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DENSITY ESTIMATION WITH QUADRATIC LOSS: A

CONFIDENCE INTERVALS METHOD

PIERRE ALQUIER

Abstract. In [1], a least square regression estimation procedure was pro-
posed: first, we condiser a family of functions fk and study the properties
of an estimator in every unidimensionnal model {αfk , α ∈ R}; we then show
how to aggregate these estimators. The purpose of this paper is to extend this
method to the case of density estimation. We first give a general overview of
the method, adapted to the density estimation problem. We then show that
this leads to adaptative estimators, that means that the estimator reaches the
best possible rate of convergence (up to a log factor). Finally we show some
ways to improve and generalize the method.

1. Introduction: the density estimation setting

Let us assume that we are given a measure space (X ,B, λ) where λ is positive
and σ-finite, and a probability measure P on (X ,B) such that P has a density with
respect to λ:

P (dx) = f(x)λ(dx).

We assume that we observe a realisation of the canonical process (X1, ..., XN ) on
(XN ,B⊗N , P⊗N ). Our objective here is to estimate f on the basis of the observa-
tions X1, ..., XN .

More precisely, let L2(X , λ) denote the set of all measurables functions from
(X ,B) to (R,BR) where BR is the Borel σ-algebra on R. We will write L2(X , λ) =

L2 for short. Remark that f ∈ L2. Let us put, for any (g, h) ∈
(

L2
)2

:

d2(g, h) =

∫

X

(

g(x) − h(x)
)2

λ(dx),

and let ‖.‖ and 〈., .〉 denote the corresponding norm and scalar product. We are

here looking for an estimator f̂ that tries to minimize our objective:

d2(f̂ , f).

Let us choose an integer m ∈ N and a family of functions (f1, ..., fm) ∈
(

L2
)m

.
There is no particular asumptions about this family: it is not necessarily linearly
independant for example.

In a first time, we are going to study estimators of f in every unidimensionnal
model {αfk(.), α ∈ R} (as done in [1]). Usually these models are too small and
the obtained estimators do not have good properties. We then propose an iterative
method that selects and aggregate such estimators in order to build a suitable
estimator of f (section 2).
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In section 3 we study the rate of convergence of the obtained estimator in a
particular case.

In section 4 we propose several improvements and generalizations of the method.
Finally, in section 5 we make some simulations in order to compare the practical

performances of our estimator with other ones.

2. Estimation method

2.1. Hypothesis. In this section we will use a particular hypothesis about f
and/or the basis functions fk, k ∈ {1, ...,m}.

Definition 2.1. We will say that f and (f1, ..., fm) satisfies the conditions H(p)
for 1 < p < +∞ if, for:

1

p
+

1

q
= 1,

there exists some (c, c1, ..., cm) ∈
(R∗

+

)m+1
(known to the statistician) such that:

∀k ∈ {1, ...,m},
(∫

X
|fk|2p

λ(dx)

)
1
p

≤ ck

∫

X
|fk|2 λ(dx)

and

(∫

X
|f |q λ(dx)

)
1
p

≤ c

∫

X
|f |λ(dx) (= c) .

For p = 1 the condition H(1) is: f is bounded by a (known) constant c and we put
c1 = ... = ck = 1. For p = +∞ the condition H(+∞) is just that every |fk| is
bounded by

√

ck

∫

X
fk(x)2λ(dx)

where ck is known, and we put c = 1. In any case, we put, for any k:

Ck = ckc.

Definition 2.2. We put, for any k ∈ {1, ...,m}:

Dk =

∫

X
|fk|2 λ(dx) = d2(fk, 0) = ‖fk‖2.

2.2. Unidimensionnal models. Let us choose k ∈ {1, ...,m} and consider the
unidimensionnal model Mk = {αfk(.), α ∈ R}. Remark that the orthogonal pro-
jection (denoted by ΠMk

) of f on Mk is known, it is namely:

ΠMk
f(.) = αkfk(.)

where:

αk = arg min
α∈R d2(αfk, f) =

∫

X fk(x)f(x)λ(dx)
∫

X fk(x)2λ(dx)
=

∫

X fk(x)f(x)λ(dx)

Dk

.

A natural estimator of this coefficient is:

α̂k =
1
N

∑N
i=1 fk(Xi)

∫

X fk(x)2λ(dx)
,

because we expect to have, by the law of large numbers:

1

N

N
∑

i=1

fk(Xi)
a.s.−−−−→

N→∞
P [fk(X)] =

∫

X
fk(x)f(x)λ(dx).

Actually, we can formulate a more precise result.
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Theorem 2.1. Let us assume that condition H(p) holds for some p ∈ [1,+∞].
Then for any ε > 0 we have:

P⊗N

{

∀k ∈ {1, ...,m}, d2(α̂kfk, αkfk)

≤
{

4
[

1 + log 2m
ε

]

N

}[

1
N

∑N
i=1 fk(Xi)

2

Dk

+ Ck

]}

≥ 1 − ε.

The proof is given at the end of the section.

2.3. The selection algorithm. Until the end of this section we assume that H(p)
is satisfied for some 1 ≤ p ≤ +∞.

Let β(ε, k) denote the upper bound for the model k in theorem 2.1:

∀ε > 0, ∀k ∈ {1, ...,m} : β(ε, k) =

{

4
[

1 + log 2m
ε

]

N

}[

1
N

∑N
i=1 fk(Xi)

2

Dk

+ Ck

]

.

Let us put:

CRk,ε =

{

g ∈ L2, d2(α̂kfk,ΠMk
g) ≤ β(ε, k)

}

.

Then theorem 2.1 implies the following result.

Corollary 2.2. For any ε > 0 we have:

P⊗N

{

∀k ∈ {1, ...,m}, f ∈ CRk,ε

}

≥ 1 − ε.

So for any k, CRk,ε is a confidence region at level k for f . Moreover, CRk,ε being
convex we have the following corollary.

Corollary 2.3. For any ε > 0 we have:

P⊗N

{

∀k ∈ {1, ...,m}, ∀g ∈ L2, d2(ΠCRk,ε
g, f) ≤ d2(g, f)

}

≥ 1 − ε.

It just means that for any g, ΠMk
g is a better estimator than g.

So we propose the following algorithm (generic form):

• we choose ε and start with g0 = 0;
• at each step n, we choose a model Mk(n) where k(n) ∈ {1, ...,m} can be

chosen on each way we want (it can of course depend on the data) and take:

gn+1 = ΠCRk(n),ε
gn;

• we choose a stopping time ns on each way we want and take:

f̂ = gns
.

