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On the steady solution of non-linear advection
equations in steady recirculating flows

G. Chaidron *, F. Chinesta

Laboratoire de Rhee�ologie et Thermodynamique des Matee�riaux Macromolee�culaires, CNAM, 
Conservatoire National des Arts et Mee�tiers, 292 rue Saint Martin, 75141 Paris Cedex 03, France 

Many physical problems like short fiber suspensions flows or viscoelastic flows are modeled by linear and non-linear advection 
equations. Many of the experimental and industrial flows show often steady recirculating areas which introduce some additional 
difficulties in the numerical simulation. Actually, the advection equation is supposed to have a steady solution in these steady recir-
culating flows but neither boundary conditions nor initial conditions are known in such flows. In this paper, we present accurate 
techniques to solve non-linear advection equations defined in steady recirculating flows. These techniques combine a standard 
treatment of the non-linearity with a more original treatment of the associated linear problems.
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1. Introduction

Numerical modeling of non-Newtonian fluid flows involves usually the coupling between motion
equations, which lead to an elliptic problem, and the fluid constitutive equation, which introduces an
advection problem related to the fluid history.

For example, for short fiber reinforced thermoplastic (SFRT) flow models, the extra-stress tensor s
depends on the fiber orientation [1–8]

s ¼ 2l D
n

þ Np Trðs DÞs
o
; ð1Þ

where l is the equivalent suspension viscosity, Np a scalar parameter depending on both the fiber con-
centration and the fiber aspect ratio, D the strain rate tensor, Trð Þ denotes the tensorial operator trace and
s is the second-order orientation tensor defined by

s ¼
a

TrðaÞ : ð2Þ

From a physical point of view, we can consider that the eigenvalues of the orientation tensor s represent the
probability of finding the fiber in the direction of the corresponding eigenvectors.
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The evolution of the tensor a is given by the advection equation

da

dt
¼ X a� a X þ kðD aþ a DÞ þ Dr a

�
�

I

3

�
; ð3Þ

where X represents the vorticity tensor, k is a constant which depends on the fibers aspect ratio, and Dr is a
diffusion coefficient.

Other examples are the viscoelastic models. In most of the differential viscoelastic models [9,10], the
evolution of the extra-stress tensor s is given by an advection equation. For example for the viscoelastic
Maxwell’s model we have

k
ds

dt
þ s ¼ 2lD; ð4Þ

where d=dt denotes the convected derivative

ds

dt
¼

ds

dt
�Gradv s � sðGradvÞT ð5Þ

and k is a relaxation time.
In the recent Pom–Pom viscoelastic model, as described in [11], the extra-stress tensor depends on both

the molecular orientation s and the molecular extension k

s ¼ ak2s; ð6Þ

where a is a material parameter.
Both evolutions are also given by two advection equations

da

dt
¼ X a� a X þ D aþ a D� 1

sb
a

�
�

I

3

�
; ð7Þ

s ¼
a

TrðaÞ ð8Þ

and

dk
dt

¼ k Trðs DÞ � 1

ss
ðk � 1Þ; ð9Þ

where sb and ss are two relaxation times.
The molecular orientation equation may be written in the form

ds

dt
¼ X s� s X þ D sþ s D� 2Trðs DÞs� 1

s�b
s

�
�

I

3

�
; ð10Þ

where s�b ¼ sbTrðaÞ ¼ sbk
2 [12].

Thus, generally, such a model is defined from the equations of motion where the mass and inertia terms
may be neglected, and from the extra-stress tensor evolution.

The equations of motion define an elliptic problem and the extra-stress tensor evolution equation defines
a hyperbolic problem.

