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Short Fibers Suspension in Steady Recirculating Flows

Francisco Chinesta 1 * and Guillaume Chaidron A s a consequence of the increasing use of composite materials, there has been much work on constitutive equations and computational mechanics for short fibers composites. Since these materials are generally made of a matrix and fibers reinforcement, the mechanical properties of the conformed pieces depend greatly on the fibers' orientation in the solid material. However, it turns out that this orientation is determined by the forming process, so that it is interesting to develop mathematical models for the flow during this conforming process and to develop specific numerical strategies to solve the resulting equations.

The numerical simulation of the flow has been carried out in several different ways, including a series of simplifying hypotheses. This modeling is usually achieved within the framework of dilute or semi-dilute suspensions of non-spherical particules in a Newtonian fluid. The resulting system of equations involves the coupling of an elliptic boundary value problem with a convection-type equation. The elliptic problem is associated with the equations of motion, whereas the advection equation describes the time evolution of the anisotropic viscosity tensor. The second problem, associated with the orientation equation, presents two difficulties: it is non-linear and hyperbolic.

The method of characteristics, applicable as long as every trajectory crosses the inflow boundary, has been applied many times (see for example [START_REF] Rosenberg | Simulation of Non-recirculating Flows of Dilute Fiber Suspensions[END_REF]. When there are recirculations, specific methods especially well adapted to hyperbolic equations in eulerian variables are needed (e.g., SUPG or discontinuous finite volume methods).

Many of the experimental and industrial flows show recirculating areas or recirculate themselves. For example, in a lid-driven cavity problem, the flow recirculates under the influence of a moving plate. Contraction or expansion flows (as encountered in extrusion processes), standard rotative rheometers, etc., proceed with a steady recirculating flow. In this flow type, the advection equation is supposed to have a steady solution but neither boundary conditions nor initial conditions are known.

In [START_REF] Chinesta | On the Steady Solution of Linear Advection Problems in Steady Recirculating Flows[END_REF], a numeric procedure to determine a steady solution of the fibers orientation in steady recirculating flows was proposed, which took into account that neither initial condition nor boundary conditions are given. This procedure may be used in the numerical simulation of SFRT flows involving recirculating parts, as

• Author to whom correspondence may be addressed. E-mail address: francisco. chinesta@ paris. ensam. fr Numerical modeling of short fiber suspensions flows involves the coupling between motion equations, which definean elliptic problem, and the fluid constitutive equation, which introduces a non-linear advection problem related to the fiber orientation (induced anisotropy). In a previous work these authors have proposed a numerical procedure to determine a steady solution of the fibers orientation in steady recirculating flows, taking into account that neither initial nor boundary conditions are given. This procedure may be used in the numerical simulation of SFRT flows involving recirculating parts as encountered in the simulationof industrial processes, as well as in inverse rheological identification using, for example, rotative rheometric devices.

La modelisation numerique des suspensions de fibres courtes implique le couplage entre les equations de mouvement (qui definissent un probleme elliptique) et !'equation constitutive qui introduit un probleme de transport non lineaire asocie a I' orientation des fibres. Les auteurs ont propose, dans des travaux precedents, une technique numerique pour le calcul de !'orientation des fibres dans un ecoulement stationnaire recirculant pour lequel les conditions aux limites et les conditions initiales ne sont pas connues. Cette technique peut etre utilisee dans Ia simulation d'tkoulements de fibres courtes presentant des recirculations, comme c'est le cas dans les ecoulements industrielles en contraction ainsi que dans les instruments rheometriques rotatifs.

Keywords: non-linear advection problems, steady recirculating flows, short fibers suspensions. encountered when simulating industrial processes as well as in inverse rheological identification, for 2D or 3D steady kinematics and orientation fields.

An example of a 2D kinematics flow and 3D orientation field will be presented below in a section devoted to applications for inverse rheological identification. In this paper, the procedure will be applied in different steady recirculating flows of short fibers suspensions.

Mechanical and Numerical Modeling

The flow model associated with a short fibers reinforced thermoplastic model is defined by the following equations [START_REF] Batchelor | Slender-body Theory for Particles of Arbitrary Cross-Section in Stokes Flow[END_REF][START_REF] Hand | A Theory of Anisotropic Fluids[END_REF]Hinch, andLeal, 1975, 1976;[START_REF] Meslin | Proprietes rheologiques des composites fibres courtes a l'etat fondu[END_REF]:

The balance of momentum equations, without inertia and mass terms, is:

DiV<J = Q (1)
where g is the stress tensor.

