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Abstract

We study the discrete time approximation of the solution (Y, Z, K) of a
reflected BSDE. As in Ma and Zhang (2005), we consider a markovian setting
with a reflecting barrier of the form h(X) where X solves a forward SDE. We
first focus on the discretely reflected case. Based on a representation for the
Z component in terms of the next reflection time, we retrieve the convergence
result of Ma and Zhang (2005) without their uniform ellipticity condition on
X. These results are then extended to the case where the reflection operates
continuously. We also improve the bound on the convergence rate when h € C?
with Lipschitz second derivative.

Key words: Reflected BSDEs, discrete-time approximation schemes, regular-
ity.
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1 Introduction

In this paper, we consider the solution (Y, Z, K) of a decoupled Forward-Backward
SDE with reflection

t t
X, = Xo—i-/ b(XS)ds—i—/ o(Xs)dWs ,
0 0
T T
Vi = g(0n)+ [ SO0l Z)ds~ [ (Z)aW. K- K
t t
t
Y;g > h(Xt) y tST and /(}/t—h(Xt))th = 0,
0

where b, o, f, g and h are Lipschitz-continuous functions. Such equations appear
naturally in finance in the pricing and hedging of American contingent claims, see [7].
They are more generally related to semilinear parabolic PDEs with free boundary,
see [9].

We study a discrete-time approximation scheme of the form

Y = g(X7),

ZL = (tisr —ti) " B [Ytll(wtm - Wti)]
Vo= BV, | (e — 0 XY 2E)
Y7 = Y7 Vh(X]),i<N-1,

where 7 = {tp =0 < t; < ... <ty = T} is a partition of the time interval [0, 7]

with modulus |7|, and X™ is the Euler scheme of X.

In the non-reflected case, such approximations have been studied by [3] and [15],
see also [2| and [6] for BSDEs with jumps. In all these analysis, it appears that
the approximation error is intimately related to a regularity property on Z. More,

precisely, the error is controlled by

T 1
_ 2
hﬁ+EUﬂ@—am4
0

where Z is defined on [t;,¢;11) by Zs = (tir1—t;) 'E [ tt;“ Zsds | .7-}1.]. It is shown in
[14] that, in the non-reflected case, the last term is bounded by C/|r| 2. This provides
the expected rate of convergence for the discrete-time approximation scheme, see [2]
for an extention to BSDEs with jumps. This result is remarkable since it does not
require any ellipticity condition on o and the coefficients are only assumed to be

Lipschitz.

The reflected case is more difficult to handle except when f is independent of Z as in
[1] and [3]. In this case, there is no need to control Z and the error is still bounded

by C |7r|% It can even be improved when h is semi-convex, see [1].



The general case was studied in [11]. When b, o are C} and h is CZ, they prove that

1
E [fOT |Zy — Zy]2dt ? is bounded by C|7T’%. This allows to show that the discrete-
time scheme converges at least at a rate \7r|i. Their proof relies on a particular
representation of Z obtained by means of an integration by parts argument, in the
Malliavin sense. It generalizes a result of [5] obtained in the non-reflected case
with f = 0. The main drawback of this approach is that it requires some uniform
ellipticity condition on ¢, an assumption which was not used in the non-reflected

case.

The aim of this paper is to improve this result by removing the ellipticity condi-
tion on 0. Our approach is slightly different from [11]. We first study the solu-
tion (Y, Z% K?®) of a discretely reflected BSDE. We provide a new representation
result for Z° in terllns of the next reflection time. This allows us to prove that
E [ fOT V4 \th] > is controlled by |7r|% without ellipticity condition on o. By
using a standard approximation argument, we then extend this property to Z. As a
consequence, we show that the discrete-time scheme approches both continuously-
and discretely-reflected BSDEs at least at a rate |7T|%. We only assume that all
the functions are Lipschitz-continuous and that h is C’l} with Lipschitz-continuous
derivatives. When h is Cl? with Lipschitz-continuous second derivatives, this result is
improved and the error on Y is shown to be bounded by C|7r|% as in the non-reflected

case. The error on Z is also improved when X™ coincides with X on .

To conclude this introduction, we would like to observe that the above discrete time
scheme can not be directly implemented in pratice since it requires the computation
of conditional expectations. However, the numerical methods discussed in [1], [3],
[4] and [6], see also the references therein, can be easily adapted to our context and

do not require any further analysis.

The rest of the paper is organized as follows. In Section 2 and Section 3, we study the
approximation of the discretely reflected BSDE. The representation and the regular-
ity property of Z° are proved in Section 5. The continuously reflected case is studied
in Section 4. The Appendix contains the proof of rather standard approximation
results for BSDEs.

2 The forward process

Let T > 0 be a finite time horizon and (2, F,P) be a stochastic basis supporting
a d-dimensional Brownian motion W. We assume that the filtration F = (F;)i<r

generated by W satisfies the usual assumptions and that Fr = F.



Let X be the solution on [0, 7] of the stochastic differential equation
t t
X = Xo +/ b(Xu)du+/ o(Xy)dW,
0 0

where X € R? and, b : R — R? and o : R — M? are assumed to be L—Lipschitz,

lb(z) — b(y)| + |o(z) —o(y)| < Llz —y| forall z,y e R, (2.1)

Here M is the space of d-dimensional matrices, | - | denotes the Euclidian norm on
R? or M¢ and all elements of R? are viewed as column vectors.

By convention, we assume that | Xo| 4+ 7"+ |b(0)| + |0(0)| < L. In the following, we
shall denote by C7, a generic positive constant which depends only on L (but may

take different values). We write C7 if it depends from an extra parameter p > 0.

For later use, we recall the well-known consequence of (2.1):

[sup |X¢| [ < C7 . (2.2)
t<T

where, for a random variable £, we note ||{||zr := E [|§]p]%.

The discrete-time approximation of X has been widely studied in the literature, see
e.g. [10]. When (X, )i<n cannot be perfectly simulated, we use the standard Euler
scheme X7 defined for a partition 7 := {0 =ty < t; < ... <ty =T} of [0,T],
N > 1, by

Xg = Xy
= Xg + b(Xg)(ti+1 — ti) +U(Xt7:)(Wti+1 — Wti) , <N —-1.

