N

N

Multiple serial episode matching

Patrick Cegielski, Irene Guessarian, Yuri Matiyasevich

» To cite this version:

Patrick Cegielski, Irene Guessarian, Yuri Matiyasevich. Multiple serial episode matching. 2005, pp.26-
38. hal-00020564

HAL Id: hal-00020564
https://hal.science/hal-00020564
Submitted on 13 Mar 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00020564
https://hal.archives-ouvertes.fr

ccsd-00020564, version 1 - 13 Mar 2006

Multiple serial episodes matching™

*k%k

Patrick Cégielski* — Irene Guessarian™ — Yuri Matiyasevich

* LACL, UMR-FRE 2673, Université Paris 12, Route forestiéwethult, F-77300 Fontainebleau, France,
cegielski@univ-paris12.fr

** LIAFA, UMR 7089 and Université Paris 6, 2 Place Jussieu, Z5R4&ris Cedex 5, France; send correspondence
to ig@liafa.jussieu..fr

*** Steklov Institute of Mathematics, Fontanka 27, St. PetegsiRussia. yumat@pdmi.ras.ru
™ Support by INTAS grant 04-77-7173 is gratefully acknowsetig

ABSTRACTIN [ECGMOj] we have generalized the Knuth-Morris-Pratt (R)Mpattern matching algorithm and defined a non-
conventional kind of RAM, the MP-RAMs which model more Bidbe microprocessor operations, and designedCim)
on-line algorithm for solving the serial episode matchimglgem on MP—RAMSs when there is only one single episode. We
here give two extensions of this algorithm to the case whesearch for several patterns simultaneously and companathe
More preciseley, given + 1 strings (a text of lengthn and ¢ patternsm., ..., mq) and a natural numbetv, the multiple
serial episode matching probleronsists in finding the number of sizewvindows of text which contain patternsni, ..., mq

as subsequences, i.e. for eaeh, if m; = p1,...,pk, the lettersp, . . ., pi, occur in the window, in the same order asrin,

but not necessarily consecutively (they may be interleaittdother letters).

KEYWORDSSubsequence matching, algorithm, frequent patternspdpimatching, datamining.

CSIT’05. Volume /

2 CSIT'05. Volume /

1. Introduction

The recent development of datamining induced the develapawfecomputing techniques, among them is
episode searching and counting. An example of frequeralggrisode search is as follows: tdte a text consisting
of requests to a university webserver ; assume we wish totdmw many times, within at most 10 time units,
the sequence, esese, appears, where; = ‘Computer Science'¢s = ‘Master’, e3 = ‘CS318 homepagesg, =
‘Assignment’. It suffices to count the number of 10-windowg @ontaining the subsequenge= ejezezey. If
e1, ea, €3, e4 MUSt appear in that same order in the window, the episod@lissheserial, if they can appear in any
order, the episode is said to parallel; a partial order can also be imposed on the events compasiegjsode (see
[, which proposes several algorithms for episoded@ag). Searching serial episodes is more complex
than searching parallel episodes. Of course, if one hasato alog file, it is better to do it for several episodes
eir€s...en, fifa... fm, 9192 - .. gp Simultaneously. We will hence investigate the search ofisdserial episodes
in the same window: each serial episode is ordered, but rer admposed among occurrences of the episodes in
the window.

The problem we address is the following: given a teat lengthn, patternsn, ..., m, on the same alphabet
A and an integerw, we wish to determine the number of sizewindows of text containing aly patterns as
serial episodeg,e. the letters of eachn; appear in the window, in the same order asiip but they need not
be consecutive because other letters can be interleaveen $édarching for a single pattetn this problem with
arguments the window size, the textt and patternm is calledserial episode matching problerim [,
episode matching [DFGGK97] andsubsequence matchiing[RAHU74]; a related problem is thmatching with
MBY91} KRIT].

don't caresof [

This problem is an interesting generalisationpattern-matching Without the window size restriction, it is
easy to find in linear time whetheroccurs in the text: ip = p; ... pg, a finite state automaton with+ 1 states
s0, S1, - - - , Sk Will read the text; the initial state is); after reading lettep; we go to states;, then after reading
letter po we go to states, ...; the text is accepted as soon as statés reached. Episode matching within a
w-window is harder; its importance is due to potential aglins to dataminind [M37, MTV95] and molecular
biology[MBY91],[KR9T,|NROP].

