate remeshing criteria. From our experience, if one want to compute an

accurate enough solution of the fiber orientation, very fine meshes are needed, and in that case the com-
puting time becomes similar to the one required by a Lagrangian simulation.

In spite of these results, this work does not attempt to compare characteristics and stabilized finite ele-

ment strategies for solving this kind of problems, for which a deeper analysis will be required.

Remark. In order to couple the flow kinematics resolution with the solution of the advection equation

governing the fiber orientation evolution (coupled models), a fixed point strategy is used. Thus, we proceed

until convergence, solving the advection equation from the flow kinematics computed at the previous

iteration, updating the flow kinematics from the fiber orientation just computed. In the resolution of the
flow kinematics, the fiber orientation must be evaluated at the integration points used to evaluate the

variational formulation of the equations of motion. A first possibility is to compute directly the fiber

orientation at these points, solving the advection equation governing its evolution along the streamlines

passing through those points [9]. Other possibility is the evaluation of the fiber orientation at the mesh

nodes, using the same strategy, from which the orientation at the integration points can be interpolated

[7,8,10,12]. A last possibility is based on the computation of the solution along a certain number of

characteristics, from which the solution can be interpolated anywhere [11,13]. The strategy described in this

paper can be applied to compute the solution of the orientation equation at the nodes, at the integration
points or along certain characteristics, in general flows containing recirculating zones. In any case, the

aspects related to the flow kinematics resolution or the coupling between the flow kinematics and the fiber

orientation are not the purpose of the present paper. However, we would like to notice that the use of

streamline integrations coupled with fully Eulerian discretisation of the equations of motion is the base of

the micro–macro modelling recently proposed by the Keunings�s team [28–30].
7. Conclusions

In this paper a general characteristics algorithm for computing steady solutions of advection equations

in general steady flows has been described and tested. The following particularities can be pointed out: (i)

the integration by characteristics is carried out independently in each element (then a parallel computation

is possible); (ii) an accurate integration is performed in each element, and an exact expression of the so-

lution can be used in particular cases; (iii) the element solutions assembly is achieved by means of a fast

iteration procedure and (iv) an accurate solution in steady recirculating flows is obtained by imposing the

solution periodicity along the closed streamlines.
This technique can be applied for treating non-linear models (after linearization) and it allows to

compute accurate solutions of advection equations in general flows in a reasonable computing time.
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