T

tir1
In the sequel, we shall note || := max;<n_1(t;+1 —t;) the modulus of 7 and assume
that

Ni|r| < L

which holds with L > 1 when the grid 7 is regular, i.e. (t;+1 — t;) = |«| for all
1< N -1

As usual, we define a continuous-time version of X™ by setting
Xtﬂ— = XZ: + b(XZ:)(t — ti) + O'(XZ:)(Wt — Wtz) , te [ti,ti+1) ,1<SN—-1. (23)
Remark 2.1 It is well known that under (2.1)

1
Isup | X¢ — X7| [l +max | sup [Xe = X7| e < CElnl2, p>1. (24)
t<T <N telts tig)



Using standards arguments one can also obtain a conditional version of this result:

E; [|Xt — X7 P <eOlXy, — XT P2+ Cpln’E; [(X7)?] Vi< N-—1, (25)

i+1

where [;[-] denotes the conditional expectation E[- | 7], ¢ < N, and X} =

maxi<r ‘Xt‘

If nothing else is specified, X™ will always denote the above defined process. When
X can be perfectly simulated at the times (¢;);<x, there is no need to introduce its
Euler scheme. In this case, we say that (PS) holds and define X™ as in (2.3) on
[ti,tiv1) but with X, in place of X7, i.e.

Xtﬂ— = Xti + b(XtZ)(t — ti) +O’(Xti)(Wt — Wtz) , te [ti,ti+1) ,1<SN—-1.

3 Approximation scheme for discretely reflected BSDEs

3.1 Definition

In this section, we define a discretely reflected BSDE. The reflection operates only
at the dates

O<rm< - <re1<T

for some k > 1. We set # = {r;, 0 < j < s} where by convention 79 := 0 and
r := T. The solution of the discretely reflected BSDE is a couple (Y, Z?) satisfying

YZIZ = }7713 = g(X7)
and, for j <k —1and t € [rj,rj41),

T4l

Yho= vp 4 [ f(eh)ds — [ (Zh)aw -
Y;b:R(t,Xt,Y/;b). ()

Here h, g : R? — R satisfy g > hon R%, f: R¢ x R x R? — R, @° := (X,Y?, z?),
(Z°)" is the transposed vector of Z°, and

R(t,z,y) = y+ @) =y Lgemgory » (Hz,y) € [0,T] x R

By a solution, we mean an adapted process (Y, Z%) € §? x H? where, for p > 1, S?

is the set of real valued progressively measurable U such that

[Ullsp == [sup|U] [|zr < o0,
t<T

and HP” is the set of progressively measurable R%-valued processes V satisfying

. :
WVibe = | ( / \Vr\er> I < oo.
0
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In the following, we shall extend the definition of || - ||s» and || - ||» to processes

with values in R? or M¢, these extensions being defined in a straightforward way.

Observe that the solution of (3.1) can be constructed piecewise. Assuming that g,
h and f are L-Lipschitz:

lg(z1) — g(z2)| + |h(21) — h(z2)| + [f(61) — f(02)] < L (|21 — 22| + 01 — 62)

for all 21,22 € R% and 61,605 € R? x R x R%, the existence and uniqueness of the
solution follow from [13]. By convention, we assume that |g(0)|+|2(0)|+|f(0)| < L.

Remark 3.1 For later use, observe that (3.1) can be written as
V=gt + [ ST 2D [ 2w, s KR e<T (32
t t

with
k—1 +
b b
K =) [h(XTj) - Y?‘j] Lirj<ty -
j=1
By repeating the arguments of the proof of Proposition 3.5 in [9], we then easily
check that
1V?[s2 + 1Y*ls2 + [| 2%l + | K2ll2 < Cr - (3.3)
Recall that C7, > 0 is a constant independent of .

We conclude this section with a regularity result on Y? whose proof is given at the
end of Section 5.3.

Proposition 3.1 For all p > 2,

max E | sup [Y2  —Y??| < Cplnl.
ZSN*l te(ti7ti+l} t7,+1 t

3.2 Discrete-time approximation

From now on, we assume that ® C m, i.e. the reflection times are included in the
partition defining the Euler scheme of the forward process X.
We approximate (Y, Z) by the piecewise constant process (Y™, Z™) defined by

induction by

7§ = (tipn—t) 'K [YtL(th - Wi,)
Vo= B[V, | (e — ) F(XEL YL ZE) (3.4)
Vro= R(ti. Xp, V7)), i<N-1,

6



and by the terminal condition

Vi o= V= g(Xp).
Recall that E; [] stands for E[- | F;,]. For ease of notations, we set
(Y7, ZT) = (Y], Z]) fort€ [t tiy1) i< N—1. (3.5)

Using an induction argument and the Lispchitz-continuity assumption on g, h and
f, one easily checks that the above processes are square integrable. It follows that

the conditional expectations are well defined at each step of the algorithm.

Remark 3.2 Observe that Y™ is defined implicitly as the solution of a fixed point
problem. Since f is Lipschitz-continuous, it is defined with no ambiguity. Moreover,
for small values of |7| it can be estimated numerically in a very fast and accurate
way, if not explicit. We refer to [2] for a discussion on the difference between implicit

and explicit schemes.

For later use, let us introduce the continuous time scheme associated to (Y™, Z™).

By the martingale representation theorem, there exists Z™ € H? such that
_ _ tit1 , .
v =E [Ygﬂ] +/ (ZTYdW, , i<N -1,
ti

We can then define Y™ on [ti,tiv1) by

T = Vi - 0SOLIL 2 - [ a6
and set
Y[ = R, XF,YT) for t<T,
so that
Y™ =Y"onm and Y™ = Y7 on[0,T]\R. (3.7)

Remark 3.3 It follows from the It6 isometry that
_ tit1
Ztﬂ— = (ti+1 — ti)_lEi |:/ Z;rdu} ,Vte [ti7ti+1) ,1<N—-1, (38)
t;

recall (3.5).