For the problem with a single episodeirwindows, a standard algorithm is described in [DFGGK.97 \@H].
Itis close to the algorithms gfattern-matchingA90], [AHU74] and its time complexity i®)(nk). Anotheron-line
algorithm is described if [DFGGKP7]: the idea is to slice plagtern ink / log k well-chosen pieces organised in a
trie; its time complexity iSO(nk/ log k). We gave amn-linealgorithm reading the text each text symbol being

read only once and whose time complexityié») [BCGMO01].

In this paper, we describe two efficient algorithms (Secﬂ))for solving the problems of simultaneous search
of multiple episodes. These algorithms use Mie—-RAM that we introduced id BCGMﬂ)l], to model micropro-
cessor basic operations, using only the fast operationét®ishiftg, and bit-wise addition; this gives an on-line
algorithm in timeO(nq) (theoren{]l). In practice, this algorithm based on MP-RAM$ amew implementation
of tries, is much faster as shown in sectidn 4. We believe that otigarighms can be considerably improved if
programmed on MP—RAMSs.

Our algorithm relies upon two ideas: 1) preprocess pattanmtswindow size to obtain a finite automaton
solving the problem as in Knuth, Morris, and Pratt algoriti¢MP77] (the solutions preprocessing the text [[r02,
MBY91],]WIS] are prohibitive here because of their sgaceplexity) and 2) code the states of this automaton
to compute its transitions very quickly on MP-RAMSs, withquiecomputing, nor storing the automaton: using the
automaton itself is also prohibitive, not the least becafshe number of states; we emulate the behaviour of
the automaton without computing the automaton. We studyth@case when the patterns have no common part
and (b) the case when they have similar parts. In each casgpmnpriate preprocessing of the set of patterns
enables us to build an automaton solving the problem and ww giat the behaviour of this automaton can be
emulated on-line on MP-RAMSs. Moreover, the time complexifythe preprocessing is insignificant because it
is smaller than the text size by several orders of magnittggcally, window and patterns will consist of a few
dozen characters while the text will consist of severaliotilcharacters.

The paper is organised as follows: in section 2, we definetbiele@m, in sectiof|3 we describe the algorithms
searching multiple episodes in parallel; we present thegxgental results in sectiqp 4.

Multiple serial episodes matching 3

Figure 1:A French advertisement

Figure 2:A text with two 5-windows containing “vie" (in gray), and a singlewindow containing “vile".

2. The problem
2.1. The (multiple) episode problem

An alphabets a finite non-empty sed. A lengthn wordon A is a mapping from {1,...,n} to A. The only
length zero word is thempty worgddenoted by. A non-emptyword ¢ : i+ ¢; isdenoted by ts---t,. A
languageon alphabetd is a set of words onl.

Lett = t1to - - - t,, be a word which will be called thiextin the paper. The word = p1ps - - - py. is afactor
of ¢ iff, there exists an integer such that;,; = p; for 1 <14 < k. A sizew windowof ont, in shortw-window,
is a sizew factort; 1t; 1o t;1, Of t; there aren — w + 1 such windows irt. The wordp is anepisode(or
subsequengeof ¢ iff there exist integerd < i; < iz < --- < i < nsuchthat;, = p;forl < j < k. If
moreoverj; — i1 < w, p is anepisodeof ¢ in a w-window

Example 1 If ¢ = “dans ville il y a vie" (a French advertisement, see fidﬂreh]eht“vie" is a factor and hence a
subsequence df “vile" is neither a factor, nor a subsequence of a 4-window, but it is a subsequenceoih a
5-window. See figur¢]2:

Given an alphabet, and wordg, my, ..., mg on A:
— the simultaneougattern-matchingroblem consists in finding whether;, .. ., m, are factors of,
— given moreover a window size:
- the subsequence existenpeoblem consists in finding whethet,, ..., m, are subsequences din a
w-window;

- the multiple episode searcproblem consists in counting the numberwfwindows in which all of
mi, ..., my are subsequencesof

For the simultaneous search of several subsequences . , m,, we have various different problems:

— either we count the number of occurrences of eaglin a w-window (not necessarily the same): this case
will be useful for searching in parallel, with a single scdrthe text, a set of patterns which are candidates for
being frequent.

— or we count the number of windows containing all thes: this case will be useful for trying to verify
association rules. For example, the associationtyle . ., m, = m, will be useful if the number of-windows
containing all thems, ..., mq is high enough, and to check that, we will count thevindows containingll of
ma, ..., mqg. Our method will enable us to verify more easily both thedifi of the association rule (“among
the windows containingn., ..., m, many contain alser;") and the fact that it is interesting enough (“many
windows containmy, ..., mg"): it will suffice to count simultaneously the windows coimti;g mo, . . . , m, and
the windows containingzy, ma, . .., my.