The discretization of an advection equation is a difficult matter. It can be carried out integrating its
Lagrangian description by means of the method of characteristics [13–18], or by using the Eulerian dis-
cretization of its variational formulation: Streamline Upwind (SU) or Streamline Upwind Petrov–Galerkin
(SUPG) finite elements, [7,9,10,19–22]; discontinuous finite elements [10,23]; or discontinuous finite vol-
umes [22]. In the case of a SFRT flow or a Pom–Pom viscoelastic model among others, the interpolation of
the orientation tensors (required if standard Eulerian discretization techniques are used) introduces non-
physical orientation effects [18,22].
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Such numerical models are made in order to simulate real industrial processes and to predict resulting
mechanical properties of conformed pieces afterwards. Many of the experimental and industrial flows show
recirculating areas [24,25]. For example, in a lid-driven cavity problem, the flow recirculates under the
influence of a moving plate. In a contraction or in an expansion flow (as encountered, for example, in
extrusion processes), various recirculating areas are observed. Most of these phenomena are associated with
a steady state of the flow, which introduces some additional difficulties in the numerical simulation. Ac-
tually, the advection equation is supposed to have a steady solution in these steady recirculating flows but
neither boundary conditions nor initial conditions are known in such flows [18].

In a former paper [26] we have proved that linear advection problems in steady recirculating flows have
usually only one steady solution for general flow kinematics. We also give in [26] a numerical procedure to
determine this steady solution by imposing its periodicity along the closed trajectories required in steady
regimes. This accurate solution may be used in the context of steady simulations to obtain the solution in
the steady recirculating parts of the flow as well as to check the accuracy of other discretization techniques.
In this work this former strategy is generalized for the treatment of non-linear models as encountered
usually in the non-Newtonian fluid mechanics. Non-linear problems are transformed in a sequence of linear
ones with an iterative procedure. Each linear problem is then solved keeping the periodicity condition along
the closed streamlines.

2. Related works

2.1. Lagrangian strategies

In [27], a first Lagrangian strategy to solve the non-linear advection equation related to the fiber ori-
entation in steady recirculating flows of short fibers suspensions was presented. In order to summarize this
technique we will consider the non-linear scalar advection equation defined by

da
dt

þ f ðaÞ ¼ g; ð11Þ

where f ðaÞ represents the non-linear term, g is a function depending only on spatial coordinates, and da=dt
denotes the material derivative

da
dt

¼ oa
ot

þ v �Grada: ð12Þ

We assume that Eq. (11) is defined in a steady recirculating flow. In this case Eq. (11) results ill-defined
because neither initial conditions nor boundary conditions are known along the closed trajectories.

The numerical strategy proposed consists in integrating the non-linear equation by means of the method
of characteristic from an arbitrary initial value a0 in a point P on the closed trajectory as depicted in Fig. 1.
After one rotation, the initial point is reached, and from the integration of Eq. (11) the value of a at point P
will be aðT Þ, which in general is different of a0. In order to impose the periodicity of the steady solution, a
correction of the initial value a0 is needed. If we use a Newton’s method to calculate this initial value
correction, we need to define the residual associated with a0, Rða0Þ

Rða0Þ ¼ aðT Þ � a0: ð13Þ

Let now Da be the correction of a0 in order to obtain a zero residual

Rða0 þ DaÞ ¼ 0 ¼ Rða0Þ þ oR
oa

����
a¼a0

Daþ HðDa2Þ ð14Þ

from which the linearized correction Da results

Da ¼ � Rða0Þ
oR
oa

����
a¼a0

: ð15Þ
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In order to evaluate numerically the term ðoR
oaÞja¼a0 , we integrate again from another initial value at the same

point P, given by a0 þ � (� is representing a small value). After a turn along the closed trajectory, the new
value of a associated with the initial value a0 þ � will be a�ðT Þ

oR
oa

����
a¼a0

¼ Rða0 þ �Þ � Rða0Þ
�

¼ ða�ðT Þ � ða0 þ �ÞÞ � ðaðT Þ � a0Þ
�

: ð16Þ

This procedure must be continued until reaching convergence, i.e. jDaj < d (where d is another parameter
small enough).

Another strategy very similar to the previous one consists in integrating the non-linear advection
equation around the streamline until reaching a steady solution [27]. It is easy to verify that this technique
can be considered as equivalent to the previous one when the initial value correction is searched by means
of a fixed point strategy

Da ¼ aðT Þ � a0:

In these techniques the non-linear equation is solved with accuracy at each iteration, and the solution
periodicity is searched by means of an iterative scheme, e.g. Newton’s method or fixed point algorithm.