3.3 Convergence results

In order to state our first result, we need to introduce the process Z° defined on

each interval [t;,t;11) by
~b 1 i
Zt = (tiJrl - ti)_ Ez |:/ Zudu] . (39)
t;
Remark 3.4 For later use, observe that, by (3.8) and Jensen’s inequality,
_ _ tivr1
(120 - Z7] < (tia—ti)”" / E[\Z8 -2zl au,  (3.10)
t;
which implies
128 = 27 < 1120 = 2y (3.11)

The following result shows that the approximation error is intimately related to the
H? norm of Z% — Z°. A similar property holds in the non-reflected case, see [2], [3],
[14] and [15].

Proposition 3.2 The following holds:

max | sup V7=Vl < Co(JnlE 4+ 112" = 2l )
ISk—

te[r;,rjt]
and

127 = 2z < Cp (KEIlE +112° = Z'ges) -
If (PS) holds, then

127 = 2z < Cp (Inl? +112° = Z'ses)

The proof essentially follows the arguments of [3] and is provided in the appendix.
Remark 3.5 Observing that Z° is the best L?(2 x [0, T])-approximation of Z° by
adapted processes which are constant on each intervalle [t;,;1+1), we deduce that

|| 2% — ZbH%{Q goes to 0 as |m| goes to 0. Thus, the above proposition actually shows

that our discrete-time scheme is convergent. This also implies that
b_ b2 - B b2
1Z° - 22, < ZE[/ |ZP — Zp | 2dt
i=0 ti

In order to get a bound on the convergence rate, it remains to control ||Z? — Z°| 122

Such a control will be obtained under one of the following additional assumptions.
(H1) : h € C} with L-Lipschitz derivative.
or

(H2) : h € C} with L-Lipschitz first and second derivatives.



Proposition 3.3 Let (H1) hold. Then,

12" = 2°|lyz < Cr adw) I
where a(k) = k1 under (H1), and a(k) = 1 under (H2).

The proof will be provided in Section 5.

Combining the above propositions, we obtain the main result of this section.
Theorem 3.1 Let (H1) hold. Then,

max | sup Y7 —Y| | < Cpay(s) |2
Sl el ri]

and
127 = Z\hp < Cragz(x) |x|2

with (ay (k),az(k)) = (Iii,ﬁ%) under (H1), and (ay(k),az(k)) = (1,/5) under
(H2).

Under (PS) the same bounds hold with oz (k) = k1 under (H1), and az(k) =1
under (H2).

Recalling (3.7), (3.11) and combining Proposition 3.1 with Theorem 3.1, we finally
obtain a bound on the error due to the approximation of (Y*, Z%) by the piecewise
constant process (Y™, Z™) which can actually be estimated numerically, see the end

of the introduction.
Corollary 3.1 Let (H1) hold. Then,

_ — 1
max || [V7 =Y+ sup |V, - Y|l < Cpay(x) |2
1<N-1 tE(ti,tiJrﬂ

and

_ 1
127 = Z%lyz < O az(w) |n|2

PN

with (ay (k),az(k)) = (k ,FJ%) under (H1), and (ay(k),az(k)) = (1,/5) under
(H2).
Under (PS) the same bounds hold with oz (k) = k1 under (H1), and az(k) =1

under (H2).

Remark 3.6 It was shown in [11]| that the results of Proposition 3.3 and Theo-
rem 3.1 hold with the bound CL|7T|% when (Y?, Z% K?) is replaced by the solution
(Y, Z,K) of a continuously reflected BSDE, see (4.1) below. Their proof is based



on a particular representation of Z obtained by an integration by parts argument.
However, it requires an uniform ellipticity condition on o. Our approach is com-
pletely different. It is based on a representation for Z° in terms of the next reflection
time, see Section 5 below. This allows us to get rid of the inversibility condition on
0. The above results will be extended to the continuously reflected case in Section
4 below.

3.4 Discretely reflected BSDE constructed with the Euler scheme

In this subsection, we introduce the solution (Y€, Zb¢, K¢) of a discretely reflected
BSDE defined as (Y, Z%, K?) but with X™ instead of X, i.e.

Yp© = Yp©i=g(XF)
and, for j <k —1and t € [rj,rj41),

{ i/tb,e — le;,il +ftrj+1 f(@%e)dS—ftrjﬂ(de)/dWs ’ (3 12)

v o= R(t, XxpL V)
with @b¢ .= (X7 Ybe, zbe),
This construction will be useful to extend the results of the previous section to the

continuously reflected case.

Observe that
B T T - ~
thb,e _ g(X%) +/ f(@b’e)du _/ (Zg,e)/dwu + K%e _ Ktbﬂe , t < T,
t t

with
b Al o
D DI C AR Al R
1

<.
I

Moreover, it follows from the same arguments as in the proof of Proposition 3.2, see

step 5 of the proof in the Appendix, that
127 = 2%|he < Cp (|nl% +112°¢ = 2z (3.13)
where Z%€ is defined similarly as Z°, i.e.
b tit1
Zt € = (ti+1 — ti)il E; |:/ Zg’ed8:| , te [ti7ti+1), 1< N-—-1.
t;

We shall also prove in Section 5 that the result of Proposition 3.3 can be extended
to Z%€.

Proposition 3.4 Let (H1) hold. Then,

179 = 2l < o (Il + 1)

10



4 Extension to the continuously reflected case

Let (Y, Z, K) be the F-progressively measurable process satisfying

T T
Yi = g(Xr)+ / F(Xo, Yo, Z5)ds — / (Z,)dW, + K1 — K, |
t t
Y, > h(X)), 0<t<T (4.1)

with K continuous, non-decreasing, such that Ky = 0 and
T
| o= neeare = o (42)
0
Existence and uniqueness of a solution (Y,Z,K) € S? x H? x S? follows from

Theorem 5.2 in [9], recall that g, h and f are Lipschitz-continuous.

As in Section 3.4, we also define (Y¢, Z¢ K€) as the solution of (4.1) with X™ in
place of X, i.e.

