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ABSTRACT.In [BCGM01] we have generalized the Knuth-Morris-Pratt (KMP) pattern matching algorithm and defined a non-
conventional kind of RAM, the MP–RAMs which model more closely the microprocessor operations, and designed anO(n)

on-line algorithm for solving the serial episode matching problem on MP–RAMs when there is only one single episode. We
here give two extensions of this algorithm to the case when wesearch for several patterns simultaneously and compare them.
More preciseley, givenq + 1 strings (a textt of lengthn andq patternsm1, . . . , mq) and a natural numberw, themultiple
serial episode matching problemconsists in finding the number of sizew windows of textt which contain patternsm1, . . . , mq

as subsequences, i.e. for eachmi, if mi = p1, . . . , pk, the lettersp1, . . . , pk occur in the window, in the same order as inmi,
but not necessarily consecutively (they may be interleavedwith other letters).

KEYWORDS:Subsequence matching, algorithm, frequent patterns, episode matching, datamining.
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1. Introduction

The recent development of datamining induced the development of computing techniques, among them is
episode searching and counting. An example of frequent serial episode search is as follows: lett be a text consisting
of requests to a university webserver ; assume we wish to count how many times, within at most 10 time units,
the sequencee1e2e3e4 appears, wheree1 = ‘Computer Science’,e2 = ‘Master’, e3 = ‘CS318 homepage’,e4 =
‘Assignment’. It suffices to count the number of 10-windows of t containing the subsequencep = e1e2e3e4. If
e1, e2, e3, e4 must appear in that same order in the window, the episode is said to beserial, if they can appear in any
order, the episode is said to beparallel; a partial order can also be imposed on the events composing an episode (see
[MTV95], which proposes several algorithms for episode searching). Searching serial episodes is more complex
than searching parallel episodes. Of course, if one has to scan alog file, it is better to do it for several episodes
e1e2 . . . en, f1f2 . . . fm, g1g2 . . . gp simultaneously. We will hence investigate the search of several serial episodes
in the same window: each serial episode is ordered, but no order is imposed among occurrences of the episodes in
the window.

The problem we address is the following: given a textt of lengthn, patternsm1, . . . , mq on the same alphabet
A and an integerw, we wish to determine the number of sizew windows of text containing allq patterns as
serial episodes,i.e. the letters of eachmi appear in the window, in the same order as inmi, but they need not
be consecutive because other letters can be interleaved. When searching for a single patternm, this problem with
arguments the window sizew, the textt and patternm is calledserial episode matching problemin [MTV95],
episode matchingin [DFGGK97] andsubsequence matchingin [AHU74]; a related problem is thematching with
don’t caresof [MBY91, KR97].

This problem is an interesting generalisation ofpattern-matching. Without the window size restriction, it is
easy to find in linear time whetherp occurs in the text: ifp = p1 . . . pk, a finite state automaton withk + 1 states
s0, s1, . . . , sk will read the text; the initial state iss0; after reading letterp1 we go to states1, then after reading
letter p2 we go to states2, . . . ; the text is accepted as soon as statesk is reached. Episode matching within a
w-window is harder; its importance is due to potential applications to datamining [M97, MTV95] and molecular
biology[MBY91, KR97, NR02].

For the problem with a single episode inw-windows, a standard algorithm is described in [DFGGK97, MTV95].
It is close to the algorithms ofpattern-matching[A90, AHU74] and its time complexity isO(nk). Anotheron-line
algorithm is described in [DFGGK97]: the idea is to slice thepattern ink/ log k well-chosen pieces organised in a
trie; its time complexity isO(nk/ log k). We gave anon-linealgorithm reading the textt, each text symbol being
read only once and whose time complexity isO(n) [BCGM01].