So corollary 2.3 implies that:

P⊗N

{

d2(f̂ , f) = d2(gns
, f) ≤ ... ≤ d2(g0, f) = d2(0, f)

}

≥ 1 − ε.

Actually, a more accurate version of corollary 2.3 can give an idea of the way to
choose k(n) in the algorithm. Let us use corollary 2.2 and remember the fact that
each CRk,ε is convex.

Corollary 2.4. For any ε > 0 we have:

P⊗N

{

∀k ∈ {1, ...,m}, ∀g ∈ L2, d2(ΠCRk,ε
g, f) ≤ d2(g, f) − d2(ΠCRk,ε

g, g)

}

≥ 1 − ε.
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So we propose the following version of our previous algorithm (this is not neces-
sarily the better choice!):

• we choose ε and 0 < κ ≤ 1/N and start with g0 = 0;
• at each step n, we take:

k(n) = arg max
k∈{1,...,m}

d2(ΠCRk,ε
gn, gn)

and:

gn+1 = ΠCRk(n),ε
gn;

• we take:

ns = inf
{

n ∈ N : d2(gn, gn−1) ≤ κ
}

and:

f̂ = gns
.

So corollary 2.4 implies that:

P⊗N

{

d2(f̂ , f) ≤ d2(0, f) −
ns−1
∑

n=0

d2(gn, gn+1)

}

≥ 1 − ε.

2.4. Remarks on the intersection of the confidence regions. Actually, corol-
lary 2.2 could motivate another method. Note that:

∀k ∈ {1, ...,m}, f ∈ RCk,ε ⇔ f ∈
m
⋂

k=1

RCk,ε.

Let us put, for any I ⊂ {1, ...,m}:

RCI,ε =
⋂

k∈I

RCk,ε,

and:

f̂I = ΠRCI,ε
0.

Then RCI,ε is still a convex region that contains f and is a subset of every RCk,ε

for k ∈ I. So we have the following result.

Corollary 2.5. For any ε > 0:

P⊗N

{

∀I ⊂ {1, ...,m}, ∀k ∈ I, d(f̂{1,...,m}, f) ≤ d(f̂I , f) ≤ d(ΠRCk,ε
0, f)

}

≥ 1 − ε.

In the case where we are interested in ”model selection type aggregation” of
estimators, note that, with probability at least 1 − ε:

d(ΠRCk,ε
0, f) ≤ d(ΠRCk,ε

0, αkfk) + d(αkfk, f) ≤ β(ε, k) + d(fk, f).

So we have the following result.

Corollary 2.6. For any ε > 0:

P⊗N

{

d(f̂{1,...,m}, f) ≤ inf
k∈{1,...,m}

[d(fk, f) + β(ε, k)]

}

≥ 1 − ε.

The estimator f̂1,...,m can be reached by solving the following optimization prob-
lem:
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min
g∈L2

‖g‖2,

s.t. ∀k ∈ {1, ...,m} :
{

〈g − α̂kfk, fk〉 −
√

Dkβ(ε, k) ≤ 0,

−〈g − α̂kfk, fk〉 −
√

Dkβ(ε, k) ≤ 0.

The problem can be solved in dual form:

max
γ∈Rm

[

−
m
∑

i=1

m
∑

k=1

γiγk 〈fi, fk〉 + 2
m
∑

k=1

γkα̂k‖fk‖2 − 2
m
∑

k=1

|γk|
√

Dkβ(ε, k)

]

.

with solution γ∗ = (γ∗1 , ..., γ
∗
m) and:

f̂{1,...,m} =

m
∑

k=1

γ∗kfk.

As:

−
m
∑

i=1

m
∑

k=1

γ∗i γ
∗
k 〈fi, fk〉 = ‖f∗‖2

and:

2
m
∑

k=1

γ∗kα̂k‖fk‖2 = 2
m
∑

k=1

γ∗k

1
N

∑N
i=1 fk(Xi)

‖fk‖2
‖fk‖2 =

2

N

N
∑

i=1

f∗(Xi)

we can see this as a penalized maximization of the likelihood.
We can note that it is easier and more computationnaly efficient to project

successively on every region RC(k, ε) than to project once on RC({1, ...,m}, ε).

2.5. An example: the histogram. Let us assume that λ is a finite measure and
let A1, ..., Am be a partition of X . We put, for any k ∈ {1, ...,m}:

fk(.) = 1Ak
(.).

Remark that:

Dk =

∫

X
fk(x)2λ(dx) = λ (Ak) ,

and that condition H(+∞) is satisfied with constants:

ck =
1

λ (Ak)

and (as we have the convention c = 1 in this case) Ck = ckc = ck.
In this context we have:

αk =
P (X ∈ Ak)

λ (Ak)
,

α̂k =
1
N

∑N
i=1 1Ak

(Xi)

λ (Ak)
,

β(ε, k) =

{

4
[

1 + log 2m
ε

]

Nλ (Ak)

}[

1

N

N
∑

i=1

fk(Xi)
2 + 1

]

.

Finally, note that all the confidence regions CRk,ε are all orthogonal in this case.
So the order of projection does not affect the obtained estimator here, and we can
take:

f̂ = ΠCRm,ε
...ΠCR1,ε

0
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(and note that f̂ = f̂{1,...,m} here, following the notations of subsection 2.4). We
have:

f̂(x) =
m
∑

k=1

(

α̂k −
√

λ (Ak)β(ε, k)
)

+
fk(x)

where, for any y ∈ R:

(y)+ =







y if y ≥ 0

0 otherwise.

In this case corollary 2.4 becomes:

P⊗N

{

d2(f̂ , f) ≤ d2(0, f) −
m
∑

k=1

(

α̂k −
√

λ (Ak)β(ε, k)
)2

+
λ (Ak)

}

≥ 1 − ε.

2.6. Proof of the theorem. Before giving the proof, let us state two lemmas that
we will use in the proof. The first one is a variant of a lemma by Catoni [6], the
second one is due to Panchenko [11].

Lemma 2.7. Let (T1, ..., T2N) be a random vector taking values in R2N distributed
according to a distribution P⊗2N . For any η ∈ R, for any measurable function
λ : R2N → R∗

+ that is exchangeable with respect to its 2 × 2N arguments:

P⊗2N exp

(

λ

N

N
∑

i=1

{

Ti+N − Ti

}

− λ2

N2

2N
∑

i=1

T 2
i − η

)

≤ exp (−η)

and the reverse inequality:

P⊗2N exp

(

λ

N

N
∑

i=1

{

Ti − Ti+1

}

− λ2

N2

2N
∑

i=1

T 2
i − η

)

≤ exp (−η) ,

where we write:

η = η (T1, ..., T2N)

λ = λ (T1, ..., T2N )

for short.