T T

Yo = o)+ [ Y zds - [ (Z0aw. s kg - K
t t

Ve > BXP), 0<t<T,

where K€ is continuous and non-decreasing, K§ = 0 and fOT (Yf — h(X]))dK§ = 0.

Our first result is rather standard. It shows that (Y, Z) and (Y¢, Z¢) can be ap-
proximated by the solutions of discretely reflected BSDEs at a speed |9?|% under the

assumption:
(H3): There exists p; : R? — R? and py : R?+— R, such that
lp1(2)] + |p2(2)] < CL(L+ [2|“F)
h(z) = h(y) < p1(@)'(y —2) + pa(2)|z —y* , Va,y R

Remark 4.1 This condition is slightly weaker than the semi-convexity assumption
of Definition 1 in [1| which is satisfied whenever (H1) or (H2) hold.

Proposition 4.1 Assume that (H3) holds. Then,

1
sup [|Y; = Y|z + 112 = 2 < CL|R|2
te[0,T)

and

sup ||V = Y€ o + (|26 = 2% e < Cr |R|2 .
te[0,7

If moreover (H1) holds, then

1
max (II sup Vi = Y| 2+ sup [V =Y HL2> < Cp Rz

ISR\ "t riqa) telr,rjt1]

11



The proof is provided in the Appendix.

We can now extend the convergence results of the previous section to the continu-

ously reflected case.

Theorem 4.1 Let (H1) hold, then
max | sup [T7, ~Yil 4 swp Y7 - Yl 2 < Crafm)
iSN-1 tE(ti,ti+1] tG[ti,ti+1]

and ||Z7 = Z|lpe + 127 = Z|he < Cp |n|7

with a(m) = |7T|% under (H1) and o) = |7T|% under (H2).
If (H2) and (PS) hold, then

_ 1
127 = Zllp2 + 1127 = 232 < CL 7[>,

Proof. 1.The error on Y and the estimate on Z under (H2) and (PS) follow from
Proposition 4.1, Corollary 3.1 and Theorem 3.1 applied with ® = 7.

2. The estimate for Z in the general case is a bit more involved. We first ap-
proximate (Y, Z) by (Y€, Z°¢). It follows from Proposition 3.6 in [9], our Lipschitz-
continuity assumptions, (2.2) and (2.4) that ||Z — Z¢||2, < Cr\/|x[. Then, we
approximate (Y€ Z¢) by (Y*¢, Z%€) defined in Section 3.3. By Proposition 4.1,
|z¢ — Z"¢||3, < Cp |r|. Finally, it follows from (3.13) that ||Z™ — 2|7, <
Cr (I7| + ||2%¢ — Z"€|[3,5), where the last term is controlled by Proposition 3.4. To
conclude, we deduce from Jensen’s inequality that ||Z7 — Z%¢||32 < || 27 — Z5%€| |32 +
|| Zb€ — Z€|| 342, recall (3.8). O

As in (3.9), we now define

B tit1

Zy =t — ) By [/ Zudu] )
t;

B tit1

Zte = (ti+1 — ti)flEi |:/ szu] for t e [ti’ti—f—l) s ) < N-—1.
t;

Observe that, by Jensen’s inequality,
12" = Zllye < 112" = Zllpe and |27 = Z°|lpp < |27 = Z°|pg . (4.3)

Combining (4.3), Proposition 4.1, Proposition 3.3 and Proposition 3.4 for & = =,

we obtain the following regularity result for Z and Z°¢.

Corollary 4.1 Let (H1) holds, then
_ — 1
1Z = Zllye +112° = Z°|lp2 < C 7|5 .
If moreover (H2) holds, then

1Z = Z|he < Cp |m| .

12



Remark 4.2 As explained in the previous section, similar results were obtained in
[11]. However, their approach requires that o is uniformly elliptic. Here, we do
not need this condition on o. We also obtain better bounds for ||Z — Z||2 and
supyepo,r [1Y;" — Yil[2 under (H2). This last assumption is slightly stronger than
the C7 regularity imposed on & by [11].

5 Representation and regularity of Z° and Z%¢

5.1 Preliminaries

In the sequel, we denote by D'? the space of random variable F' which are differen-

tiable in the Malliavin sense and such that
T
F|2, 4+ | ||D¢F|%.dt < oo .
£ ; L

Here, D;F' denotes the Malliavin derivative of F' at time ¢t < T, see e.g. [12].
We also introduce the space L'? of adapted processes V such that, after possibly
passing to a suitable version, V, € D2 for all s < T and

T
||V ]]242 +/ || DV ||3g2dt < o0 .
0

In the following, we shall always consider a suitable version if necessary.

In this section, we work under the stronger assumptions:
(H'): b, 0, g and f are C}.

The general case will be obtained by using an approximation argument.

Remark 5.1 It is well known that under the above assumptions X € L2, see e.g.
[12], and satisfies for p > 2

sup [|Ds Xy — Do Xl o + [|DeX — DuX|lsp < CPlt—ulz , t,u<T. (5.1)
s<T

Moreover, the first variation process VX of X is well defined and solves on [0, T
VX, = Id+/ Vb(X,)VX, dr+/ ngﬂ DV X, dW}

where I, is the identity matrix of M?, ¢7 is the j-th column of &, and Vb, Vo; the
Jacobian matrix of b and o;. Its inverse (VX)~! is the solution on [0, 7] of