The incompressibility condition is:

DiV'I,! = 0 (2)
where \l represents the velocity field.

The constitutive equation, with a quadratic closure relation for the fourth-order orientation tensor and other simplifying assumptions (see [START_REF] Tucker Ill | Flow Regimes for Fiber Suspensions in Narrow Gap[END_REF], is:

(3)

where P denotes the pressure, l the unit tensor, 1.1 the equivalent suspension viscosity, Qthe strain rate tensor, NP a scalar parameter depending on both the fiber concentration and the fiber aspect ratio, and q the second order orientation tensor defined by: (4)

where p is the unit vector associated with the direction of the fiber axis, and \jl(fl )is the orientation distribution function, verifying:

(5) If 't'(p) =O(p -p~ with o() the Dirac's function, all the orientation probability is -concentrated in the direction defined by p , and the corresponding orientation tensor is q = p <8> p . In a-planar case, the isotropic orientation state is defined by the uniform distribution function:

'~-'(P) = ...!._ - 2n (6) 
The orientation tensor related to a planar isotropic orientation state is then:

I a=-'- = 2 (7)
From a physical point of view, we can consider that the eigenvalues of the second order orientation tensor (g) represent the probability of finding the fibers in the direction of the corresponding eigenvectors.

With a quadratic closure relation for the fourth order orientation tensor, the orientation equation is expressed as:

where q satisfies (9) Qand Qare the symmetric and skew-symmetric components of Grad11, k is a constant that depends on the fiber aspect ratio: k=(fl-1 )(fl+ 1 ), with the fiber aspect ratio defined by r=L/~

where Lis the fibers length and~ its diameter, and D, a diffusion coefficient.

The quadratic closure relation is exact as long as the fibers are perfectly aligned locally. If we consider other closure relations, the orientation equation is changed but its hyperbolic character is maintained and the iteration procedure proposed in this paper can be used. The comparison of different closure relations is an important feature of this equation and will be the main subject of a future work.

The flow model is defined in Q E R 2 . On the boundary, r =an either the velocity or the traction are imposed:

(1 0) and ( 11)

with r 1 ur 2 = rand r 1 nr 2 = ~' and Q(K) is the unit outwards vector, normal to the boundary at the point K_. The inflow boundary will be denoted by r _:

(12)

As the orientation equation has a hyperbolic character, the integration of the orientation equation only requires an orientation boundary condition on the inflow boundary in a steady state flow simulation:

(13)

Kinematics and Fiber Orientation Coupling

When one is looking for a steady solution of the flow problem defined by Equations ( 1), ( 2), ( 3) and ( 8), a fixed-point iterative strategy is usually considered [START_REF] Lipscomb | The Flow of Fiber Suspensions in Complex Geometries[END_REF]Chiba and Nakamura, 1998). In this form the flow kinematics given by the solution of Equations ( 1), ( 2) and ( 3) are obtained at time tm = mM from the orientation field at the previous iteration g(tm-1) = gm-1•

Diva = 0 =m - DiV'Qm = 0 (14)
Now, from the actualized flow kinematics,(y(tm)=Ym), the fiber orientation is recalculated solving Equation ( 8):

da ----=m.=n a -an

+ dt =m=m =m=m (15)
This iterative process must be continued until the convergence is reached. The flow kinematics define an elliptic problem, whereas Equation ( 8) is non-linear and hyperbolic. When the solution of Equations (1 ), ( 2) and ( 3) defines a recirculating flow, the resolution of Equation ( 8) is more difficult to obtain, because neither boundary nor initial conditions are known. In the next section we will describe the numerical procedure proposed in [START_REF] Chinesta | On the Steady Solution of Linear Advection Problems in Steady Recirculating Flows[END_REF] to solve linear advection problems in steady recirculating flows, which must be coupled with a scheme to treat the non-linearity of Equation ( 8).

Remarks

The flow kinematics are easily solved using a velocity-pressure mixed formulation with a functional approximation verifying the inf-sup condition. In this way, part of the problem is solved without difficulty.