Proof of lemma 2.7. In order to prove the first inequality, we write:

P⊗2N exp

(

λ

N

N
∑

i=1

{

Ti+N − Ti

}

− λ2

N2

2N
∑

i=1

T 2
i − η

)

= P⊗2N exp

(

N
∑

i=1

log cosh

{

λ

N
(Ti+1 − Ti)

}

− λ2

N2

2N
∑

i=1

T 2
i − η

)

.

We now use the inequality:

∀x ∈ R, log coshx ≤ x2

2
.

We obtain:

log cosh

{

λ

N
(Ti+1 − Ti)

}

≤ λ2

2N2
(Ti+1 − Ti)

2 ≤ λ2

N2

(

T 2
i+1 + T 2

i

)

.

The proof for the reverse inequality is exactly the same. �
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Lemma 2.8 (Panchenko [11], corollary 1). Let us assume that we have i.i.d. vari-
ables T1, ..., TN (with distribution P and values in R) and an independant copy
T ′ = (TN+1, ..., T2N) of T = (T1, ..., TN). Let ξj(T, T

′) for j ∈ {1, 2, 3} be three
measurables functions taking values in R, and ξ3 ≥ 0. Let us assume that we know
two constants A ≥ 1 and a > 0 such that, for any u > 0:

P⊗2N
[

ξ1(T, T
′) ≥ ξ2(T, T

′) +
√

ξ3(T, T ′)u
]

≤ A exp(−au).

Then, for any u > 0:

P⊗2N

{

P⊗2N [ξ1(T, T
′)|T ]

≥ P⊗2N [ξ2(T, T
′)|T ] +

√

P⊗2N [ξ3(T, T ′)|T ]u

}

≤ A exp(1 − au).

The proof of this lemma can be found in [11]. We can now give the proof of
theorem 2.1.

Proof of theorem 2.1. Let (XN+1, ..., X2N) be an independant copy of our sample
(X1, ..., XN ). Let us choose k ∈ {1, ...,m}. Let us apply lemma 2.7 with P = P
and, for any i ∈ {1, ..., 2N}:

Ti = fk(Xi).

We obtain, for any measurable function ηk ∈ R, for any measurable function λk :R2N → R∗
+ that is exchangeable with respect to its 2 × 2N arguments:

P⊗2N exp

(

λk

N

N
∑

i=1

{

fk(Xi+N ) − fk(Xi)
}

− λ2
k

N2

2N
∑

i=1

fk(Xi)
2 − ηk

)

≤ exp (−ηk)

and the reverse inequality:

P⊗2N exp

(

λk

N

N
∑

i=1

{

fk(Xi) − fk(Xi+N )
}

− λ2
k

N2

2N
∑

i=1

fk(Xi)
2 − ηk

)

≤ exp (−ηk)

as wall. This implies that:

P⊗2N

[

1

N

N
∑

i=1

{

fk(Xi) − fk(Xi+N )
}

≤ λk

N2

2N
∑

i=1

fk(Xi)
2 +

ηk

λk

]

≤ exp (−ηk)

and:

P⊗2N

[

1

N

N
∑

i=1

{

fk(Xi+N ) − fk(Xi)
}

≤ λk

N2

2N
∑

i=1

fk(Xi)
2 +

ηk

λk

]

≤ exp (−ηk) .

Let us choose:

λk =

√

Nηk

1
N

∑2N
i=1 fk(Xi)2

in both inequalities, we obtain for the first one:

P⊗2N

[

1

N

N
∑

i=1

{

fk(Xi) − fk(Xi+N )
}

≥ 2

√

ηk
1
N

∑2N
i=1 fk(Xi)2

N

]

≤ exp (−ηk) .

We now apply lemma 2.8 with the same Ti = fk(Xi), ηk = u, A = 1, a = 1, ξ2 = 0,

ξ1 =
1

N

N
∑

i=1

{

fk(Xi) − fk(Xi+N )
}

and
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ξ3 =
4 1

N

∑2N
i=1 fk(Xi)

2

N
.

We obtain:

P⊗N

[

1

N

N
∑

i=1

fk(Xi) − P [fk(X)] ≥ 2

√

√

√

√

ηk

{

1
N

∑N
i=1 fk(Xi)2 + P [fk(X)2]

}

N

]

= P⊗2N

[

1

N

N
∑

i=1

fk(Xi) − P [fk(X)] ≥ 2

√

√

√

√

ηk

{

1
N

∑N
i=1 fk(Xi)2 + P [fk(X)2]

}

N

]

≤ exp (1 − ηk) .

Remark that:

P
[

fk(X)2
]

=

∫

X
fk(x)2f(x)λ(dx).

So, using condition H(p) and Hlder’s inequality we have:

P
[

fk(X)2
]

≤
(∫

X
|fk(x)|2p

λ(dx)

)
1
p
(∫

X
f(x)qλ(dx)

)
1
q

≤
(

ck

∫

X
fk(x)2λ(dx)

)(

c

∫

X
f(x)λ(dx)

)

= (ckc)

∫

X
fk(x)2λ(dx) = CkDk.

Now, let us combine this inequality with the reverse one by a union bound argument,
we have:

P⊗N

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

fk(Xi) − P [fk(X)]

∣

∣

∣

∣

∣

≥ 2

√

√

√

√

ηk

{

1
N

∑N
i=1 fk(Xi)2 + CkDk

}

N

]

≤ 2 exp (1 − ηk) .

We now make a union bound on k ∈ {1, ...,m} and put:

ηk = 1 + log
2m

ε
.

We obtain:

P⊗N

[

∀k ∈ {1, ...,m},
∣

∣

∣

∣

∣

1

N

N
∑

i=1

fk(Xi) − P [fk(X)]

∣

∣

∣

∣

∣

≤ 2

√

√

√

√

(

1 + log 2m
ε

)

{

1
N

∑N
i=1 fk(Xi)2 + CkDk

}

N

]

≥ 1 − ε.

We end the proof by noting that:

d2(α̂kfk, αkfk) =

[

1
N

∑N
i=1 fk(Xi) − P [fk(X)]

]2

∫

X fk(x)2λ(dx)
.