A naive solution exists fgpattern-matchinglts time complexity on RAM i®)(nk), wherek is the pattern size.
Knuth, Morris, and Prat 7] gave a well-known algontitsolving the problem in linear tim@(n + k). A
solution inO(nk) is given in] for searching a single sizeepisode. We gave i1] an algorithm
with time complexityO(n) (on MP—RAM) for searching a single episode.

4 CSIT'05. Volume /

2.2. The notationo(nk)

Let us first make precise the meaning of the notadiork).

The notatiorv(h(n)) was introduced to compare growth rates of functions withangament; for comparing
functions with several arguments, various non-equivalgetpretations(h(n,m,...)) are possible. Consider a
functiont(n, k); t(n, k) = o(nk) could mean:

1) either +1£im+ t(n, k)/nk = 0;
2) or lirf t(n,k)/nk = 0,i.e.Ye, AN, Vn,Vk(n > N andk > N => t(n, k) < enk).

k—+oo
With meaning 1, no algorithm can solve thimgle episode within a windoproblem in timeo(nk). Indeed,
any algorithm for theepisode within a windowroblem must scan the text at least once, hefegk) > n. For a
givenk, for examplek = 2,we havel(n, k)/nk > 1/2. Hence lim t(n,k)/nk = 0 is impossible. We thus

n+k—-+oco

have to choose meaning 2.

2.3. Algorithms on MP—RAM

Given a window sizew andq patterns, we preprocess (patterns + window sigeto build a virtual finite
state automatord; we will then emulate on-line the behaviour &f to scan text and count in timeng the
number of windows containing our patterns as episodes. thateour method is different from both: 1) methods
preprocessing the text [TOR, MB D']’l_,l],l%] (we preprsecthe pattern) and 2) methods using suffixes of the
pattern [C8B , U95] (we use prefixes of the pais®rWe encode the subset of stateslafeeded to
compute the transitions on-line on an MP-RAM. IndeddasO(w + 1)* state, wheré is the size of the structure
encoding they patternsn, . .., mg; for w andgq large, the time and space complexity for computing the state
A becomes prohibitive, whence the need to compute the statiseoquickly without having to precompute nor
store them. We introduced MP-RAMs to this end.

Pattern-matchingalgorithms are often given on RAMs. This model is not good mitgere are too many
different values to be stored, for exampléw + 1)* states fotd. As early as 1974, the motivation §f [PR$74] for
introducing “vector machines” was the remark that boolegmwise operations and shifts which are implemented
on computers are faster and better suited for many problerhgs work was the starting point of a series of
papers: [TRL9R[BGY5] comparing the complexities of comagiohs on various models of machines allowing
for boolean bit-wise operations and shifts with computatomplexities on classical machines, such as Turing
machines, RAMs etc. The practical applications of this mégtie to variougpattern-matchingproblems start with
[BYG93,[WM93]: they are known dsit-parallelism or shift-ORtechnigues. We follow this track with the episode
search problem, close to the problems studiefi in [BYE92, BNBYN9E], albeit different from these problems.

In the sequel, we use a variant of RAMs, which is a more réalegtmputation model in some aspects, and
we encodeA to ensure that (i) each state df is stored in a single memory cell and (ii) only the most basic
microprocessor operations are used to compute the tramsitif.4. Our RAMs have the same control structures
as classical RAMSs but the operations are enriched by allowing for booleamise operations and shifts, which
we will preferably use whenever possible. Such RAMs areectosmicroprocessors, this is why we called them
MP—-RAMs.

Definition 1 An MP—RAM is a RAM extended by allowing new operations:

1) the bit-wiseand denoted by,
2) theleft shift, denoted by or shl, and
3) theright shift, denoted by> or shr.

The new operations are low-level operations, executablshrfaster than the more compl®ULT, DIV oper-
ations.

1. See [AHU74] pages 5-11, for a definition of classical RAMs.

Multiple serial episodes matching 5

Figure 3:Trie representingu, tue andtutu. The full black circles indicate ends of patterns.

Example 2 Assume our MP—RAMs have unbounded memory cells. We wilfdvaaseample:(10110 & 01101) =
100, (10110 < 4) = 101100000 and (10110 > 3) = 10. If memory cells have at most 8 bits, we will have:
(10110 < 4) = 1100000, that will be written a§00010110 < 4) = 01100000.

3. Parallel search of several patterns

Let us recall the problems. Given patterns, mo, . .., m4, We can:

— either count the number of occurrences of eaghn aw-window (not necessarily the same one);
— or count the number ab-windows containingn, mo, ..., my.