Sometimes, the steady solution can be found by the integration of the evolution equation, using the
method of characteristics, until reaching the steady state. This technique is applied in [17] on the simulation
of steady recirculating flows of short fibers suspensions. However, as it is shown in [28], the steady solution
can only be reached for a particular choice of the initial condition. For other initial conditions, the steady
state may not exist.

2.2. Eulerian strategies

A second family of techniques consists in integrating the Eulerian formulation of Eq. (11) taking into
account its hyperbolic character. Thus, a first strategy consists in solving the evolution problem until
reaching the steady state regime from an arbitrary initial condition aðt ¼ 0Þ. In [29], an Eulerian discret-
ization of the fiber orientation evolution problem was considered, using Fourier’s polynoms to approximate
the orientation tensor on the closed trajectories in order to enforce solution periodicity at each time step.

Another possibility consists in searching directly the steady solution using a fixed point or a Newton’s
method combined with a Fourier’s interpolation of the solution on the streamlines.

In relation to the first family of techniques (described in the previous section), these Eulerian strategies
allows us to keep the solution periodicity. Either the steady solution of the problem is obtained by solving
the evolution problem until reaching the steady state or it is obtained by means of a standard linearization
of the non-linear problem. However, so far, techniques keeping the solution periodicity require a periodic
interpolation of the unknown field on the closed trajectories (for example using Fourier’s polynoms) and
the resolution of linear systems, except if we choose an explicit strategy for the temporal discretization of
the evolution problem.

Fig. 1. Looking for a periodic solution.
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Non-linear advection equations are usually linearized and solved using a well adapted method to its
hyperbolic character like SU, SUPG, discontinuous Galerkin or discontinuous finite volume methods,. . .
(see for example [30] and associated references). For example, this strategy was applied to a fiber suspension
in an abrupt contraction flow [21]. These techniques give a steady Eulerian solution coming from the it-
erative procedure used in the non-linearity treatment. However, we can show that the stationarity of the
solution is not locally obtained because the periodicity of the solution along the closed streamlines is not
verified. For example, starting from the Eulerian solution on a point, if we integrate Eq. (11) along the
closed streamline, the solution after one turn is different from the initial one. In this case, we can conclude
that the Eulerian solution is not the steady one.

3. Solution of a non-linear advection problem

In a former paper [26], we have proved that linear steady advection problems in steady recirculating
flows have in general only one steady solution for general flow kinematics. We have also given a numerical
procedure for its determination. In the present paper, we generalize this numerical procedure to solve non-
linear advection problems. The proposed technique combines a standard linearization strategy (for example
a fixed point or a Newton’s technique) with a solution at each iteration of the associated linear problem.
This linear problem will be solved keeping the solution periodicity on the closed trajectories, avoiding
Eulerian interpolations and linear systems solutions.

Using any linearization technique, a non-linear problem can be transformed in a sequence of linear
problems. In order to keep the solution periodicity of each linear problem, we use the technique described
in [26] and summarized below.

3.1. Steady solution of linear advection equations in steady recirculating flows

In order to offer more generality to the following discussion we will consider at this point and according
to [26] a general system of linear advection equations

da
dt

¼ AðxðtÞÞaþ BðxðtÞÞ; ð17Þ

where the matrix A and the vector B depend only on the flow kinematics, and thus on the particle position
given by the integration of

dx
dt

¼ vðxðtÞÞ: ð18Þ

Without any loss in generality, we consider the unknown vector a composed by three scalar components

a ¼
a1
a2
a3

0
@

1
A: ð19Þ

The differential system (17) is linear so that its general solution can be written as the sum of the general
solution of the homogeneous differential system

da
dt

¼ AðxðtÞÞa ð20Þ

and a particular solution of the non-homogeneous differential system.
It is well known that for a linear homogeneous differential system, the linear combination of solutions is

also a solution of the differential system. Thus if we denote by að1Þh ðtÞ, að2Þh ðtÞ and að3Þh ðtÞ, the solutions of the
differential system (20) associated with the initial conditions
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að1Þh ðt ¼ 0Þ ¼
1
0
0