As we will only solve Equation ( 8) at time tm in a steady recirculating flow, the index m will be exluded from the notation.

In forming processes such as extrusion or in rheological identification using any rotating viscosimetric flow, the fibers' orientation has an important impact on the fluid kinematics, and vice-versa. However, to give an accurate description of the coupling between fluid kinematics and fibers' orientation, this orientation has to be precisely computed. This paper advances an original strategy for obtaining an accurate solution for the orientation in any steady recirculating flow kinematics, which poses the major difficulty in this kind of problem.

As shown in [START_REF] Chaidron | On the Periodicity of the Extra-stress Tensor in Non-Newtonian Steady Recirculating Flows[END_REF], the finite element solution of advection equations in steady recirculating flows are not necessarily periodic. To avoid this problem, we use the Finite Element Method (FEM) to resolve the flow kinematics and a specific and original Lagrangian method to solve the orientation problem.

Numerical Treatment for Non-linearity

Equation ( 8) can be linearized by using a fixed point strategy [START_REF] Chaidron | On the Steady Solution of Non-linear Advection Problems in Steady Recirculating Flows[END_REF], which looks a periodic solution of Equation ( 16) at each iteration n. As gn-l is known in present iteration n, the transport equation becomes linear, and the numerical procedure proposed in [START_REF] Chinesta | On the Steady Solution of Linear Advection Problems in Steady Recirculating Flows[END_REF] allows us to compute a steady solution of Equation (16).

Steady Solution of the Linear Orientation Equation

Equation ( 16) can now be written taking into account the linearity and symmetry of the orientation tensor in the Lagrangian vectorial form:

(17)
where (18) The matrix ~ and the vector (!depend only on the flow kinematics or on the material parameters k and D,. and consequently on the particle position given by the integration of:

(19)

The differential system in Equation ( 17) is linear and consequently its general solution may be written as an addition to the general solution of the homogeneous differential system:

(20)
and as a particular solution of the non-homogeneous differential system (Equation 1 7).

If we denote by qh< 11 >(t), qh< 12 > and qh< 22 >, the solutions of the differential system (20) associated with the initial conditions given by e 1 ®e 1 , e 1 ®e 2 + e 2 ®e 1 and e 2 ®e 2 , and by qc(t), a particular solution of (1 7), then the general solution of (1 7) is given by: For steady recirculating flows, the only natural condition which can be imposed on the solution is the periodicity of that solution along the closed trajectories, as proved in [START_REF] Poitou | Numerical "Simulation of the Steady Recirculating Flows of Fibers Suspensions[END_REF]. In order to obtain this periodic solution numerically, [START_REF] Chinesta | On the Steady Solution of Linear Advection Problems in Steady Recirculating Flows[END_REF] propose to impose the periodicity in Equation ( 21). Thus, the solution after a spatial period T (a complete rotation) must be the initial value: (22) This defines the linear system:

(23)

From that system, we can obtain the values of the three components of the vector g: a 11 , a 12 and a 22 . In [START_REF] Chinesta | On the Steady Solution of Linear Advection Problems in Steady Recirculating Flows[END_REF], the authors proved that the periodicity condition implies the solution stationarity.

Numerical Results

In order to verify the numerical procedure we are going to analyze different simple recirculating flows. In the integration of differential equations, a fourth-order Runge-Kutta scheme has been considered.

SFRT Flow without Diffusion Effects

We consider the model given in Equation ( 8) with a diffusion coefficient close to zero. In this case, [START_REF] Poitou | Numerical "Simulation of the Steady Recirculating Flows of Fibers Suspensions[END_REF] have proved that for fibers with a quasi-infinite aspect ratio in a general flow, the only solution is given by the local alignment of the fibers with the streamlines.

Rotation of a Rigid Body

We now consider the rigid motion given by the velocity field:

!!T = (-y,x) (24)
This equation describes the rigid body rotation around the center point (0,0). The velocity is constant on a circle trajectory centered on this point. The velocity is linearly dependent on the radius. We solve the problem for the point 1St= (0, 1 ). The matrix of coefficients given in ( 23) is singular. This means that any solution may be considered at the chosen point as a periodic initial solution.