In this paper, we describe two efficient algorithms (Section3) for solving the problems of simultaneous search
of multiple episodes. These algorithms use theMP–RAM, that we introduced in [BCGM01], to model micropro-
cessor basic operations, using only the fast operations on bits (shifts), and bit-wise addition; this gives an on-line
algorithm in timeO(nq) (theorem 1). In practice, this algorithm based on MP–RAMs and a new implementation
of tries, is much faster as shown in section 4. We believe that other algorithms can be considerably improved if
programmed on MP–RAMs.

Our algorithm relies upon two ideas: 1) preprocess patternsand window size to obtain a finite automaton
solving the problem as in Knuth, Morris, and Pratt algorithm[KMP77] (the solutions preprocessing the text [T02,
MBY91, S71, U95] are prohibitive here because of their spacecomplexity) and 2) code the states of this automaton
to compute its transitions very quickly on MP-RAMs, withoutprecomputing, nor storing the automaton: using the
automaton itself is also prohibitive, not the least becauseof the number of states; we emulate the behaviour of
the automaton without computing the automaton. We study: (a) the case when the patterns have no common part
and (b) the case when they have similar parts. In each case, anappropriate preprocessing of the set of patterns
enables us to build an automaton solving the problem and we show that the behaviour of this automaton can be
emulated on-line on MP-RAMs. Moreover, the time complexityof the preprocessing is insignificant because it
is smaller than the text size by several orders of magnitude:typically, window and patterns will consist of a few
dozen characters while the text will consist of several million characters.

The paper is organised as follows: in section 2, we define the problem, in section 3 we describe the algorithms
searching multiple episodes in parallel; we present the experimental results in section 4.
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Figure 1:A French advertisement

Figure 2:A text with two5-windows containing “vie" (in gray), and a single5-window containing “vile".

2. The problem

2.1. The (multiple) episode problem

An alphabetis a finite non-empty setA. A lengthn wordonA is a mappingt from {1, . . . , n} to A. The only
length zero word is theempty word, denoted byε. A non-empty word t : i 7→ ti is denoted byt1t2 · · · tn. A
languageon alphabetA is a set of words onA.

Let t = t1t2 · · · tn be a word which will be called thetext in the paper. The wordp = p1p2 · · · pk is a factor
of t iff, there exists an integerj such thattj+i = pi for 1 ≤ i ≤ k. A sizew windowof on t, in shortw-window,
is a sizew factor ti+1ti+2 · · · ti+w of t; there aren − w + 1 such windows int. The wordp is anepisode(or
subsequence) of t iff there exist integers1 ≤ i1 < i2 < · · · < ik ≤ n such thattij

= pj for 1 ≤ j ≤ k. If
moreover,ik − i1 < w, p is anepisodeof t in a w-window.

Example 1 If t = “dans ville il y a vie" (a French advertisement, see figure 1) then “vie" is a factor and hence a
subsequence oft. “vile" is neither a factor, nor a subsequence oft in a 4-window, but it is a subsequence oft in a
5-window. See figure 2.⊓⊔

Given an alphabetA, and wordst, m1, . . . , mq onA:

– the simultaneouspattern-matchingproblem consists in finding whetherm1, . . . , mq are factors oft,
– given moreover a window sizew:

- the subsequence existenceproblem consists in finding whetherm1, . . . , mq are subsequences oft in a
w-window;

- the multiple episode searchproblem consists in counting the number ofw-windows in which all of
m1, . . . , mq are subsequences oft.

For the simultaneous search of several subsequencesm1, . . . , mq, we have various different problems:

– either we count the number of occurrences of eachmi in a w-window (not necessarily the same): this case
will be useful for searching in parallel, with a single scan of the text, a set of patterns which are candidates for
being frequent.

– or we count the number of windows containing all themis: this case will be useful for trying to verify
association rules. For example, the association rulem2, . . . , mq =⇒ m1 will be useful if the number ofw-windows
containing all them2, . . . , mq is high enough, and to check that, we will count thew-windows containingall of
m2, . . . , mq. Our method will enable us to verify more easily both the validity of the association rule (“among
the windows containingm2, . . . , mq many contain alsom1”) and the fact that it is interesting enough (“many
windows containm2, . . . , mq”): it will suffice to count simultaneously the windows containing m2, . . . , mq and
the windows containingm1, m2, . . . , mq.

