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Work fluctuation theorems for harmonic oscillators

F. Douarche, S. Joubaud, N. B. Garnier, A. Petrosyan, S. Ciliberto
Laboratoire de Physique de I’ENS Lyon, CNRS UMR 5672,
46, Allée d’Italie, 69364 Lyon CEDEX 07, France
(Dated: March 30, 2006)

The work fluctuations of an oscillator in contact with a thermostat and driven out of equilibrium
by an external force are studied experimentally and theoretically within the context of Fluctuation
Theorems (FTs). The oscillator dynamics is modeled by a second order Langevin equation. Both
the transient and stationary state fluctuation theorems hold and the finite time corrections are very
different from those of a first order Langevin equation. The periodic forcing of the oscillator is also
studied; it presents new and unexpected short time convergences. Analytical expressions are given

in all cases.

PACS numbers: 05.40.-a, 84.30.Bv, 07.50.-e, 05.70.-a

In this letter, we investigate, within the context of the
Fluctuation Theorems (FTs), the work fluctuations of a
harmonic oscillator in contact with a thermostat and
driven out of equilibrium by an external force. First
found in dynamical systems [l], E] and later extended to
stochastic systems [E, E, ﬂ, |, these conventional FTs
give a relation between the probabilities to observe a pos-
itive value of the (time averaged) “entropy production
rate” and a negative one. This relation is of the form
P(o)/P(—0) = exp|oT], where o and —o are equal but
opposite values for the entropy production rate, P(o) and
P(—0) give their probabilities and 7 is the length of the
interval over which o is measured. In these systems, the
above mentioned FT is derived for a mathematical quan-
tity o, which has a form similar to that of the entropy
production rate in Irreversible Thermodynamics [ff].

The proof of FTs is based on a certain number of hy-
pothesis; experimenting on a real device is useful not only
to check those hypothesis, but also to observe whether
the predicted effects are observable or remain only a the-
oretical tool. There are not many experimental tests of
FTs. Some of them are performed in dynamical systems
[E] in which the interpretation of the results is very dif-
ficult. Other experiments are performed on stochastic
systems, one on a Brownian particle in a moving optical
trap @] and another on electrical circuits driven out of
equilibrium by injecting in it a small current [E] The
last two systems are described by first order Langevin
equations and the results agree with the predictions of
ref.[, [J. As far as we know no theoretical predictions
are available for systems described by a second order
Langevin equation. The test using an harmonic oscillator
is particularly important because the harmonic oscillator
is the basis of many physical processes. Indeed the gen-
eral predictions of FTs are valid only for 7 — oo and
the corrections for finite 7 have been computed only for
a first order Langevin dynamics.

In the present letter, we address several important
questions. We investigate first the Transient Fluctua-
tion Theorem (TFT) of the total external work done

on the system in the transient state, i.e., considering
a time interval of duration 7 which starts immediately
after the external force has been applied to the oscilla-
tor. We then analyze the Stationary State Fluctuation
Theorem (SSFT) which concerns fluctuations in the sta-
tionary state, i.e., in intervals of duration 7 starting at a
time long after the external force has been applied. We
also study a new case of stationary behavior obtained
when the system is driven periodically in time [@] In
this case, which is actually a very important one, no the-
oretical prediction is available. We show that the finite
time corrections for SSFT are already very complex in
both these rather simple situations.

To test the FT we measure the out-of-equilibrium
fluctuations of a harmonic oscillator whose damping is
mainly produced by the viscosity of the surrounding fluid,
which acts as a thermal bath of temperature T'. We recall
here only the main features of the experimental set-up,
more details can be found in ref.[@, B] The oscillator is
a torsion pendulum composed by a brass wire and a glass
mirror glued in the middle of this wire. It is enclosed in
a cell filled by a water-glycerol solution at 60% concen-
tration. The motion of this pendulum can be described
by a second order Langevin equation:

d?6 do
off —5 —+CO0=M
ffdt2+l/dt+ +

2kpTn, (1)
where 6 is the angular displacement of the pendulum, Iog
is the total moment of inertia of the displaced masses, v
is the oscillator viscous damping, C' is the elastic tor-
sional stiffness of the wire, M is the external torque, kp
the Boltzmann constant and 7 the noise, delta-correlated
in time. In our system the measured parameters are
the stiffness C' = 4.5 x 10"*Nmrad ™', the resonant fre-
quency fo = 1/C/I/(27) = 217Hz and the relaxation
time 7,1 = 2I.g/v = 9.5ms. The external torque M
is applied by means of a tiny electric current J flowing
in a coil glued behind the mirror. The coil is inside a
static magnetic field, hence M o« J. The measurement
of 6 is performed by a differential interferometer, which
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FIG. 1: a) Typical driving torque applied to the oscillator; b)
Response of the oscillator to the external torque (gray line).
The dark line represents the mean response () to the applied
torque M(t).

uses two laser beams impinging on the pendulum mir-
ror , . The measurement noise is two orders of
magnitude smaller than the thermal fluctuations of the
pendulum. 6(¢) is acquired with a resolution of 24 bits
at a sampling rate of 8192Hz, which is about 40 times
fo. The calibration accuracy of the apparatus, tested at
M = 0 using the the Fluctuation Dissipation Theorem,
is better than 3%(see [[L3)).

To study SSFT and TFT we apply to the oscillator a
time dependent torque M (t) as depicted in Fig. ma, and
we consider the work W, done by M(¢) over a time 7:

1
kg T

ti+T1
[ - M Fa @)

W dt

The TEFT implies that ¢; = 0 whereas t; > 37, for SSFT.
As a second choice for M (t), the linear ramp with a rising
time 7, is replaced by a sinusoidal forcing; this leads to a
new form of stationary state which has never been con-
sidered in the context of FT. We examine first the linear
forcing M (t) = M,t/7, (Fig.[lla)), with M, = 10.4 pN.m
and 7, = 0.1 s = 10.7 7,. The response of the oscilla-
tor to this excitation is comparable to the thermal noise
amplitude, as can be seen in Fig.[]b) where 6(t) is plot-
ted during the same time interval of Fig.ﬂa). Because
of thermal noise the power W, injected into the system
(eq.ﬁ) is itself a strongly fluctuating quantity.

We consider first the TFT. The probability density
functions (PDF) P(W,) of W, are plotted in Fig.fa) for
different values of 7. We see that the PDF are Gaussian
for all 7 and the mean value of W, is a few kgT. We
also notice that the probability of having negative values
of W is rather high for the small 7. The function

_ o | _POVE)
S(Wr) =In [P(—W»] ®)
is plotted in ﬁg.Eb). It is a linear function of W, for any
7, that is S(W,) = X(7) W,. Within experimental error,
we measure the slope X(7) = 1. Thus for our harmonic
oscillator the TFT is verified for any time 7. This was
expected [E, E], and we give a derivation of this generic
result for a second order Langevin dynamics at the end
of the letter.
We now consider the SSFT with ¢; > 37, in eq.E. ‘We

find that the PDF of W_., plotted in Fig.ﬂa), are Gaussian
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FIG. 2: TFT. a) P(W,) for TFT for various 7/74: 0.31
(o), 1.015 (O), 2.09 (¢) and 4.97 (x). Continuous lines are
Gaussian fits. b) TFT; §(W,) computed with the PDF of
a). The straight continuous lines are fits with slope 1, i.e.,
() =1, Vvr.
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FIG. 3: SSFT with a ramp forcing. a) PDF of W, for var-
ious 7/74: 0.019 (o), 0.31 (O), 2.09 (o) and 4.97 (x). b)
Corresponding functions S(W). ¢) The slope X(7) of S(W;)
is plotted versus T (O: experimental values; continuous line:
theoretical prediction eq.(@) with no adjustable parameter).

with many negative values of W, for short 7. The func-
tion S(W.), plotted in FigJb), is still a linear function of
W, but, in contrast to TFT, the slope X(7) depends on
7. In Figfc) the measured values of $(7) are plotted as
a function of 7. The function X(7) — 1 for 7 > 7,. Thus
SSET is verified only for large 7. The finite time correc-
tions of SSFT, which present oscillations whose frequency
is close to fy, agree quite well with the theoretical pre-
diction computed for a second order Langevin dynamics
that we will discuss at the end of the paper (see eq.[L)).
We stress that the finite time correction is in this case
very different from that computed in ref.[E, E} for the first
order Langevin equation.