�
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3. Some examples with rates of convergence

3.1. General remarks when (fk)k is an orthonormal family and condition

H(1) is satisfied. In subsections 3.1, 3.2 and 3.3, we study the rate of convergence
of our estimator in the special case where (fk)k∈N∗ is an orthonormal basis of L2,
so we have:

Dk =

∫

X
fk(x)2λ(dx) = 1

and:
∫

X
fk(x)fk′ (x)λ(dx) = 0

if k 6= k′.
We also assume that condition H(1) is satisfied: ∀x ∈ X , f(x) ≤ c, remember

that in this case we have taken ck = 1 and so Ck = c, so:

β(ε, k) =

{

4
[

1 + log 2m
ε

]

N

}[

1

N

N
∑

i=1

fk(Xi)
2 + c

]

.

Note that in this case all the order of application of the projections ΠRCk,ε
does

not matter because these projections works on orthogonal directions. So we can
define, once m is chosen:

f̂ = ΠRCm,ε
...ΠRC1,ε

0 = ΠRC{1,...,m},ε
0 = f̂{1,...,m}

(following the notations of subsection 2.4). Note that:

f̂(x) =

m
∑

k=1

sign(α̂k)
(

|α̂k| −
√

β(ε, k)
)

+
fk(x)

where sign(x) is the sign of x (namely +1 if x > 0 and −1 otherwise), and so f̂ is
a soft-thresholded estimator. Let us also make the following remark. As for any x,
f(x) ≤ c, we have:

d2(f, 0) ≤ c.

So the region:

B =

{

g ∈ L2 : ∀k ∈ N∗,

∫

X
g(x)fk(x)λ(dx) ≤

√
c

}

is convex, and contains f . So the projection on B, ΠB can only improve f̂ . We put:

f̃ = ΠB f̂ .

Note that this transormation is needed to obtain the following theorem, but does
not have practical incidence in general. Actually:

f̃(x) =

m
∑

k=1

sign(α̂k)

{

(

|α̂k| −
√

β(ε, k)
)

+
∧
√
c

}

fk(x).

3.2. Rate of convergence in Sobolev spaces. It is well known that if f has
regularity β (known by the statistician) then we have the choice

m = N
1

2β+1

and a standard estimation of coefficients leads to the optimal rate of convergence:

N
−2β
2β+1 .

Here, we assume that we don’t know β, and we show that taking m = N leads
to the rate of convergence:

N
−2β
2β+1 logN

namely the optimal rate of convergence up to a logN factor.
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Theorem 3.1. Let us assume that (fk)k∈N∗ is an orthonormal basis of L2. Let us
put:

fm = arg min
g∈Span(f1,...,fm)

d2(g, f),

and let us assume that f ∈ L2 satisfies condition H(1) and is such that there are
unknown constants D > 0 and β ≥ 1 such that:

d2(fm, f) ≤ Dm−2β .

Let us choose m = N and ε = N−2 in the definition of f̃ . Then we have, for any
N ≥ 2:

P⊗Nd2(f̃ , f) ≤ D′(c,D)

(

logN

N

)
2β

2β+1

.

Here again, the proof of the theorems are given at the end of the section. Let
us just remark that, in the case where X = [0, 1], λ is the Lebesgue measure, and
(fk)k∈N∗ is the trigonometric basis, the condition:

d2(fm, f) ≤ Dm−2β

is satisfied for D = D(β, L) = L2π−2β as soon as f ∈ W (β, L) where W (β, L) is
the Sobolev class:

{

f ∈ L2 : f (β−1) is absolutely continuous and

∫ 1

0

f (β)(x)2λ(dx) ≤ L2

}

,

see Tsybakov [14] for example. The minimax rate of convergence in W (β, L) is

N− 2β
2β+1 , so we can see that our estimator reaches the best rate of convergence up

to a logN factor with an unknown β.

3.3. Rate of convergence in Besov spaces. We here extend the previous result
to the case of a Besov space Bs,p,q. Note that we have, for any L ≥ 0 and β ≥ 0:

W (β, L) ⊂ Bβ,2,2

so this result is really an extension of the previous one (see Hrdle, Kerkyacharian,
Picard and Tsybakov [10], or Donoho, Johnstone, Kerkyacharian and Picard [9]).
We define the Besov space:

Bs,p,q =

{

g : [0, 1] → R, g(.) = αφ(.) +

∞
∑

j=0

2j

∑

k=1

βj,kψj,k(.),

∞
∑

j=0

2jq(s− 1
2− 1

p )





2j

∑

k=1

|βj,k|p




q
p

= ‖g‖q
s,p,q < +∞

}

,
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with obvious changes for p = +∞ or q = +∞. We also define the weak Besov
space:

Wρ,π =

{

g : [0, 1] → R, g(.) = αφ(.) +

∞
∑

j=0

2j

∑

k=1

βj,kψj,k(.),

sup
λ>0

λρ

∞
∑

j=0

2j(π
2 −1)

2j

∑

k=1

1{|βj,k|>λ} < +∞
}

=

{

g : [0, 1] → R, g(.) = αφ(.) +

∞
∑

j=0

2j

∑

k=1

βj,kψj,k(.),

sup
λ>0

λπ−ρ

∞
∑

j=0

2j(π
2 −1)

2j

∑

k=1

|βj,k|π1{|βj,k|≤λ} < +∞
}

,

see Cohen [7] for the equivalence of both definitions. Let us remark that Bs,p,q is a
set of functions with regularity s while Wρ,π is a set of functions with regularity:

s′ =
1

2

(

π

ρ
− 1

)

.

Theorem 3.2. Let us assume that X = [0, 1], and that (ψj,k)j=0,...,+∞,k∈{1,...,2j} is
a wavelet basis, together with a function φ, satisfying the conditions given in [9] and
having regularity R (for example Daubechies’ families), with φ and ψ0,1 supported
by [−A,A]. Let us assume that f ∈ Bs,p,q with R + 1 ≥ s > 1

p
, 1 ≤ q ≤ ∞,

2 ≤ p ≤ +∞, or that f ∈ Bs,p,q ∩W 2
2s+1 ,2 with R + 1 ≥ s > 1

p
, 1 ≤ p ≤ +∞, with

unknown constants s, p and q and that f satisfies condition H(1) with a known
constant c. Let us choose:

{f1, ..., fm} = {φ} ∪ {ψj,k, j = 1, ..., 2⌊
log N
log 2 ⌋, k = 1, ..., 2j}

(so N
2 ≤ m ≤ N) and ε = N−2 in the definition of f̃ . Then we have:

P⊗Nd2(f̃ , f) = O
(

(

logN

N

)
2s

2s+1

)

.

Let us remark that we obtain nearly the same rate of convergence than in [9],
namely the minimax rate of convergence up to a logN factor.