A naive solution exists forpattern-matching. Its time complexity on RAM isO(nk), wherek is the pattern size.
Knuth, Morris, and Pratt [KMP77] gave a well-known algorithm solving the problem in linear timeO(n + k). A
solution inO(nk) is given in [MTV95] for searching a single sizek episode. We gave in [BCGM01] an algorithm
with time complexityO(n) (on MP–RAM) for searching a single episode.
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2.2. The notationo(nk)

Let us first make precise the meaning of the notationo(nk).

The notationo(h(n)) was introduced to compare growth rates of functions with oneargument; for comparing
functions with several arguments, various non-equivalentinterpretationso(h(n, m, ...)) are possible. Consider a
functiont(n, k); t(n, k) = o(nk) could mean:

1) either lim
n+k→+∞

t(n, k)/nk = 0;

2) or lim
n→+∞
k→+∞

t(n, k)/nk = 0, i.e.∀ǫ, ∃N, ∀n, ∀k
(
n > N andk > N =⇒ t(n, k) < ǫnk

)
.

With meaning 1, no algorithm can solve thesingle episode within a windowproblem in timeo(nk). Indeed,
any algorithm for theepisode within a windowproblem must scan the text at least once, hencet(n, k) ≥ n. For a
givenk, for examplek = 2,we havet(n, k)/nk ≥ 1/2. Hence lim

n+k→+∞
t(n, k)/nk = 0 is impossible. We thus

have to choose meaning 2.

2.3. Algorithms on MP–RAM

Given a window sizew and q patterns, we preprocess (patterns + window sizew) to build a virtual finite
state automatonA; we will then emulate on-line the behaviour ofA to scan textt and count in timenq the
number of windows containing our patterns as episodes. Notethat our method is different from both: 1) methods
preprocessing the text [T02, MBY91, S71, U95] (we preprocess the pattern) and 2) methods using suffixes of the
pattern [C88, MBY91, KR97, U95] (we use prefixes of the patterns). We encode the subset of states ofA needed to
compute the transitions on-line on an MP-RAM. Indeed,A hasO(w+1)k state, wherek is the size of the structure
encoding theq patternsm1, . . . , mq; for w andq large, the time and space complexity for computing the states of
A becomes prohibitive, whence the need to compute the states on-line quickly without having to precompute nor
store them. We introduced MP-RAMs to this end.

Pattern-matchingalgorithms are often given on RAMs. This model is not good when there are too many
different values to be stored, for exampleO(w + 1)k states forA. As early as 1974, the motivation of [PRS74] for
introducing “vector machines” was the remark that boolean bit-wise operations and shifts which are implemented
on computers are faster and better suited for many problems.This work was the starting point of a series of
papers: [TRL92, BG95] comparing the complexities of computations on various models of machines allowing
for boolean bit-wise operations and shifts with computation complexities on classical machines, such as Turing
machines, RAMs etc. The practical applications of this technique to variouspattern-matchingproblems start with
[BYG92, WM92]: they are known asbit-parallelism, orshift-ORtechniques. We follow this track with the episode
search problem, close to the problems studied in [BYG92, WM92, BYN96], albeit different from these problems.

In the sequel, we use a variant of RAMs, which is a more realistic computation model in some aspects, and
we encodeA to ensure that (i) each state ofA is stored in a single memory cell and (ii) only the most basic
microprocessor operations are used to compute the transitions ofA. Our RAMs have the same control structures
as classical RAMs1, but the operations are enriched by allowing for boolean bit-wise operations and shifts, which
we will preferably use whenever possible. Such RAMs are close to microprocessors, this is why we called them
MP–RAMs.

Definition 1 An MP–RAM is a RAM extended by allowing new operations:

1) the bit-wiseand, denoted by&,
2) theleft shift, denoted by<< or shl, and
3) theright shift, denoted by>> or shr.