(VX)) ! = Id—/t(VX);l Zvaﬂ Vel (X,)| dr
0

/ZVX )7Vl (X, ) AW

13



and the following standard estimates hold:
IVX|lse +[[(VX)Hlse < CF. (5.2)
Finally, we recall the well-known relation between VX and DX:
DiX, = VX, (VX)) lo(Xy)l<s forallt,s<T. (5.3)
Using the above estimates, (2.2) and the Lipschitz-continuity of o, we deduce that
|| sup | D, X[ |ls» < CF. (5.4)
s<T
Remark 5.2 Observe that X™ also belongs to L'? under (H’) and satisfies
t t_d ' '
D X] = o(Xg,) —I—/ Vb(Xg )Ds Xj dr + / Z Vol (Xg )Ds X dW]
s 5 =1
where ¢, = max{u € 7 : u <t}. Thus, Ds X[ is given by
LI | 2o+ Vo)t At = t) + D Vo (XE)WH 0 = W) | ¢ 0(XF)
kEN, ¢ Jj=1

with Ng; := {k < N : s <t; < t}. Using the bound on Vb and Vo’/, j < d, we

obtain

1
2

sup | X7 |*
t<T

s,t<T

E [sup IDst\p] < P (1+ o)™ <1 +E
which leads to

E

sup |D5Xt7r\p] < C7,p>1. (5.5)
s<t<T

By using standard arguments, one also easily checks that the bounds (5.1) can be

extended to X7, uniformly in 7:

Sup | Ds X7 — Do X7 || 1o + || D X™ — DuX™||sp < CP |t —ul2 , tLu<T. (5.6)
s<T

5.2 Representation

In order to provide a suitable representation of Z°, we shall appeal to the following

easy lemma.

Lemma 5.1 If F € D'2, then [F|* € D"? and Dy[F|* = (DiF)1{ps0y-

14



Proof. By a straightforward adaptation of Proposition 1.2.3 in [12], we observe that
[F]" belongs to DY? and Dy[F]" = «(D:F) where « is a random variable bounded
by 1 satisfying 1{r-oya = 1{psg). The proof is then concluded by appealing to
Proposition 1.3.7 in [12]. O

Recalling that g > h, using Remark 5.1, Lemma 5.1, Proposition 5.3 in [§] and an
induction argument, we easily deduce from (3.1) that (Y, Z%) belongs to L}2.

Proposition 5.1 Let (H') hold. Then, the process (Y, Z") belongs to LY2 and, for
all t < T, Dy(Y?, Z%) solves on [15,rj41), § <k —1,

DY! = (Dih(X,,,,)— DY )1{h(XTj+l)>§,b ) (5.7)

Tjt1 A
< Tjt1 . b Tj41 .
+ Dt}/?”jJrl +/ Vf(@u)Dt@udu - / DtZSdWS .
S S
In order to get rid of the indicator functions appearing in (5.7), we now define the

following sequence of stopping times
mi=inf{t €R |t >rjpy, H(X) SYPIAT | j<r—1.
Following [14] , we also define
v o= e[ v.geyar, - [ (5V-r60P + V(60 ) au} s <e<T,

where V, f denote the partial derivative of f with respect to its second variable y,
and (V,f) and (V.f)" the gradient of f with respect to its first and last variable.

Remark 5.3 The following estimates are standard:

| sup Ajlle < CF, (5.8)
s<t<T
| sup [Af =AYl [ < Clt—s|F  t,s<T. (5.9)

u<tAs

Using (5.1), we deduce that

I 31<1p<T|A§DtXS —A'D, Xl |lsr < CPlt—ul? ,ut<T. (5.10)
uVt<s<

We can now state the main result of this section which provides a representation for
zb.

Corollary 5.1 Let (H') hold. Then, there is a version of Z° such that for each
j<k—1landte [T‘j,T‘jJrl).'

(28 = E[Vg(XT)(AtDtX)Tl{Tj:T}+Vh(XTj)(AtDtX)Tj1{T].<T} |ft]

t

15



Proof. 1. It follows from Proposition 5.1 and the assumption g > h that, for all
t<T,j<k—1and s € [rj,rj41), we have

b b
DYy = (v}L(XTjH)DtXTjH - DtYrj+1) 1{h(XT].+1)>§7,§>j+1}
- Tj+1 b b T+
+ D,gY,_j+1 —|—/ V£(0,)D:0.du —/
S

S

1
Dy Zbdw, .

In particular,

b
- Dth~j+1> Lonxo )72 3

Ti+1

DY! = (Vh(XTjH VD, X,

Ti+1

Ti+1

~b Tj+1 b b Tj+1 b

J J
Since Y;? = g(Xr), it follows that D,Y;? = Vg(X7)D;Xr. Recalling that g > h, it

then results from a simple induction that for s € [rj,7;41)
DY} = Vg(X7)DeXrlip—ry + V(X)) (DiX)r 17, <1y

K b b E b
+ / V £(08)D,0b du — / D 2bd W, .
S S

By the same arguments as in Proposition 5.3 in [8], we have D,Y? = D,Y? = (Z?)
on (rj,7j+1). The result then follows from the previous equation, It6’s formula and

by considering a suitable version. O

Remark 5.4 Assume that (H’) holds. Then, it follows from (5.4), (5.8) and Corol-
lary 5.1 that ||Z°||sr < CF.

Remark 5.5 Let (H') hold. We deduce from the same arguments as in the proof of
Corollary 5.1 that there is a version of Z%€ such that for each t € [rj,7;41), 7 < k—1:

(20°) = E[Vg(Xr)DXFLireory + VA(XE)ADX"), e cpy | F
b B[ [ Van@ (x| B et
where
¢ =inf{t € R |t > rjp1, W(XT)>YPYAT | j<r—1.
and A}* is defined, for s <t < T, by
n = oo | V@YW, - / t (517-1(008 + 9, 70%) ) au
The following estimates are standard:
| Sup AP |le < CF, (5.11)

| sup AT — AT e < CEIt - s|7  t,s<T. (5.12)
u<tAs

16



Using (5.6), we deduce that

[ SEp<T|A§¢DtX§ —AUDXT| | < CPlt—ul? , u,t <T. (5.13)
tVu<s<

5.3 Regularity

In this section, we replace (H2) by the stronger assumption:
(H2') : h € C}, with derivatives up to order three bounded by L

The extension of the following results to (H2) will be obtained by using an approx-

imation argument.

Proposition 5.2 Let (H1) hold. Then

12" = Z'll3¢z < Cp () |2
where a(k) = k1 under (H1), and a(k) = 1 under (H2').
The following remark prepares for the proof.