3.4. Kernel estimators. Here, we assume that X = R and that f is compactly
supported, say by [0, 1]. We put, for any m ∈ N and k ∈ {1, ...,m}:

fk(x) = K

(

k

m
, x

)

where K is some function R×R→ R and we obtain some estimator that has the
form of a kernel estimator:

f̂{1,...,m}(x) =

m
∑

k=1

α̃kK

(

k

m
, x

)

.

Moreover, is is possible to use a multiple kernel estimator. Let us choose n ∈ N,
h ∈ N, h kernels K1, ...,Kh and put, for any k = i+ n ∗ j ∈ {1, ...,m = hn}:

fk(x) = Kj

(

i

n
, x

)

.
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We obtain a multiple kernel estimator:

f̂{1,...,m}(x) =

n
∑

i=1

h
∑

j=1

α̃i+njKj

(

i

n
, x

)

.

3.5. Proof of the theorems.

Proof of theorem 3.1. Let us begin the proof with a general m and ε, the reason of
the choice m = N and ε = N−2 will become clear. Let us also write E(ε) the event
satisfied with probability at least 1 − ε in theorem 2.1. We have:

P⊗Nd2(f̃ , f) = P⊗N

[1E(ε)d
2(f̃ , f)

]

+ P⊗N

[

(

1 − 1E(ε)

)

d2(f̃ , f)

]

.

For the first term we have:

d2(f̃ , f) ≤ 2

∫

X
f(x)2λ(dx) + 2

∫

X
f̃(x)2λ(dx) ≤ 2c+ 2mc = 2(m+ 1)c

and so:

P⊗N

[

(

1 − 1E(ε)

)

d2(f̂ , f)

]

≤ 2ε(m+ 1)c.

For the other term, just remark that under E(ε):

d2(f̃ , f) = d2(ΠBΠCRm,ε
...ΠCR1,ε

0, f)

≤ d2(ΠCRm,ε
...ΠCR1,ε

0, f) ≤ d2(ΠCRm′,ε
...ΠCR1,ε

0, f)

for any m′ ≤ m, because of theorem 2.1, more precisely of corollary 2.3. And we
have:

d2(ΠMm′ ...ΠM10, f)

≤
m′
∑

k=1

{

4
[

1 + log 2m
ε

]

N

}[

1

N

N
∑

i=1

fk(Xi)
2 + c

]

+ d2(fm, f).

So we have:

P⊗N

[1E(ε)d
2(f̃ , f)

]

≤ P⊗N

[

d2(f̃ , f)

]

≤ P⊗N

m′
∑

k=1

{

4
[

1 + log 2m
ε

]

N

}[

1

N

N
∑

i=1

fk(Xi)
2 + c

]

+ (m′)−2βD

≤ 8m′c
[

1 + log 2m
ε

]

N
+ (m′)−2βD.

So finally, we obtain, for any m′ ≤ m:

P⊗Nd2(f̃ , f) ≤ 8m′c
[

1 + log 2m
ε

]

N
+ (m′)−2βD + 2ε(m+ 1)c.

The choice of:

m′ =

(

N

logN

)
1

2β+1

leads to a first term of order N
−2β
2β+1 log m

ε
(logN)−

1
2β+1 and a second term of order

N
−2β
2β+1 (logN)

2β
2β+1 . The choice of m = N and ε = N−2 gives a first and second

term at order:
(

logN

N

)
2β

2β+1
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while keeping the third term at order N−1. This proves the theorem. �

Proof of theorem 3.2. Here again let us write E(ε) the event satisfied with proba-
bility at least 1 − ε in theorem 2.1. We have:

P⊗Nd2(f̃ , f) = P⊗N

[1E(ε)d
2(f̃ , f)

]

+ P⊗N

[

(

1 − 1E(ε)

)

d2(f̃ , f)

]

.

For the first term we still have:

d2(f̃ , f) ≤ 2(m+ 1)c.

For the second term, let us write the development of f into our wavelet basis:

f = αφ +

∞
∑

j=0

2j

∑

k=1

βj,kψj,k,

and:

f̂(x) = α̃φ+

J
∑

j=0

2j

∑

k=1

β̃j,kψj,k

the estimator f̂ . Let us put:

J =

⌊

logN

log 2

⌋

.

For any J ′ ≤ J we have:

d2(f̃ , f) = d2(ΠBΠCRm,ε
...ΠCR1,ε

0, f) ≤ d2(ΠCRm,ε
...ΠCR1,ε

0, f)

= (α̃− α)2 +

J
∑

j=0

2j

∑

k=1

(β̃j,k − βj,k)2 +

∞
∑

j=J+1

2j

∑

k=1

β2
j,k

≤ (α̃− α)2 +
J′
∑

j=0

2j

∑

k=1

(β̃j,k − βj,k)21(|βj,k| ≥ κ) +
J′
∑

j=0

2j

∑

k=1

β2
j,k1(|βj,k| < κ)

+

∞
∑

j=J′+1

2j

∑

k=1

β2
j,k

for any κ ≥ 0, as soon as E(ε) is satisfied (here again we applied theorem 2.1). In
the case where p ≥ 2 we can take:

J ′ =

⌊

logN
1

1+2s

log 2

⌋

and κ = 0 to obtain (let C be a generic constant in the whole proof):

∞
∑

j=J′+1

2j

∑

k=1

β2
j,k ≤

∞
∑

j=J′+1





2j

∑

k=1

βp
j,k





2
p

2j(1− 2
p ).

As f ∈ Bs,p,q ⊂ Bs,p,∞ we have:




2j

∑

k=1

βp
j,k





2
p

≤ C2−2j(s+ 1
2− 1

p )

and so:
∞
∑

j=J+1

2j

∑

k=1

β2
j,k ≤ C2−2J′s ≤ CN

−2s
1+2s ,
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and:

J
∑

j=0

2j

∑

k=1

(β̃j,k − βj,k)21(|βj,k| ≥ κ) ≤ 8c
[

1 + log 2m
ε

]

N

J
∑

j=0

2j

∑

k=1

1

≤ 8c
[

1 + log 2m
ε

]

N
2J′+1 ≤ C

8c
[

1 + log 2m
ε

]

N
N

1
1+2s .

So we obtain the desired rate of convergence. In the case where p < 2 we let J ′ = J
and proceed as follows.

J
∑

j=0

2j

∑

k=1

(β̃j,k − βj,k)21(|βj,k| ≥ κ) ≤ 8c
[

1 + log 2m
ε

]

N

J
∑

j=0

2j

∑

k=1

1(|βj,k| ≥ κ)

≤ 8c
[

1 + log 2m
ε

]

N
Cκ−

2
2s+1

because f is also assumed to be in the weak Besov space. We also have:

J
∑

j=0

2j

∑

k=1

β2
j,k1(|βj,k| < κ) ≤ Cκ2− 2

1+2s .