The new operations are low-level operations, executable much faster than the more complexMULT, DIV oper-
ations.

1. See [AHU74] pages 5–11, for a definition of classical RAMs.
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Figure 3:Trie representingtu, tue andtutu. The full black circles indicate ends of patterns.

Example 2 Assume our MP–RAMs have unbounded memory cells. We will havefor example:(10110 & 01101) =
100, (10110 << 4) = 101100000 and (10110 >> 3) = 10. If memory cells have at most 8 bits, we will have:
(10110 << 4) = 1100000, that will be written as(00010110 << 4) = 01100000.

3. Parallel search of several patterns

Let us recall the problems. Given patternsm1, m2, . . . , mq, we can:

– either count the number of occurrences of eachmi in aw-window (not necessarily the same one);

– or count the number ofw-windows containingm1, m2, . . . , mq.

The algorithm we described in [BCGM01] for counting the number ofw-windows containinga singlepattern
m can be adapted to all these cases, only the acceptance or counting condition will change.

To search simultaneously several patternsm1, . . . , mq, [WM92] propose a method concatenating all the pat-
terns. To search simultaneously several episodesm1, . . . , mq, we generalise our algorithm [BCGM01]: we useq
countersc1, . . . , cq initially set to 0, and we define an appropriate multiple counting condition such that each time
mi is in aw-window, the corresponding counterci is incremented. This method has a drawback: if the patterns are
too long, it will need more than one memory cell for coding thestates of the automaton. For searching multiple
patterns the method proposed by [DFGGK97] to optimise the search, when wordsm1, . . . , mq have common pre-
fixes, is to organisem1, . . . , mq in a trie [K97] before applying the standard algorithm. We apply our algorithm on
MP-RAMs in a similar way, and implementtries in a new way. We thus can encode the set of patterns compactly,
and then encode the states of the automaton on a single memorycell.

3.1. Representing patterns by a trie

Consider for example episodesm1 = tu, m2 = tue, andm3 = tutu. We choose this example because it
illustrates most of the difficulties in encoding the automaton: episodetaie is very simple because all letters are
different,tati is less simple because there are two occurrences oft which must be distinguished,tutu a bit more
complex (the first occurrence oftu must be distinguished from the second one),turlututu would be even more
complex. We represent these three episodes by the triet pictured in figure 3.

We implement this triet by the three tables below:

tr = t u e t u pr = 0 1 2 2 4 f = 2 3 5

Tabletr represents the “flattened” trie. Predecessors are in tablepr: pr[i] gives the index intr of the parent of
tr[i] in the trie; 0 means there is no predecessor and hence it is a pattern start2. Finally f marks patterns ends:f [i]
is the index intr of the end of patterni.

3.2. Preprocessing the trie and algorithm

We preprocess the trie of patterns and this gives us a finite state automatonA. Its alphabet isA. The states are
thek-tuples of integers〈l1, . . . , lk〉 with lj belonging to{1, . . . , w,+∞}, wherek is the size of tabletr andw the
window size.

2. Numbering of indices starts at 1 in order to indicate pattern starts by 0.
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binary expansion ofL
︷ ︸︸ ︷

0
...__________________
︸ ︷︷ ︸

binary expansion oflk

| . . . 0
...__________________
︸ ︷︷ ︸

binary expansion ofl2

| 0
...__________________
︸ ︷︷ ︸

binary expansion ofl1

|

Figure 4:Encoding of〈l1, . . . , lk〉.

L = 0
... l5 0

... l4 0
... l3 0

... l2 0
... l1

Figure 5: Encoding of〈l1, . . . , l5〉; li is the binary expansion ofli.