Remark 5.6 Set

4
g = <1 + sup |DsX| —I—sup\Xt\ + sup \A \) ,
s<t<T
and observe that, by (2.2), (5.4) and (5.8),
Bllsr < CT,p>2. (5.14)

Fix t < T and let 7 and 75 be two stopping times such that t < <79 <T P—a.s.

By the Lipschitz-continuity assumption on b and o, we have
E UXTI - X7'2|2 ‘ le] S CL E [6(7—2 - 7—1) | le] N (515)
Under (H2'), we deduce from Itd’s Lemma that

|E [Vh’(X7'2)A$'2 (DtX)Tz - Vh(Xn)Atn (DtX)Tl | le” < CL E [6(7-2 - Tl) | le] .
(5.16)
When (H1) holds, we can use the bound |Vh| < L to obtain

|VA(X7, )AL, (DeX)r, = VR(X:)AL (DiX)r | < BIVA(Xr,) — VA(X )|
+ CL|AS—2(DtX)T2 _Af—l(DtX)ﬁ‘ )

which, by Lipschitz-continuity of Vh, [t6’s Lemma and the Cauchy-Schwartz in-

equality, implies

[N

E HVh(XT2)A$'2 (DtX)TQ - Vh( )At 7'1‘ ‘ ‘7:7'1] <y (ﬁ E [6(7_2 - 7—1) | ]:7'1])
(5.17)

17



where

B = sup E [ﬁ2 | .E] satisfies HBHSF S Cﬁ Y 2 2 ) (518)
t<T

recall (5.14).

Proof of Proposition 5.2.

1. It follows from Corollary 5.1 that, after passing to a suitable version,

(Z)) =V <t <, j<r—1,
where, for j <k —1,

V/* = E [Vg(XT)(ASDSX)Tl{Tj:T} + V(X ) (A D X) 1 o1y | o
+ E [/Tj Vo (O A D X)udu | Fy| , s<t.

s
For t € [t;,tiy1) C [rj,7j41), we then have

|20 = 20| < [V = VPH | 4 [V = v (5.19)
where, by (5.10),

VP =Vl < Crlal (5.20)

2. Using the martingale property of V7 on [t;,t;41] and (5.3), we deduce that

E (V7 - ViP] < B[VESP - VEP] < B (4L P 14 Pl

t7;+1 ti+1
where
Al = E [Vg(XT)A%VXTl{Tj:T} + VA(X,,)(A°VX), s, oy |ft]
+E [/ VL (O AV X),du | ]—"t] L t<T
t
and

ne = (ANVX)lo(Xy), t<T.

Using the Lipschitz-continuity of o, we observe that

NI

E [|77ti+1 - 77ti|4] < CL |7T| .

By (2.2), (5.2), (5.3), (5.8) and Cauchy-Schwartz inequality, it then follows that

BV - VPR < E[lAl men = 1AL+ 1AL, Pl — ml?]

IN

B |:‘Vj,ti+1‘2 _ |V;fz’tz‘2] +Cy, |7T| . (521)

tit1

18



3. It remains to study the first term in the right-hand side of (5.21). Define i,
through ¢;;, = r;, j < k and observe that

k—1%j41—1
L th+1 Gtk |2
D Z Z E[V;M-l |Vtk’ |
Jj=0 k=i;

_ J?Tj+1 j,7'j2
- E:E[ AT = VAP

k—1
E Uv;nrzfl,r,{|2 . |V1%TO|2] + ZE |:|‘/7‘]j*177"j|2 . H/;:?Tj|2
j=1

IN

IN

o 1+ZE[|V£ LR v (5.22)

where the last inequality follows from (5.14).
4. For ease of notations, we now write E,, [ for E[- | 7,,]. By Cauchy-Schwartz

inequality,
‘Véfl,rqg _ |V7~J;Tj 2 < |‘/YT]J'.71,T'J' . Vrj;rj| |Vr]]"fl,rj + Vrj;rj
e g
S CL Er]- [ﬁ] “/7“]] - V;’]jr]| 3 (523)

where (3 is defined in Remark 5.6.
4.a. Recalling that Vg, Vh are bounded by L and that 7,1 < 7; < T, we observe
that

Crlg, s <r=ry + (VR(X7))(A'DeX)r; — V(X5 )(A'DiX)r, ) 1, <y
> Vg(X7) D X11{r —1y + VA(X:,)(A'D: X)), 1{rj<T}
_Vg(XT)DtXTl{ijlzT} - Vh‘( Tj—l)(AtDt )T]’—l 1{Tj71<T} .

When (H1) holds, it then follows from (5.4), (5.8) and (5.17) that
Vi =V < CLE,, [1{rjfl<rj=T}]
-1 1
+ O (Em [B(rj = 7j-1)] + B2 Ep; [B(7j41 — )]2) :

Since Z;{;i 1¢;,_,<r=1} < 1, the above inequality combined with (5.22) and (5.23)

implies
k—1
Y < CLE|1+ ZEr]- 5] (Er]- B(rj —1j-1)] + B2 E,, [8(r; — Tj—l)ﬁ)
=1
Kk—1
< {1+ Y (B BB — 5] + E[B(r; — 75-1)]?)
=1
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where we used Cauchy-Schwartz inequality and (5.18). By (5.18) again, this shows
that

L < O {1+E B8 — 1)) + VRE BTt — o)) }
< Cr(14+Vk) . (5.24)

4.b. Under (H2'), we use exactly the same arguments except that we appeal to
(5.16) instead of (5.17). This leads to

S < CL{1+) R[BB(r;—7-1)]p < CL. (5.25)
j=1

5. By (5.19), (5.20), (5.21) and the definition of ¥ in (5.22)
tiy
/ \Zt tbﬂ dt < Cpln] 143) .
t;

The proof is then concluded by appealing to (5.24), under (H1), and to (5.25), under
(H2'), and by using Remark 3.5. O

Proof of Proposition 3.3 Let f, be defined by :
fuleyz) = /‘ bnlz — £y — 0,2 — O f (€ v, O)dédvdC
R2d+1

with ¢y, (2,,2) = n?*1¢(n(x,y,2)) and ¢ a compactly supported smooth proba-
bility density function on R?¢*+1. Since f is L-lipschitz we have :