The expression of this solution in a cylindrical coordinates system remains the same along a closed trajectory. To prove this, we can verify that for this flow the evolution of the orientation tensor in cylindrical coordinates becomes:

da -=.-0 dt =

Planar and Circular Flow (25)

We will consider here the planar flow given by the following velocity field:

12 r = ( -y~x2 + y2,x~x2 + y2) (26)
We are looking for a periodic orientation solution with a unit trace at the point 1S r= (0, 1) using the strategy described above. When inextensible fibers with a finite aspect ratio are considered, the local alignment of the fibers with the flow is not a solution. Moreover, in [START_REF] Chinesta | Modelisation numerique en mise en forme de polymeres et ceramiques: Differents problemes de Transport[END_REF], it is proved that for general flows the periodic solution cannot have a unit eigenvalue. We can verify that result using our strategy.

If we are looking for a periodic fiber orientation in the flow defined by Equation ( 26) for fibers with k = 0.6, and with the diffusion coefficient D,= 0, then the solution found at the point 1St= (0, 1) is given by:

[ 0.8 0 l ~(0,1) = 0 0.2 (28)
Increasing the isotropic behavior with the k parameter, until reaching the isotropic orientation for circular particles k = 0. The solution along the streamline is depicted in Figure 1. We represent the orientation tensor by means of an ellipse. The ellipse axis directions correspond to the eigenvectors of the orientation tensor, and the semi-axis sizes correspond to the eigen values. In this figure we can see that ellipses have a certain thickness corresponding to a non-null eigenvalue in the radial direction. That means that the most probable direction of a fiber is the direction of the streamline but there is a light misalignment. In this flow, each fiber rotates along its trajectory with a period that depends on both the fiber aspect ratio and the shear rate, and the orientation average is given by the orientation tensor shown in 

Lid-Driven Cavity Flow

Finally, we consider the lid-driven cavity flow problem, with the flow kinematics given by the solution of the Stokes problem, as defined by:

'Vp = 11~11 in ]o, 1[ x ]o, 1[ on x = 0; x = 1; y = 0 (29) l = ( ~ x( x -1), 0) on y = 1
In order to get accurate incompressible solutions, we use a stream function formulation and solve the resulting biharmonic equation with a pseudospectral Chebyshev technique, neglecting the fiber orientation effects on the kinematics of the flow.

Figures 2 and3 show the steady orientation solution along ~,.;.:J-'<"::....;:..;.:::: -\-:H~'\'.', :,:./•'--• ~'

;:.;. some closed trajectories for fibers with quasi-infinite and finite (k = 0.9) aspect ratios, respectively.

~' >' -' i' t' ,,_.
In the first case (Figure 2), the local alignment of the fibers with the flow is identified, except in the vicinity of the center of rotation, where the kinematics are very close to a rigid motion. However, even in this area, the local alignment may be considered as a steady orientation solution.

In the second case (Figure 3), as indicated in [START_REF] Poitou | Numerical "Simulation of the Steady Recirculating Flows of Fibers Suspensions[END_REF], both high gradients near the corners and elongational flow induce high deviations from the local alignment in some areas of the fluid domain. In order to emphasize this deviation, we have superimposed the orientation field with the unit vectors in the streamline direction.

SFRT Flow with Diffusion Effects Planar and Circular Flow

In this case we consider the more general model given by Equation ( 8) with D, * 0 for fibers with a quasi-infinite aspect ratio immersed in a steady recirculating flow defined by Equation ( 26). Figures 4 and5 show the steady fiber orientation for two different diffusion coefficients. In the first case the diffusion coefficient is assumed to be small, and consequently the steady solution is very close to the local alignment of the fibers with the flow. In the other case, the higher diffusion coefficient induces more isotropy.

Lid-driven Cavity Flow

For this more complex flow and for fibers with a quasi-infinite aspect ratio, high extensions are induced by the flow. In consequence, the term which preserves the fiber inextensibility (Tr(gQ)q) becomes greater than for previous flows. The high non-linearity makes the fixed point strategy less efficient. Figures 6 and7 show the steady fiber orientation for two different diffusion coefficients.

Application to Inverse Rheological Identification

In this section we consider the simplest rheological device, the cone and plate rheometer and a dilute short fibers suspension.

We will denote co as the angular velocity of the cone, R as the external radius, and a as the cone angle. As indicated previously, the consitutive equation is given by: (30) where 1.1 and NP are two rheological parameters to determine.