We describe informally the behaviour ofA. A scanst, it will be in state〈l1, . . . , lk〉 after scanningt1 . . . tm iff
li is the length of the shortest suffix3 of t1 . . . tm shorter thanw and containingtr[ji] . . . tr[i] as subsequence for
i = 1, . . . , k, wheretr[ji] . . . tr[i] is the sequence of letters labelling the path going from the root of the trie to the
node represented bytr[i]. If no suffix (of length less thanw) of t1 . . . tm containstr[ji] . . . tr[i] as a subsequence,
we letli = +∞.

Let us now describe our algorithm. LetΩ be the least integer such thatw + 2 ≤ 2Ω. The rôle of+∞ is played
by 2Ω − 1, whose binary encoding is a sequence ofΩ ones. We define the function NextΩ by:

NextΩ(l) =

{

l + 1, if l < 2Ω − 1;
2Ω − 1, else.

State〈l1, . . . , lk〉 is encoded by integer:

L =

k∑

i=1

li(2
Ω+1)i−1 =

k∑

i=1

(

li <<
(
(Ω + 1)(i − 1)

))

. [1]

Let li denote the binary expansion ofli, i = 1, . . . , k, prefixed by zeros in such a way thatli occupiesΩ bits (all
lis are smaller than2Ω − 1, hence they will fit inΩ bits). The binary expansion ofL is obtained by concatenating
the lis, each prefixed by a zero (figure 4). These initial zeros are needed for implementing function NextΩ to
indicate overflows. Every integer smaller than2k(Ω+1) can be written ask big blocksof (Ω + 1) bits, the first bit
of each big block is 0 (and is called theoverflow bit) and theΩ remaining bits constitute asmall block. The blocks
are numbered 1 tok from right to left (the rightmost block is block 1, the leftmost block is blockk).

By the definition in equation (1), the initial state〈+∞, . . . , +∞〉 is encoded by:

I0 =

k∑

i=1

(2Ω − 1)2(Ω+1)(i−1) =

k∑

i=1

((
(1 << Ω) − 1

)
<<

(
(Ω + 1)(i − 1)

))

.

One might see a multiplication here. In fact we will need a loop for i = 1 to k. We will execute each time we
go through the loop a shift ofΩ + 1, and the multiplication will disappear. All equations below are treated in the
same way.

Assume that the window size isw = 13 henceΩ = 4. With the notations of figure 5, statel = 〈2, 5,∞, 5,∞〉
is encoded by:

L = 0
... 15 0

... 5 0
... 15 0

... 5 0
... 2

The initial state is represented by:

I0 = 0
... 1111 0

... 1111 0
... 1111 0

... 1111 0
... 1111

3. Words is aprefix(resp.suffix) of word t iff there exists a wordv such thatt = sv (resp.t = vs).
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or, writing 1 instead of theΩ ones representing∞:

I0 = 0
... 1 0

... 1 0
... 1 0

... 1 0
... 1

In transitionl = 〈l1, . . . , lk〉 σ−→ l′ = 〈l′1, . . . , l′k〉, thel′i component of the new statel′ is either NextΩ(lpr[i])
or NextΩ(li) according to whether the scanned letterσ is equal totr[i] or not. The casesl′i = NextΩ(lpr[i]) and
l′i = NextΩ(li) respectively yield afirst type computationand asecond type computation.

To generalise the algorithm of [BCGM01], we must define several masksMσ for each letterσ of alphabet A.
If σ has several occurrences in tabletr, we will need as many masksMσ as occurrencestr[i] andtr[i′] of σ with
j = i − pr[i] 6= i′ − pr[i′] = j′ (a single mask will suffice for the set of all occurrences suchthat i − pr[i] has
the same valuej, because they correspond to the same shift ofj big blocks). TheM j

σ are the masks preparing
first type computations. Precisely, iftr[i] = σ andi − pr[i] = j, the operation

(
L << j(Ω + 1)

)
&M j

σ will shift
everything ofj big blocks leftwards and will erase the blocks for whichσ 6= pi or i − pr[i] 6= j. For i > 1, the
i-th block will thus containlpr[i] iff tr[i] = σ andi − pr[i] = j. It will contain 0otherwise.