0
@

1
A; ð21Þ

að2Þh ðt ¼ 0Þ ¼
0
1
0

0
@

1
A; ð22Þ

and

að3Þh ðt ¼ 0Þ ¼
0
0
1

0
@

1
A; ð23Þ

respectively, then the solution of Eq. (20) associated with the initial condition

ahðt ¼ 0Þ ¼ a ¼
a1

a2

a3

0
@

1
A ð24Þ

with ða1; a2; a3Þ 2 R3, will be given by

ahðtÞ ¼ a1a
ð1Þ
h ðtÞ þ a2a

ð2Þ
h ðtÞ þ a3a

ð3Þ
h ðtÞ: ð25Þ

Since we are looking for a particular solution, we proceed by integrating Eq. (17) from an arbitrary initial
condition given by

acðt ¼ 0Þ ¼
b1

b2

b3

0
@

1
A ð26Þ

from which the particular solution acðtÞ is obtained.
The general solution of the system (17), aðtÞ, is then

aðtÞ ¼ a1a
ð1Þ
h ðtÞ þ a2a

ð2Þ
h ðtÞ þ a3a

ð3Þ
h ðtÞ þ acðtÞ ð27Þ

and its initial value is

aðt ¼ 0Þ ¼
a1 þ b1

a2 þ b2

a3 þ b3

0
@

1
A: ð28Þ

For steady recirculating flows, the only natural condition to impose to the solution, is its periodicity along
the closed trajectories [18]. Thus, the solution after a rotation of period T must be the initial value

aðt ¼ 0Þ ¼ a1a
ð1Þ
h ðT Þ þ a2a

ð2Þ
h ðT Þ þ a3a

ð3Þ
h ðT Þ þ acðT Þ ð29Þ

this defines the linear system

C a ¼ D: ð30Þ

From this system, we can obtain the values of the three components of the vector a. Thus, the steady
solution of the advection equation on the closed streamlines is defined by Eq. (27). This general solution is
unique if it exists. If not, the number of solutions is infinite [26].
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3.2. Linearization

Eq. (11) can be linearized using for example a fixed point strategy. Then, this equation is written in the
iterative form

dan

dt
þ hðan�1Þan ¼ g; ð31Þ

where an denotes the solution at iteration n and the non-linear function f ðaÞ has been decomposed as

f ðaÞ ¼ hðaÞa; ð32Þ

where hðaÞ is eventually another non-linear function. The simplest linearization technique consists in
considering the term hðaÞ at the previous iteration hðan�1Þ as assumed in Eq. (31). The iterative scheme
starts from an arbitrary periodic function a0. This algorithm allows us to find a solution of the non-linear
equation (11) keeping the solution periodicity at each iteration if the technique described in the previous
section is used to solve the associated linear problems.

Another usual linearization technique that can be used to solve our problem is Newton’s method. In this
case, the residual associated with the ðn� 1Þth iteration solution, an�1, of Eq. (11) is defined by

Rðan�1Þ ¼ dan�1

dt
þ f ðan�1Þ � g: ð33Þ

If Rðan�1Þ 6¼ 0, then a correction of an�1 denoted by Da is required. Newton’s linearization is then

dDa
dt

þ of
oa

����
a¼an�1

Da ¼ �Rðan�1Þ: ð34Þ

If this linear equation is solved keeping its periodicity along the closed trajectory (as described above), Da
will be periodic and in consequence

an ¼ an�1 þ Da ð35Þ

will also be periodic. The iteration algorithm stops when the residual is small enough. Thus, the resulting
solution is a steady solution of the original non-linear problem because the associated residual is quasi- zero
and is periodic on the closed streamline.

These linearization techniques allow us to find a steady solution of a non-linear advection equation
avoiding global Eulerian interpolations along the trajectories and the solution of the associated linear
equations systems.

From another point of view, these techniques establish a duality with the strategy described previously
and which is looking for a periodic solution keeping the verification of the non-linear equation. In the
present case, the periodicity is kept, and the verification of the non-linear equation is searched.