The angular velocity on the cone surface for a radius r results in v 9 = cor, and at a point (r, e, z) in the fluid domain, v 9 = coz/tan(a). Thus, the shear strain rate is constant in the fluid domain yez = co/tan( a) = co/a.

The expression of the strain rate tensor in cylindrical coordinates results in:

0 0 0 Q= 0 0 Yez (31) 2 0 Yez 2 0
For these kinematics, the steady orientation tensor obtained with the proposed strategy results in: With Q and g as constants, and if we assume a constant pressure, the stress tensor will also be constant and, consequently, the equilibrium equation Divg= 0, will be automatically verified. On the other hand, the kinematics verify the incompressibility condition Divy= 0, as well as the boundary conditions. To prove that y, g and g define the problem solution, we need to prove that the stress boundary condition is verified, i.e.:

(34)

where ~r is the unit vector aligned in the radial direction. This condition gives us the pressure value:

Now, if we know the angular torque C and the normal force F applied on the cone, we can identify both rheologial parameters 11 and NP from the following relations:

(36) (37)

More precisely:

(38)

In the previous analysis we considered the lateral fluid surface r=R to be perfectly cylindrical. When we consider a convex lateral surface, a 3D computation with the free boundary condition must be carried out. However, the procedure proposed to compute steady orientation solutions can be applied to obtain the steady orientation associated with the kinematics at each iteration. This is the general situation found in the analysis of rotative rheometers, where, in general, homogeneous kinematics are not charateristic.

Remarks

As one of the referees of this paper has pointed out, the diffusion term in Equation ( 8) was introduced in the context of non-Brownian suspensions, as is the case with short fiber suspensions, to take into account the fibers' interaction in the flow. It has been widely assumed [START_REF] Folgar | Orientation Behaviour of Fibers in Concentrated Suspensions[END_REF][START_REF] Tucker Ill | Flow Regimes for Fiber Suspensions in Narrow Gap[END_REF], that the diffusion coefficient D, is proportional to the shear rate, i.e., D, = C 1 y with C 1 y constant. Thus, from that proportionality between the diffusion coefficient and the shear rate, the orientation solution in steady recirculating flows depends also on fiber interaction. In this case, from the values of F and C and Equations ( 38) and (39) the effect o( fiber interaction in rheometry could be analyzed.

Conclusions

We have presented some results concerning the steady solution of the orientation of fibers in steady recirculating flows. We have proposed a solution of the non-linear advection equation governing the fiber orientation evolution, even if neither initial nor boundary conditions are known. We have also given a numerical strategy for finding this solution. We have used the proposed strategy to analyse different simple recirculating flows of short fibers suspensions. This paper has led us to offer a numerical procedure for computing the steady solution of industrial recirculating flows, as are encountered in all rotative rheometric devices, which are generally 3D and couple flow kinematics with fiber orientation. The symbol ® denotes the dyadic product. Thus, the components of !J®~ are u;vi.

Nomenclature
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  The solution found corresponds to the local alignment of the fibers with the flow, i.e.: g(O.l) = (: :; (27)

Figure 1 .

 1 Figure 1. Steady fiber orientation for fibers with finite aspect ratio k = 0.6, D,= 0, in a circular and planar flow.

Figure 2 .Figure 3 .

 23 Figure 2. Steady fibers orientation in lid-driven cavity flow for fibers with quasi-infinite aspect ratio k = 1 and D,= 0.

Figure 4 .

 4 Figure 4. Steady fibers orientation with a diffusion coefficient D, ~ 0, k = 1, in a planar and cicular flow.

Figure 5 .

 5 Figure 5. Steady fibers orientation with high diffusion coefficient D,= 10, k = 1, in a planar and circular flow.

Figure 6 .

 6 Figure 6. Steady fibers orientation with a small diffusion coefficient o,~ 0, k = 1, in a lid-driven cavity flow.

Figure 7 .

 7 Figure 7. Steady fibers orientation with high diffusion coefficient D,= 10, k = 1, in a lid-driven cavity flow.

  which is also constant in the fluid domain. Thus, for example, if we take co= 0.01 rad/s, k = 1 and D,= 10 and a= 3°, the steady fiber orientation tensor results in:

  with components n; 1 (s-1 )
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