In our example (m1 = tu, m2 = tue, andm3 = tutu), we will need two masksMt but a single maskMu will
suffice:

M1
t = 0

... 0 0
... 0 0

... 0 0
... 0 0

... 1

M2
t = 0

... 0 0
... 1 0

... 0 0
... 0 0

... 0

M1
u = 0

... 1 0
... 0 0

... 0 0
... 1 0

... 0

M1
e = 0

... 0 0
... 0 0

... 1 0
... 0 0

... 0

where0 = 0000 and1 = 1111.

MaskNσ is the complement of
∑

j M j
σ, preparing second type computations. The operationL&Nσ will erase

the blocks for whichσ = tr[i]. For our example, we have:

Nt = 0
... 1 0

... 0 0
... 1 0

... 1 0
... 0

Nu = 0
... 0 0

... 1 0
... 1 0

... 0 0
... 1

Ne = 0
... 1 0

... 1 0
... 0 0

... 1 0
... 1

Generally, ifk is tabletr size,

M j
σ =

∑

tr[i]=σ andpr[i]=i−j
1≤i≤k

((
(1 << Ω) − 1

)
<<

(
(Ω + 1)(i − 1)

))

.

and
Nσ =

∑

pi 6=σ
1≤i≤k

((
(1 << Ω) − 1

)
<<

(
(Ω + 1)(i − 1)

))

.

Nσ is the complement of
∑

j M j
σ.

Transitionl = 〈l1, . . . , lk〉 σ−→ l′ = 〈l′1, . . . , l′k〉 is computed by:

T =
∑

j

(
(L << j(Ω + 1))&M j

σ

)
+ (L&Nσ) + E1

where:
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E1 = 0
... 0001 0

... 0001 0
... 0001 0

... 0001 0
... 0001

AddingE1 amounts to add 1 to each small block.

In our example, if we scan lettert, the transition is computed by:

T =
(
(L << 2(Ω + 1))&M2

t

)
+

(
(L << (Ω + 1))&M1

t

)
+ (L&Nt) + E1

yielding for l = 〈2, 5,∞, 5,∞〉, encoded by:

L = 0
... 15 0

... 5 0
... 15 0

... 5 0
... 2

the result:

T = 1
... 0 0

... 6 1
... 0 0

... 6 0
... 1

All the blocks contain the correct result, except for the leftmost block and the middle block where an overflow
occurred. To treat blocks where overflow occurred it sufficesof initialise again these blocks by replacingT with
L′ = T −

(
(T&E2) >> Ω

)
, where:

E2 = 1
... 0 1

... 0 1
... 0 1

... 0 1
... 0

We find:

T&E2 = 1
... 0 0

... 0 1
... 0 0

... 0 0
... 0

Hence:

(T&E2) >> Ω = 0
... 1 0

... 0 0
... 1 0

... 0 0
... 0

and finally:

L′ = T −
(
(T&E2) >> Ω

)
= 0

... 15 0
... 6 0

... 15 0
... 6 0

... 1

Last we define a counterci for each patternmi, and increment it wheneverlf [i] < w + 1, which is implanted
by: Mi&L < (w + 1)2(Ω+1)(f [i]−1), for i = 1, . . . , k, whereMi =

(
(1 << Ω) − 1

)
<<

(
(Ω + 1)(f [i]− 1)

)
.

Our algorithm treats the more complex case where we demand that all episodes appear in a same window, a
case that cannot be treated by the separate counting of the number of windows containing each episode. A simple
modification of the counting condition enables us to also countwith a single scan of the textthe number of windows
containing each individual episode, in a more efficient way than if the text were to be scanned for each episode.

Theorem 1 There exists an on-line algorithm in timeO(nq) solving the parallel search ofq serial episodes in a
sizen text (assuming the episode alphabet has at most

√
n/q letters) on MP–RAM.