For the remainder term we use (see [10, 9]):

Bs,p,q ⊂ Bs− 1
p
+ 1

2 ,2,q

to obtain:

∞
∑

j=J+1

2j

∑

k=1

β2
j,k ≤ C2−2J(s+ 1

2− 1
p ) ≤ C2−J

as s > 1
p
. Let us remember that:

N

2
≤ m = 2J ≤ N

and that ε = N−2, and take:

κ =

√

logN

N

to obtain the desired rate of convergence. �

4. Better bounds and generalizations

Actually, as pointed out by Catoni [6], the symmetrization technique used in the
proof of theorem 2.1 causes the loss of a factor 2 in the bound because we upper
bound the variance of two samples instead of 1. In this section, we try to use this
remark to improve our bound, using techniques already used by Catoni [4]. We also
give a generalization of the obtained result that allows us to use a family (f1, ..., fm)
of functions that is data-dependant. The technique used is due to Seeger [13], and
it will allows us to use kernel estimators as Support Vector Machines.

Remark that the estimation technique described in section 2 does not necessarily
require a bound on d2(α̂kfk, αkfk). Actually, a simple confidence interval on αk is
sufficient.
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4.1. An improvement of theorem 2.1 under condition H(+∞). Let us re-
member that H(+∞) just means that every fk is bounded by

√
CkDk.

Theorem 4.1. Under condition H(+∞), for any ε > 0, for any βk,1, βk,2 such
that:

0 < βk,j <
N√
CkDk

, j ∈ {1, 2},

with P⊗N -probability at least 1 − ε, for any k ∈ {1, ...,m} we have:

αinf
k (ε, βk,1) ≤ αk ≤ αsup

k (ε, βk,2)

with:

αsup
k (ε, βk,2) =

N −N exp
[

1
N

∑N
i=1 log

(

1 − βk,2

N
fk(Xi)

)

− log 2m
ε

N

]

Dkβk,2

and:

αinf
k (ε, βk,1) =

N exp
[

1
N

∑N
i=1 log

(

1 +
βk,1

N
fk(Xi)

)

− log 2m
ε

N

]

−N

Dkβk,1
.

Before we give the proof, let us see why this theorem really improves theorem
2.1. Let us choose put:

Vk = P
{

[fk(X) − P (fk(X))]
2
}

and:

βk,1 = βk,2 =

√

N log 2m
ε

Vk

.

Then we obtain:

αinf
k (ε, βk,1) = α̂k −

√

2Vk log 2m
ε

N
+ OP

(

log 2m
ε

N

)

and:

αsup
k (ε, βk,2) = α̂k +

√

2Vk log 2m
ε

N
+ OP

(

log 2m
ε

N

)

.

So, the first order term for d2(α̂kfk, αkfk) is:

2Vk log 2m
ε

N
,

there is an improvement by a factor 4 when we compare this bound to theorem 2.1.
Remark that this particular choice for βk,1 and βk,2 is valid as soon as:

√

N log 2m
ε

Vk

<
N√
CkDk

or equivalently as soon as N is greater than

CkDk log 2m
ε

Vk

.

In practice, however, this particular βk,1 and βk,2 are unknown. We can use the
following procedure (see Catoni [6]). We choose a value a > 1 and:

B =

{

al, 0 ≤ l ≤
⌊

log N√
CkDk

log a

⌋

− 1

}

.
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By taking a union bound over all possibles values of B, with:

|B| ≤
log N√

CkDk

log a

we obtain the following corollary.

Corollary 4.2. Under condition H(+∞), for any a > 1, for any ε > 0, with
P⊗N -probability at least 1 − ε we have:

sup
β∈B

αinf
k

(

ε log a

logN − 1
2 logCkDk

, β

)

≤ αk ≤ inf
β∈B

αsup
k

(

ε log a

logN − 1
2 logCkDk

, β

)

,

with:

B =

{

al, 0 ≤ l ≤
⌊

log N√
CkDk

log a

⌋

− 1

}

.

Note that the price to pay for the optimization with respect to βk,1 and βk,2 was
just a log logN factor.

Proof of the theorem. The technique used in the proof is due to Catoni [5]. Let us
choose k ∈ {1, ...,m}, and:

β ∈
(

0,
N√
CkDk

)

.

We have, for any η ∈ R:

P⊗N exp

{

N
∑

i=1

log

(

1 − β

N
fk(Xi)

)

− η

}

≤ exp

{

N log
(

1 − β

N
P [fk(X)]

)

− η

}

.

Let us choose:

η = log
2m

ε
+N log

(

1 − β

N
P [fk(X)]

)

.

We obtain:

P⊗N exp

{

N
∑

i=1

log

(

1 − β

N
fk(Xi)

)

− log
2m

ε
−N log

(

1 − β

N
P [fk(X)]

)

}

≤ ε

2m
,

and so:

P⊗N

{

N
∑

i=1

log

(

1 − β

N
fk(Xi)

)

≥ log
2m

ε
+N log

(

1 − β

N
P [fk(X)]

)

}

≤ ε

2m
,

that becomes:

P⊗N

{

P [fk(X)] ≥ N

β

[

1 − exp

(

1

N

N
∑

i=1

log

(

1 − β

N
fk(Xi)

)

− log 2m
ε

N

])}

≤ ε

2m
.

We apply the same technique to:

P⊗N exp

{

N
∑

i=1

log

(

1 +
β′

N
fk(Xi)

)

− η

}

≤ exp

{

N log
(

1 +
β′

N
P [fk(X)]

)

− η

}

to obtain the upper bound. We combine both result by a union bound argument.
�



DENSITY ESTIMATION WITH QUADRATIC LOSS: A CONFIDENCE INTERVALS METHOD17

4.2. A generalization to data-dependent basis functions. We now extend
the previous method to the case where the family (f1, ..., fm) is allowed to be data-
dependant, in a particular sense. This subsection requires some modifications of
the notations of section 2.

Definition 4.1. For any m′ ∈ N∗ we define a function Θm′ : X →
(

L2
)m′

. For
any i ∈ {1, ..., N} we put:

Θm′(Xi) = (fi,1, ..., fi,m′) .

Finally, consider the family of functions:

(f1, ..., fm) = (f1,1, ..., f1,m′ , ..., fN,1, ..., fN,m′) .