The results of Figs.ﬂ,ﬂ have been checked for several
M, /7, without noticing any difference. The errors bars
in the figure are within the size of the symbols, and they
come only from the calibration errors of the harmonic
oscillator parameters, and statistics of realisations (typi-
cally 5 x 10° cycles have been used).

Finally we want to briefly describe the results of the
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FIG. 4: Sinusoidal forcing. a) Sinusoidal driving torque ap-
plied to the oscillator. b) Response of the oscillator to this
periodic forcing (gray line); the dark line represents the mean
response 0(t). c) PDF of the work W, integrated over n
periods of forcing, with n = 7 (o), n = 15 (0), n = 25
(¢) and n = 50 (x). d) The function S(W,) measured at
waq/2m = 64Hz is plotted as a function of W, for several n:
(o)n =7; (O)n =15 (¢)n = 25; (x)n = 50. Continuous lines
are functions S(W,) computed from Gaussian fits of PDF (in
Fig.b). e) The slopes X(n), plotted as a function of n for two
different driving frequencies wg = 64 Hz (O) and 256 Hz (o);
continuous lines are theoretical predictions from eq.[l]] with
no adjustable parameter.

periodic forcing. In this case M (t) = M, sinwgt and the
work expression (eq.E) is replaced by

1 tit+Tn do
W, — MO dr, (4
Wy = Wres, kBT/ti ()T, (@)

with 7, = n27/wg with n integer. This is a stationary
state that has never been studied before in the context of
FT. We find that for any driving frequency wy the PDF
of W,, are Gaussian. The function S(W,,), measured at
wgq/2n = 64Hz and plotted in FigHa), is linear in W,
and the corresponding slope ¥(n) is a function of n. The
measured values of ¥(n) are shown as function of n in
fig[fb), where the results obtained at wy/2m = 256Hz are
plotted too. We see that the convergence rate is quite
different in the two cases, which agree with our theo-
retical predictions for a second order Langevin equation
(see eq[L]). Also in the case of the sinusoidal forcing the
agreement between the computed and measured finite
time corrections is very good. These results prove not
only that FTs asymptotically hold for any kind of forc-
ing, but also that finite time corrections strongly depend
on the specific dynamics. In the case of the sinusoidal
forcing, the convergence is very slow: in Fig. He), we see
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FIG. 5: a) PDF of the fluctuations 66 = 6 — (t) when the
torque is applied (o), compared with a Gaussian fit of the
PDF at equilibrium (continuous line). b) The measured spec-
trum of 60 (o) is compared with the prediction of fluctuation
dissipation theorem in equilibrium (continuous line).

that it takes several dozens of excitation period (500 ms
for wq/2m = 64Hz) to get ¥(n) = 1 within one percent.
On the contrary for a ramp forcing, this was achieved
after a few 7, (20 ms), see Fig. fc).

Let us now compute the finite time corrections to TF'T
and SSET (plotted in Figsfcfe) for the harmonic oscil-
lator, applying a method very similar to the one already
used in the the context of the Jarzynski equality (see
ref.[[J)). We write 0(t) = 0(t) + 66(t) where 0(t) is the
mean response of the system to the external torque and
56(t) are the thermal fluctuations. The mean response
0(t) (dark line in Fig.[[b resp. fb) is computed by per-
forming an ensemble average of 0(t) over 103 responses
to the M(t) of Fig. [la) resp. Fig. fla). It turns out that
the measured () is equal to the solution of eq.f] with
n = 0 and with M equal to the applied time dependent
torque. Once the mean behavior is known, it is useful
to compare the statistical properties of §6(t) measured
at M(t) # 0 with the equilibrium ones. In Fig.[a) we
plot the gaussian fit of the PDF of §0(t) measured at
equilibrium M (¢) = 0 (continuous line) and at M (t) # 0
(o). The two curves are equal within experimental er-
rors. Thus we conclude that the external driving does
not perturb the equilibrium PDF, which is a Gaussian of
variance kpT/C. In Figfjb) we plot the power spectra
of 660 in equilibrium (continuous line) and out equilib-
rium (dotted line). The two spectra are equal and they
coincide with the theoretical spectrum of an equilibrium
second order Langevin dynamics (eq] with M = 0) com-
puted using the oscillator parameters. Thus we clearly
see that, within statistical accuracy, the fluctuations of
56 measured at M (t) # 0 are those of equilibrium. This
important observation is the key point to estimate the
finite time corrections of FT's.