C
If = falle < &,
n

for some C' > 0. Let o,, by, gn, hy be defined similarly for o, b, g, h so that we
have:
Cr
o = onlloo + 110 = bnlloo + [lg = gnlloo + ||k = hnllec < o
Let X" be the forward diffusion associated to b” and o™ and let (Y, Zbm KOm)
be the solution of the discretely reflected BSDE (3.1) associated to X, f™ and g¢".
Arguing as in Proposition 3.6 of [9], we get

Cr,

12° = 2|3 < — (5.26)

Since, by Jensen’s inequality,
b _ b 7 b b b Zb
12" = 2%z < 1127 = 27"}z + 1127 = 27" |l + || 277 = 27" |52

< 2(|2° = 2"}z + 1257 = 22" |lyge

the proof is concluded by applying Proposition 5.2 to Z®", using (5.26) and letting
n go to infinity. O
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We now consider the case where the forward diffusion is approximated by its Euler

scheme.
Proposition 5.3 If (H1) holds, then
|25¢ — Z%¢|lye < C1 (H% \7r|% + |7r|%> )

Proof. In view of Remark 5.2 and Remark 5.5, we can follow line by line the argu-
ments of the proof of Proposition 5.2, after replacing the corresponding quantities
in the definitions of 3 and (3, and re-defining, for j < x — 1,

Vo = E[Vg(X%)(AG’SDSX“)Tl{T;:T}+Vh(XT],e)(AB’SDSX”)TJ_el{T;<T} |ft]

+ E [ / " Vo f(OV) (A Dy XYy du | ]—"t] s<t. (5.27)
S

The only difference appears in step 2. Instead of using a relation like (5.3) for X™
(which does not hold), we use the martingale property of V7% on [t;,#;,1) and write

E [|th7ti _ Vg,ti‘Q] < E |:|Vj7ti ‘2 _ |Vg,tz|2]

titr1

IN

E [|Vj7ti+1‘2 _ |Vtz,ti|2 + |Vj’ti+1 _ Vj,tz' | |Vj,ti+1 + Vj,tz' ‘] 7

tit1 tit1 tit1 tit1 tit1

where by (5.5), (5.11), (5.13) and Cauchy-Schwartz inequality

E [|Vtzle+1 _ Vj7ti‘ |Vj7tz'+1 + yoti q < Cf /|7T| ]

tigrl 1V i tit1

The inequality (5.21) then becomes

E|VP - VPR < B[V = VPR + Co/Tal
O

Proof of Proposition 3.4 The required result follows from Proposition 5.3 and by
arguing as in the proof of Proposition 3.3. O

We conclude this section with the proof of Proposition 3.1.
Proof of Proposition 3.1. Assume that (H’) holds. By Remark 5.4, we have

tit1
E[/ |Z§|2ds] < Cpln|.
t;

Arguing as in the proof of Proposition 3.3, we obtain that the above bound holds
without (H'). The required result then follows from It6’s Lemma, the Lipschitz-
continuity of f, (2.2), the bound on Y given in (3.3) and Burkholder-Davis-Gundy’s
inequality, recall (3.1). O
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Appendix

Proof of Proposition 3.2

1. Set 0Y = YV — Y™, Y =YV — Y™ 6Z = 2" — Z7, 6f, = f(X,, Y0, Z2b) —

f(Xg,fft?,Zt’Z) for s € [ti,ti+1). Recalling (3.2), (3.6), (3.7), the fact that ® C =

and using It6’s Lemma, we compute that for ¢ € [t;,¢;41)
. S tit1 9 tit1 B
Al = E [\51@\ +/ 1624 |%ds — |0V, | } _E, [/ 251@5de3} ,
t t

recall that E; [-] stands for E[- | 7,]. By (3.10), the Lipschitz-continuity of f and
the inequality zy < cx?® + ¢ 13?2, for z,5y € R, and ¢ > 0, we therefore obtain

) tit1 B B tit1
Al < Ey [/ al8Y,|*ds + % <\7r| 0Y7, 2 +/ \5ZS|2ds>]
t

ti

C tir1 - - _
+ —E; [/ X = XT P+ [V = V2P + |2 - Zg|2ds]
t
where « is a positive parameter to be chosen later on. Using Gronwall’s Lemma, and
taking « large enough, we deduce that, for |7| small enough, there is some n > 0,

independent of 7, such that

B titr1
E; [|c5Yti|2+n/ \5ZS|2ds] < eCiiE; oy, , 2] + CLB; (5.28)
t;
sup E; [\5&;\2} < (Ei [16Y2,,, 2] + |7l |5?;i\2+3i) (5.29)
tG[ti,ti+1]
where
tit1 B B B
B, = E; [/ |Xs—Xg|2+|§§b—Y£|2+|Z§—ZZ\2ds} .
t;

2. Since |6Y;,| < max{|0Yy,|; |h(X;,) — h(XT)1y,en} for i < N, see (3.1), (3.4) and
(3.7), it follows from (5.28) applied at ¢ = ¢; and the Lipschitz-continuity of h that,

for |m| small enough,
‘5)/%1‘ < max{ecmﬂEi [‘5)/vtz+1|2] + CLB; ) L|th - Xt72|1t1€9?} . (530)

Since [0Y;y | < L| Xy — X7, |, by the Lipschitz-continuity of g, we deduce from (2.5),

with




Since by assumption N|w| < L, this implies
) _
) < . .
masE (%] < Cu (Inl+B) (5.31)

3. Observing that for s € [t;,tiy1)

- 2 s

E [ -7} } < CL/ E |If(©) + 22| du
ti

it follows from (2.2), (3.3), the Lipschitz-continuity of f and the assumption N|r| <
L that

N-1 tit1 _ _
Z/ B (V) - V2P| ds < Cpln.
i=0 7t

Combined with (2.4), this implies
B < C (|7r| |zt - Zb||;2) . (5.32)

In view of (5.28) and (5.31), this leads to

N tit1
E[\mi\un/ \523\2@13} < (1+Cp|n))E[|6Ys,, >+ CLB;] , (5.33)

ti

IA

Cr (Inl + 112° = 2*13, )
which, by (3.1), (3.7), (5.29), (5.31) and (5.32) shows that

supE [|0%;%] +supE ||0i| < Cullnl +112° = Z%Ba) . (534)
t<T t<T

Let i; be defined through t;; = r;. Using (3.1) and (3.7) again, we deduce from
(5.33) and (5.34) that

tj1—1 tj+1—1

Ti+1 k+1
E[/ 167, |2ds Z E[/ |5Zs|2ds} < ¢ [E[ov,,,. 1+ Y B
Tj k= Z]
ij41—1
< O |Inl+ D B (5.35)
k=i;

so that, by (5.32),

N-1 .
b w2 it 2
12— 2B = B | [ 62,Pds
i=0 vt

This proves the second claim of Proposition 3.2.