Proof: Let α be the number of letters of the alphabet. As in [DFGGK97], we treat in the same way all letters not
occurring in the patterns; this leads to defining two masksMother andNother common to all such letters. Let|w|
be the length of the binary expansion ofw. The algorithm consists of four steps:

1) compute (at most)q × (k + 1) integers representing the masksM j
σ, (k + 1) integers representing the masks

Nσ and the integersΩ, ∆, I0, F, E1, E2; all these integers are of sizek(|w|+ 2) and are computedsimultaneously
in k iterations at most. The integerk is the size of the trie representing the patterns:k ≤

∑q

i=1 |mi| ≤
√

n.
2) letc = 0 (c is the number ofw-windows containing all the patterns).
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Figure 6: The continuous thin lines represent the execution time of the MP–RAM algorithm (with trie); the dotted line
represents the execution time of the MP–RAM algorithm (withconcatenation); the dashed lines the execution time of the
standard algorithm (with concatenation) and the continuous thick lines the execution time of the standard algorithm (with trie).

3) letL = I0.
4) scan textt; after scanningti, compute the new stateL (on-line and without preprocessingwith an MP–RAM)

and if ci < w for i = 1, . . . , q, incrementc by 1.

Our algorithm uses only the simple and fast operations&, together with a careful implementation of<<, >> and
addition. Step 1 of preprocessing is in timeqk(k+1)+q(k+1)+log(w) ≤ q(

√
n)2+2q

√
n+q+log(w) = O(nq);

in general,k, q andw are smaller thann by several orders of magnitude and we will have:qk(k + 1)+ q(k + 1)+
log(w) = o(n). In step 4 we scan textt linearly in timeO(n) and performq comparisons (one for each counter
ci). Complexity is thus in timenq, hence finally a time complexityO(nq) for the algorithm.⊓⊔

4. Experimental results

The algorithm on MP–RAM has a better complexity than the standard algorithm, however, the underlying
computation models being different, we checked experimentally that the MP–RAM algorithm is faster. We imple-
mented all algorithms in C++. Experiments were realised on aPC (256 Mo, 1Ghz) with Linux. The text was a
randomly generated file. We measured the time with machine clock ticks.

For searching multiple patterns, we took 3 to 5 patterns of length 2 to 4; in figure 6, case (a) is the case of
patterns having no common prefix, and case (b) is the case of patterns having common prefixes. In case (a), the
MP–RAM algorithm where we concatenate the patterns is at least twice as fast as the standard “naive” algorithm
where patterns are concatenated; both standard algorithms(with patterns concatenated or organised in a trie) are
equivalent, the algorithm with concatenation being slightly faster; this was predictable since a trie organisation
will not give a significant advantage in that case; the MP–RAMalgorithm where the patterns are organised in a
trie is 30 to 50% faster than the standard algorithm with trie, and 10 to 15% slower than the MP–RAM algorithm
where the patterns are concatenated. However, as soon as thetotal length of the patterns is larger than 7 or 8, or the
window size is larger than 30, if patterns are concatenated,the automaton state can no longer be encoded in a single
32 bits memory cell, and it is better to use the MP–RAM algorithm with trie (figure 6 case (b)). Figure 6 case (b)
shows that, for patterns having common prefixes, the MP–RAM algorithm with trie is 1.3 to 1.5 times faster than
the standard algorithm with trie, itself 1.4 to 1.6 times faster than the standard algorithm with concatenation.

5. Conclusion

We presented new algorithms for multiple episode search, much more efficient than the standard algorithms.
This was confirmed by our experimental analysis. Note that with our method, counting the number of windows
containing several episodes is not harder than checking theexistence of one window containing these episodes.
This is not true with most other problems; usually counting problems are much harder than the corresponding
existence problems: for example, for the “matching with don’t cares” problem, the existence problem is in linear
time while the counting problem is in polynomial time [KR97]and in the particular case of [MBY91], the existence
problem is in logarithmic time while the counting problem isin sub-linear time.
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