In order to compute X(7), we first decompose the total
work of the external torque into the sum of a mean part
and a fluctuating one, i.e. W, = W, + §W,, where

W 2 T ) — e P )
" ksT /. T
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with a = 1 for the ramp forcing (eq. fl) or a = 0 for si-
nusoidal driving (eq. [f). From those equations and the
afore mentioned experimental observation on the fluctua-
tions d6, we see that the fluctuations § W, have a gaussian
distribution, so the PDF of the work W, done by the ex-
ternal torque is fully characterized by its mean W, and
variance 02 = ((6W;)?) where (.) stands for ensemble
average. In such a case the FTs take a simple form:

2W
S(Wr) = —Wr = X5(1) W5, (7)
o
where ¥(1) = (1 — ¢(7))™! following the notation of
ref.[fl. From eq.[] it is clear that to estimate the finite
time correction Y (7) we need only to compute W, and
2
o°.
W, is simply obtained by inserting in eq.E the expres-
sion of M(t) and the solution 6 of eq. with n = 0. The
variance o2 is computed using eq.ﬁ. For the linear ramp

of ﬁg.m, we obtain:

o = (kBlT)Q ]Tw—f [72«592(7» + <( /0 ' 59(t)dt)2>

- /O T(é@(r)&@(t»dt] . (8)

which can be computed using the correlation function
R(7) = (d0(7)60(0)). As already explained, the exper-
imental data indicate that the statistical properties of
00(t) on the ramp are the same as the properties of the
equilibrium fluctuations, which are well described by a
second order Langevin dynamics. Thus we can use for
R(7) the known equilibrium correlation function of the
thermal fluctuations which for a second order Langevin

dynamics is [[[:

kT sin (Y|7] + )

k() c sin @

exp(=alr]),  (9)

where o = 1/74, a® +19? = w3 = O/Ig and sing =
1 /wo. We checked our method on a first order Langevin
equation, for which the exact results of refs.@, E] are
available. We find that €(7) for the work computed with
our technique in a first order Langevin dynamics is the
same as in ref.[f], f] both for TFT and SSFT. Thus we
can now safely apply our technique to a second order
Langevin equation. We find that in the case of the TFT
€ = 0 V7, whereas in the case of the SSFT

woT

<sin(2<p +47) + M) } : (10)

woT

The same calculations can be performed for any kind of
M(t). For example with a sinusoidal forcing M(t) =
M, sin(wqt), SSFT for the work W,, defined in eq. E gives

082y wg + w3

Lo (e7®™) (11)

() = 2at, wg Tn

where v is the phase shift between 6(t) and M(t), i.e,
tan(y) = —2awq/(w§ — w?3) and 7, = 2n7/wg with n
integer. In Eq. [LI], @ (e=*™) is a term that vanishes
exponentially in ar,, the expression of which is compli-
cated and will be reported in a longer article, together
with many other interesting features.

These analytical results agree remarkably well with the
experimental results for TF'T and SSFT for the work fluc-
tuations in a harmonic oscillator (see Figs. B and fe).

In conclusion we have applied the FTs to the work
fluctuations of an oscillator driven out of equilibrium by
an external force. The TFT holds for any time whereas
the SSF'T presents a complex convergence to the asymp-
totic behavior which strongly depends on the form of
the driving. The exact formula of this convergence can
be computed using several experimental evidences of the
statistics of the fluctuation. These results are useful for
many applications going from biological systems to nan-
otechnology, where the harmonic oscillator is the simplest
building block.

This work has been partially supported by EEC con-
tract DYGLAGEMM.
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