< Oy (klnl+ 112" - 2°1B,) -
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4. Using Burkholder-Davis-Gundy’s inequality and arguing as in the first steps of

1, we now compute that

E| sup [§%[*| < E| sup [6Y + |0V, |
te[r;,rj41] telrj,ri+1)
2 A 2 2 \ 2
< CLE|IY,,.,| +/ (64,2 + 1624[?) ds + 157,
Ty
_ Tj+1 .
< CL[B+E |<5Yrj+1\2+/ 162, |2ds +Iga}\>f<E[|6Yti\2]
Tj 1>
< O (Il +112" - 2"\ )

where we used (5.32), (5.34) and (5.35). Since
[0y, < (03] + [A(Xy) — h(X]))

the first assertion of Proposition 3.2 follows from the Lipschitz-continuity of h and
(2.4).

5. In the case (PS) where X™ = X on 7, we argue exactly as above up to (5.33). In
this case, we have |0Y;| < |§Y;| for all t € 7. Thus replacing §Y;, by 0Y;, in (5.33)

and summing up over ¢ implies

N-1 tit1
E|) / 16Z|%ds
i=0 Vi

The proof is then concluded as above. O

<Cy (I&%%(E [loY;[?] +B> .

Proof of Proposition 4.1.

For seek of completeness, we give here the proof of Proposition 4.1. We only consider
the error on (Y, Z), the error on (Y€, Z€) is treated similarly.
1. We assume that (H3) and (H') hold. Let us define

Y =Y -Yb oY =Y -Y® 6Z2=2-2°6f=f(X,Y,Z) - f(X,Y" 2",
and remark that

16Y:| = |6Y;],Vt¢ R and |0Y;] < |0Y;], Ve R. (5.36)
Applying It6 formula to |§Y|?, we obtain for ¢ € (7, 7j+1)

Jj+

- Tt Tl il
E [\muf |6Zs|2ds] _E [\5Yr1+1\2+2/ (5YS<5fsds+2/ 6stKs} .
t t t

(5.37)
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Following the arguments of 1. in the proof of Proposition 3.2 and using (5.36), we
obtain that, for some 7 > 0 depending only on L,

_ Tj+1 . Ti+1 L
E[\amun/ |5Zs|2ds] < (1+CL\§R|)E[|5YTH1\2+2/ (5YSdKS] .
t t
(5.38)

Now observe that, by (4.2),

Ti+1 Tj+1 ~ b
[ enak, = [ mx) - 2k, (5.39)
t t

Tj+1

Tji4+1 -
h(X) - VP = E[h(XS)—Yb —/] f(Xu,Yf,ij)du|.7-"s}
S

Ti+1 -
< E[h(Xs)—h(erHH / \f(Xu,Yf,zz’mdum} (5.40)

Set
~ 2
€ = sup (LRI 10+ loa (X0l +1pa(X0)] + X + |20])
¢ = supE[¢| F,
s<T

which, by (2.2), (3.3) and Remark 5.4, satisfy
l€llse + [1€lls» < CF . (5.41)
Using (H3) and the Lipschitz-continuity of b, o and f, (5.40) becomes
- Tj+1
p) =72 < G| [T a0 + I+ X P | 7]
S
Tt .
wCul | [0+ 1721+ 28 | 7]
S
< CLIR|E.
Combining the last inequality with (5.39), it follows that
i+l _
E U (5YSdKS] < CLIRE [§(K,,,, — Ky)] , (5.42)
t

which by (5.38) leads to

E

J

< 1+ CulR) (E [0, 1]

~ Ti+1
0, |* + n/ 67, |%ds

Tj

+ CLIR|E [E(KTj+l - KTj)]) :

25



This shows that
E[10V, ] < CuRl. (5.43)
Summing up in the previous inequality and using (5.43), we get
16213 < CulR|. (5.44)
In view of (5.36), (5.38) and (5.42), (5.43) implies

sup [[0Vi7. < sup [[Y[|7. < Cp [R] . (5.45)
te[0,T] t€[0,T]

2. We now assume that (H1'): h is C7 with first and second derivatives bounded
by L. We argue as in 2 of the proof of Proposition 3.2. Recalling (5.36), we first
compute that, for j < x — 1,

E| sup 0%

t€lr;,rj4+1]

IN

CLE

~ Tj+1
‘5K‘j+1 |2 +/ (|(5f8|2 + |(SZS|2) ds]
Tj

+ CLE[(Ky., — K,)?] - (5.46)

By Proposition 4.2 in [9], it follows from (H1’) that 0 < dK; < kdt, in the sense of
measures, for some adapted process k satisfying ||k||s» < C7. This implies that

E| sup [0V

te[r;,rj41]

- Ti+1
< CLE ||0Y,, 1>+ / (18fs]* + 10Z,?) ds

J

+Cr IR .

Using (2.2), (3.3), (5.36), (5.45) and (5.44), this shows that

E| sup [6Y;

te[ry,ri41]

< O R|.

<E[ sup  [6Y;|?

te[ry,ri41]

3. To conclude the proof, we have to remove the assumption (H') for the first asser-
tion and (H1') for the second one. This is done by using the same approximation

arguments as in the proof of Proposition 3.3. O
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