4. Results and discussion

To illustrate the computational implementation of the proposed strategy, a lid-driven steady cavity flow
is considered. We will focus our discussion on the solution of advection problems governing molecular
orientation and molecular extension for the POM–POM viscoelastic model presented in Section 1. In the
present study we neglect the effects of the molecular orientation and the molecular extension on the flow
kinematics, which in consequence is described by the solution of the Stokes problem defined by

rp ¼ lDv in �0; 1½� �0; 1½
v ¼ 0 on x ¼ 0; x ¼ 1; y ¼ 0;

ðu; vÞ ¼


� 2

5
xðx� 1Þ; 0

�
on y ¼ 1;

ð36Þ

where u and v are the components of the velocity vector v.
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In order to get accurate incompressible solutions, we use a stream function formulation and solve the
resulting biharmonic equation with a pseudospectral Chebyshev technique. The flow kinematics is depicted
in Fig. 2.

Now we consider the streamline passing through the point P ¼ ð0:5; 0:99Þ and a relaxation time for the
molecular orientation sb ¼ T=17 (where T is the period associated with the closed trajectory considered).
The steady orientation along the streamline is depicted in Fig. 3, where we represent the orientation tensor
by means of an ellipse. The ellipse axes directions correspond to the eigenvectors of the orientation tensor
and the half of the length of the axes correspond to the eigenvalues.

Remark. This strategy can be applied in any point of the recirculating flow except in the center of rotation.
The center of rotation is a singularity point which introduces high perturbations in Eulerian discretisations
[18]. Using the technique proposed in this paper, the center of rotation does not introduce any perturbation
in the numerical simulation. Furthermore, we have proved that in some cases the solution in the neigh-
borhood of the center of rotation can be extended with continuity to this point [31].

The advection equation governing the molecular extension is non-linear due to the fact that the relax-
ation time depends on the molecular extension

dk
dt

¼ kTrðs DÞ � 1

ss
ðk � 1Þ ð37Þ

with

ss ¼ s0 e
�mðk�1Þ: ð38Þ

The solution related to a constant relaxation time ðm ¼ 0Þ ss ¼ s0 ¼ T=17 and to the molecular orientation
shown in Fig. 3 is depicted in Fig. 4 where the extension magnitude is related to the circle diameter used in

Fig. 2. Velocity field for a steady lid-driving cavity problem.
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the representation (a circle associated with the natural molecular extension k ¼ 1 is depicted at the center of
rotation).

In order to solve the non-linear problem (m 6¼ 0) two strategies have been considered: a fixed point al-
gorithm and a Newton’s method. A fourth-order Runge–Kutta scheme with a control step has been used in
the integration of the advection equation by the method of characteristics.

Fig. 4. Steady extension for ss ¼ s0 ¼ T=10.

Fig. 3. Steady orientation for sb ¼ T=10.
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4.1. A fixed point strategy

The solution of the non-linear advection problem, Eq. (37), is found with the usual iterative algorithm

dkn

dt
¼ knTrðs DÞ � emðkn�1�1Þ

s0
ðkn � 1Þ; ð39Þ

where kn denotes the molecular extension field at present iteration, kn�1 the one associated with the previous
iteration, and the fields s, D and kn�1 only depend on the spatial coordinates. kn�1 is the known solution at
the previous iteration, and its values can be different all along the closed streamline. The linear problem that
results at each iteration is solved by means of the proposed strategy which keeps the solution periodicity. As
a first periodic estimation of the molecular extension, needed in order to start the iteration procedure
Eq. (39), the natural extension is considered (k0 ¼ 1).

4.2. Newton’s method

Newton’s linearization of Eq. (37) results

dDkn

dt
� DknTrðs DÞ þ Dkn mðkn�1 � 1Þ þ 1

s0
emðkn�1�1Þ ¼ �Rðkn�1Þ; ð40Þ

where Dkn is the correction to apply to the field kn�1, and Rðkn�1Þ the residual at the previous iteration
defined by

Rðkn�1Þ ¼ dkn�1

dt
� kn�1 Trðs DÞ þ emðkn�1�1Þ

s0
ðkn�1 � 1Þ: ð41Þ

We consider again k0 ¼ 1 as the initial extension in numerical examples, solving the linear equation related
to the correction equation (40) at each iteration by means of the proposed technique in order to keep the
periodicity of the solution corrections.

4.3. Numerical results

From both strategies results the same solution, however we cannot conclude about its unicity. The non-
linear solution related to Eqs. (37) and (38) with m ¼ 0:9 and a s0 value equal to T=17 is shown in Fig. 5. As
the relaxation time decreases with the molecular extension, the final molecular extension is lower than the
one associated to the linear case.