So we have m = m′N (of course, m′ is allowed to depend on N). Let us take, for
any i ∈ {1, ..., N}:

Pi(.) = P⊗N (.|Xi).

We put, for any (i, k) ∈ {1, ..., N} × {1, ...,m′}:

Di,k =

∫

X
fi,k(x)2λ(dx),

and we still assume that condition H(∞) is satisfied, that means here that we have
known constants Ci,k = ci,k such that:

∀x ∈ X , |fi,k(x)| ≤
√

Ci,kDi,k.

Finally, we put:

αi,k = argmin
α∈R d2(αfi,k, f).

Let us choose (i, k) ∈ {1, ..., N} × {1, ...,m′}. Using Seeger’s idea, we follow the
preceding proof, replacing P⊗N by Pi, and using the N − 1 random variables:

(

fi,k(Xj)
)

j ∈ {1, ..., N}
j 6= i

with

η = log
2m′N

ε
+ (N − 1) log

(

1 − β

N − 1
P [fi,k(X)]

)

and we obtain:

Pi exp

{

∑

j 6=i

log

(

1 − β

N − 1
fi,k(Xj)

)

− log
2m′N

ε

− (N − 1) log
(

1 − β

N − 1
P [fi,k(X)]

)

}

≤ ε

2m′N
.

Note that for any random variable H that is a function of the Xi:

P⊗NPiH = P⊗NH.

So we conclude exactly in the same way than for the previous theorem and we
obtain the following result.

Theorem 4.3. For any ε > 0, for any βi,k,1, βi,k,2 such that:

0 < βi,k,j <
N − 1

√

Ci,kDi,k

, j ∈ {1, 2},

with P⊗N -probability at least 1 − ε, for any i ∈ {1, ..., N} and k ∈ {1, ...,m} we
have:

α̃inf
k (ε, βi,k,1) ≤ αk ≤ α̃sup

k (ε, βi,k,2)
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with:

α̃sup
k (ε, βi,k,2)

=

N − 1 − (N − 1) exp

[

1
N−1

∑

j 6=i log
(

1 − βi,k,2

N−1 fi,k(Xj)
)

− log 2m′N
ε

N−1

]

Di,kβi,k,2

and:

α̃inf
k (ε, βi,k,1)

=

(N − 1) exp

[

1
N−1

∑

j 6=i log
(

1 +
βi,k,1

N−1 fi,k(Xj)
)

− log 2m′N
ε

N−1

]

−N + 1

Di,kβi,k,1
.

Example 4.1 (Support Vector Machines). Actually, SVM were firstly introduced
by Guyon, Boser and Vapnik [3] in the context of classification, but the method was
extended by Vapnik [15] to the context of least square regression estimation and of
density estimation. The idea is to generalize the kernel estimator to the case where
X is of large dimension, and so we cannot use a grid like we did in the [0, 1] case.
Let us choose a function:

K : X 2 → R
(x, x′) 7→ K(x, x′).

We take m′ = 1 and:

Θ1(x) = (K(x, .))

then the obtained estimator has the form of a SVM:

f̂(x) =

N
∑

i=1

α̃iK(Xi, x)

where the set of i such that α̃i 6= 0 is expected to be small. Note that we do not need
to assume that K(., .) is a Mercer’s kernel as usual with SVM. Moreover, we can
extend the method to the case where we have several kernels K1, ...,Km′ by taking:

Θm′(x) = (K1(x, .), ...,Km′(x, .)) .

The estimator becomes:

f̂(x) =

m′
∑

j=1

N
∑

i=1

α̃i,jKj(Xi, x).

Note that a widely used kernel is the gaussian kernel; let δ(., .) be a distance on X
and γ1, ..., γm′ > 0 then we put:

Kk(x, x′) = exp
(

−γkδ
2(x, x′)

)

.

For example, if X = R and λ is the Lebesgue measure then hypothesis H(∞) is
obviously satisfied with the gaussian kernel with

Ci,k = ci,k =

√

γk

π
=

1

Di,k

.
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4.3. Back to the histogram. In the case of the histogram, fk(.) = 1Ak
(.) can

take only two values: 0 and 1. Remember that Dk = λ(Ak). So:

αinf
k (ε, βk,1) =

N

λ(Ak)βk,1







[

(

1 +
βk,1

N

)|{i:Xi∈Ak}| ε

2m

]
1
N

− 1







.

Remember that, for any x ≥ 0:

(1 + x)γ ≥ 1 + γx+
γ(γ − 1)

2
x2

and so:

αinf
k (ε, βk,1) ≥ α̂k

( ε

2m

)
1
N

[

1 − βk,1(1 − α̂kDk)

2N

]

− N

Dkβk,1

[

1 −
( ε

2m

)
1
N

]

.

Now, we take the grid:

B =

{

2l, 0 ≤ l ≤
⌊

log N√
Dk

log 2

⌋

− 1

}

.

Remark that, for any β in:
[

1,
N

2
√
Dk

]

there is some b ∈ B such that β ≤ b ≤ 2β, and so:

αinf
k (ε, b) ≥ α̂k

( ε

2m

)
1
N

[

1 − βk,1(1 − α̂kDk)

2N

]

− N

Dk2βk,1

[

1 −
( ε

2m

)
1
N

]

.

This allows us to choose whatever value for βk,1 in
[

1,
N

2
√
Dk

]

.

Let us choose:

βk,1 =

√

√

√

√

N2
[

(

ε
2m

)
−1
N − 1

]

α̂kDk(1 − α̂kDk)

that is allowed for N large enough. So we have:

αinf
k (ε, βk,1) ≥ α̂k

( ε

2m

)
1
N −

√

α̂kDk(1 − α̂kDk)

[

( ε

2m

)
−1
N − 1

]

.

With the union bound term (over the grid B) we obtain:

αinf
k

(

ε log 2

log N√
Dk

, βk,1

)

≥ α̂k

(

ε log 2

2m log N√
Dk

)
1
N

−

√

√

√

√

√α̂kDk(1 − α̂kDk)





(

ε log 2

2m log N√
Dk

)
−1
N

− 1





= α̂k −

√

√

√

√ α̂kDk(1 − α̂kDk) log
2m log N√

Dk

ε log 2

N
+ O

(

log m log N
ε

N

)

,

remark that we have this time the ”real” variance term of 1Ak
(X):

α̂kDk(1 − α̂kDk) =
|{i : Xi ∈ Ak}|

N

(

1 − |{i : Xi ∈ Ak}|
N

)

.
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4.4. Another simple example: the Haar basis. Let us assume that X = [0, 1].
Let (ϕ, ψ) be a father wavelet and the associated mother wavelet, and:

ψj,k(x) = ψ(2jx+ k)

for k ∈ {0, ..., 2j − 1} = Sj (note that the wavelet basis is non-normalized here).
Here, we use the Haar wavelets, with:

ϕ(x) = 1[0,1](x)

ψ(x) = 1[0, 12 ]
(x) − 1[ 1

2 ,1](x).