Fig. 6 shows the evolution of the L2-norm of the residual (kRðknÞkL2 ) in each iteration for both proce-
dures: the fixed point and Newton’s strategy. In both cases the residual is defined as the difference between
two consecutive solutions in a point on the closed trajectory. In our case the starting point for numerical
integrations P ¼ ð0:5; 0:99Þ has also been chosen for the residual evaluation.

In the numerical example considered here, at the first iteration of the fixed point algorithm, we find that
the solution of the homogeneous equation associated with Eq. (39), after a period, khðT Þ, is very close to
zero

khðT Þ � 0:

Thus, according with the procedure described in Section 3.1, the periodicity condition for the molecular
extension k results

akhðT Þ þ kcðT Þ ¼ a þ 1;

where kcðT Þ is the particular solution of Eq. (39) related to the initial condition kcðt ¼ 0Þ ¼ 1. So, the
parameter a results

a � kcðT Þ � 1

10



and the initial value of k to impose at the point P at this iteration, in order to obtain a periodic solution for
Eq. (39), will be given by 1þ a � kcðT Þ. Effectively, in this case we can verify that kcðT Þ does not depend on
the particular initial value considered in the integration of Eq. (39).

This fact induces us to improve the fixed point strategy in the following way. We start from k0 ¼ 1 (at
each point on the closed trajectory), and we solve the linear equation applying the method of characteristics

dk1

dt
¼ k1 Trðs DÞ � emðk0�1Þ

s0
ðk1 � 1Þ ð42Þ

Fig. 5. Non-linear solution for molecular extension.

Fig. 6. Residual evolution in logarithmic scale.
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to obtain the periodic solution k1. We note by k1
0 the solution k1 at the point P. Now, we can integrate, by

the method of characteristics once more, Eq. (37)

dk�

dt
¼ k�Trðs DÞ � emðk��1Þ

s0
ðk� � 1Þ ð43Þ

from the initial value

k�ðt ¼ 0Þ ¼ k1
0:

The periodic solution at the next iteration of the fixed point algorithm, k2, is found integrating again the
linear advection equation given by Eq. (39) with the non-linear term evaluated from the non-periodic in-
termediate solution k�, i.e.

dk2

dt
¼ k2 Trðs DÞ � emðk��1Þ

s0
ðk2 � 1Þ: ð44Þ

This process must continue until convergence. This version of the fixed point algorithm will be called
improved fixed point algorithm.

Fig. 7 compares the evolution of the L2-norm of the residual (kRðknÞkL2 ) for the standard and the im-
proved fixed point algorithms.

The numerical procedure proposed in this paper seems to suit to the treatment of non-linear advection
problems better than the Lagrangian strategy discussed in Section 2, mainly when the advection equation is
tensorial. In this case the strategy described in Section 2 requires a correction at each iteration for all the
components of the initial estimation. The associated tangent matrix is generally evaluated numerically and
problems on the solution accuracy can appear in some cases [27].

5. Conclusions

In this paper we present a strategy to solve steady non-linear advection problems defined in steady
recirculating flows. This numerical strategy gives a solution of the non-linear advection problem, verifying

Fig. 7. Residual evolution in logarithmic scale.
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exactly the periodicity condition along the closed streamlines. In consequence, it allows to compute an
accurate steady solution of the problem.

Furthermore, as in the numerical iteration, the method of characteristics is used, the accuracy of the
solution can be improved refining the time step used in the integration. This technique combines a standard
treatment of the non-linearity by means of a fixed point or a Newton’s scheme, with a more original
strategy to solve the associated linear problems which keeps the required solution periodicity along the
closed trajectories and avoid the use of periodic Eulerian interpolations and the solution of the associated
linear systems.

A comparison between our strategy and other techniques in a steady recirculating flows, for Pom–
Pom, Oldroyd B, and other viscoelastic models, is a further work that has to be done. As the solution of
the non-linear advection equation obtained with our technique verifies the stationarity in each point of
the flow domain, it can be used to evaluate the solution obtained with other Eulerian discretization
techniques.
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