For the sake of simplicity, let us write:

ψ−1,k(x) = ϕ(x)

for k ∈ {0} = S−1. By an obvious adaptation of our notations, let us put αj,k the
coefficient associated to ψj,k:

αj,k =
Pψj,k(X)
∫

ψ2
j,k

= Pψj,k(X),

remark that condition H(∞) is satisfied with Dj,k = 2−j and Cj,k = 1. In this
particular setting, note that α−1,0 = 1 is known, so the associated confidence
interval is just {1}. Moreover, here ψj,k(X) can take only three values: −1, 0 and
1. Let us put:

P =
1

N

N
∑

i=1

δXi
.

Remark that in this case we have:

1

N

N
∑

i=1

log

(

1 − β

N
ψj,k(Xi)

)

= P (ψj,k(X) = 1) log

(

1 − β

N

)

+ P (ψj,k(X) = −1) log

(

1 +
β

N

)

=
1

2
P
[

ψj,k(X)2
]

log

(

1 − β2

N2

)

+
1

2
P [ψj,k(X)] log

(

1 − β
N

1 + β
N

)

.

So we have:

αsup
j,k (ε, β)

=
N −N exp

[

1
2P
[

ψj,k(X)2
]

log
(

1 − β2

N2

)

− 1
2P [ψj,k(X)] log

(

1+ β
N

1− β
N

)

− log 2m
ε

N

]

Dkβk,2

and:

αinf
j,k(ε, β)

=
N exp

[

1
2P
[

ψj,k(X)2
]

log
(

1 − β2

N2

)

+ 1
2P [ψj,k(X)] log

(

1+ β
N

1− β
N

)

− log 2m
ε

N

]

−N

Dkβk,1
.

5. Simulations

5.1. Description of the example. We assume that we observeXi for i ∈ {1, ..., N}
with N = 210 = 1024, where the variables Xi ∈ [0, 1] ⊂ R are i.i.d. from a distribu-
tion with an unknown density f with respect to the Lebesgue measure. The goal
is to estimate f .

Here, we will use three methods. The first estimation method will be a multiple
kernel estimator obtained by the algorithm described previously, the second one a
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thresholded wavelets estimate also obtained by this algorithm, and we will compare
both estimators to a thresholded wavelet estimate as given by Donoho, Johnstone,
Kerkyacharian and Picard [8].

5.2. The estimators.

5.2.1. Hard-thresholded wavelet estimator. We first use a classical hard-thresholded
wavelet estimator.

In the case of the Haar basis (see subsection 4.4), we take:

α̂j,k = 2j 1

N

N
∑

j=1

ψj,k(Xi).

For a given κ ≥ 0 and J ∈ N, we take:

f̃J(.) =

J
∑

j=−1

∑

k∈Sj

α̂j,k1(|α̂j,k| ≥ κtj,N )ψj,k(.)

where:

tj,N =

√

j

N
.

Actually, we must choose J in such a way that:

2J ∼ t−1
N .

Here, we choose κ = 0.7 and J = 7.

5.2.2. Wavelet estimators with our algorithm. We also use the same family of func-
tions, and we apply our thresholding method, with bounds given in subsection 4.4.
So we take:

m = 2J = 128.

We use an asymptotic version of our confidence intervals inspired by our theo-
retical confidence intervals:

αj,k ∈



α̂j,k ±

√

log 2m
ε
Vj,k

N





where Vj,k is the estimated variance of ψj,k(X):

Vj,k =
1

N

N
∑

i=1

[

ψj,k(Xi) −
1

N

N
∑

h=1

ψj,k(Xh)

]2

.

Let us remark that the union bound are always ”pessimistic”, and that we use
a union bound argument over all the m models despite only a few of them are
effectively used in the estimator. So, we propose to actually use the individual
confidence interval for each model, replacing: the log 2m

ε
by log 2

ε
.

5.2.3. Multliple estimator. Finally, we use the kernel estimator described in section
3, with function K:

Kj(u, v) = exp
[

−22j(u− v)2
]

with n = N and j ∈ {1, ..., h = 6}. We add the constant function 1 to the family.
Here again we use the individuals confidence intervals, and the asymptotic ver-

sion of this intervals.
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Figure 1. Values of ti and ci in the fonction Blocks(.).
i 1 2 3 4 5 6 7 8 9 10 11

ci 4 −5 3 −4 5 4.2 −2.1 4.3 −3.1 2.1 −4.2

ti 0.10 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81

Figure 2. Results of the experiments. For each experiment, we
give the mean distance of the estimator the the density (d2(., f)).

Function
f(.)

standard thresh-
olded wavelets

thresh. wav. with
our method

multiple kernel

Doppler 0.104 0.127 0.083
HeaviSine 0.071 0.066 0.040
Blocks 0.110 0.142 0.121

5.3. Experiments and results. The simulations were realized with the R soft-
ware [12].

For the experiments, we use the following functions f that are some variations
of the functions used by Donoho and Johnstone for experiments on wavelets, for
example in [8] (actually, these functions were used as regression functions, so the
modification was to add them a constant in order to ensure they take nonnegative
values):

Doppler(t) = 1 + 2
√

t(1 − t) sin
2π(1 + v)

t+ v
where v = 0.05

HeaviSine(t) = 1.5 +
1

4

[

4 sin 4πt− sgn(t− 0.3) − sgn(0.72 − t)
]

Blocks(t) = 1.05 +
1

4

11
∑

i=1

ci1(ti,+∞)(t)

where sgn(t) is the sign of t (say −1 if t ≤ 0 and +1 otherwise). The values of the
ci and ti are given in figure 1.

We consider 3 experiments (for the three density functions), we choose ε=10%,
repeat each experiment 20 times; the results are reported in figure 2. We also give
some illustrations (figure 3, 4 and 5).
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Figure 3. Experiment 1, f = Doppler. Up-left: true regression
function (true). Down-left: SVM (f). Up-right: wavelet estimate with
our algorithm (ondelrel). Down-right: ”classical” wavelet estimate

(ondelseu).

Figure 4. Experiment 2, f = HeaviSine and σ = 0.3.
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Figure 5. Experiment 3, f = Blocks and σ = 0.3.
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