The algorithm we described ip [BCGMQO01] for counting the nambf w-windows containing singlepattern
m can be adapted to all these cases, only the acceptance dingpeondition will change.

To search simultaneously several patternis . . ., m,, [] propose a method concatenating all the pat-
terns. To search simultaneously several episedgs . ., m,, we generalise our algorithrp [BCGMO1]: we uge
countersy, .. ., ¢4 initially set to 0, and we define an appropriate multiple doumncondition such that each time
m; is in aw-window, the corresponding counigris incremented. This method has a drawback: if the pattems a
too long, it will need more than one memory cell for coding #t@es of the automaton. For searching multiple
patterns the method proposed by [DFGGK97] to optimise thecbe when wordsn, . . ., m, have common pre-
fixes, is to organises, . .., m, in atrie [K97] before applying the standard algorithm. We apply dgo&thm on
MP-RAMs in a similar way, and implemetriesin a new way. We thus can encode the set of patterns compactly,
and then encode the states of the automaton on a single meeibry

3.1. Representing patterns by a trie

Consider for example episodes, = tu, my = tue, andms = tutu. We choose this example because it
illustrates most of the difficulties in encoding the autoomatepisoddaie is very simple because all letters are
different,tati is less simple because there are two occurrencesvbfch must be distinguishetltu a bit more
complex (the first occurrence &i must be distinguished from the second onejlututu would be even more
complex. We represent these three episodes by thegiaured in figur{|3.

We implement this trie by the three tables below:

ow=tfuleltfu] w-[ofs]o]2]4] s-[2]a]s]

Tabletr represents the “flattened” trie. Predecessors are in tabler[:] gives the index irtr of the parent of
tr[i] in the trie; 0 means there is no predecessor and hence it isearpstart. Finally f marks patterns endg?i]
is the index intr of the end of pattern.

3.2. Preprocessing the trie and algorithm

We preprocess the trie of patterns and this gives us a firite atitomatotd. Its alphabet isi. The states are
thek-tuples of integerél,, . . ., i) with [; belonging to{1, . . ., w, +00}, wherek is the size of tablér andw the
window size.

2. Numbering of indices starts at 1 in order to indicate patttarts by 0.

6 CSIT'05. Volume /

binary expansion of.

0: | ... 0; 1 0: !

binary expansion af, binary expansion ok binary expansion of;

Figure 4:Encoding of(l1, ..., k).

L= 01l5 0214 0113 Oilg 02[1

Figure 5: Encoding ofly, . . ., I5); I; is the binary expansion @f.

We describe informally the behaviour df A scang, it will be in state(ly, ..., ;) after scanning; . . . t,, iff
I; is the length of the shortest suffief ¢; .. . ¢,, shorter thanv and containingr[j;] ... tr[i] as subsequence for
i=1,...,k, wheretr[j;] ... tr[i] is the sequence of letters labelling the path going from ¢lo¢ af the trie to the

node represented liy[i]. If no suffix (of length less thaw) of ¢; . . . ¢,,, containstr[j;] . . . tr[i] as a subsequence,
we letl; = +oo.

Let us now describe our algorithm. L@tbe the least integer such that+ 2 < 2. The réle of+-cc is played
by 2 — 1, whose binary encoding is a sequenc&aines. We define the function Nexby:

I4+1, ifl<29-1;
Nextq(l) = { 22 _ 1. else.

3

State(ly, ..., lx) is encoded by integer:

k k
L= L@ Z(l < Q+1)(¢—1))). [1]
=1 =1
Let{; denote the binary expansionigfi = 1, ..., k, prefixed by zeros in such a way tliabccupies bits (all

1;s are smaller tha2” — 1, hence they will fit inQ bits). The binary expansion df is obtained by concatenating
the l;s, each prefixed by a zero (figLﬁle 4). These initial zeros aeelex for implementing function Nextto
indicate overflows. Every integer smaller thit>+1) can be written as big blocksof (€2 + 1) bits, the first bit
of each big block is 0 (and is called thegerflow bi} and the2 remaining bits constitute small block The blocks
are numbered 1 tb from right to left (the rightmost block is block 1, the leftstdlock is blockk).

By the definition in equatior[kl), the initial state oo, . . ., +00) is encoded by:

k k

To= 322 — 1)2@ 6D 3 (((1 < Q) 1)< (Q+1)(i — 1))).

i=1 i=1

One might see a multiplication here. In fact we will need gléar i = 1 to k. We will execute each time we
go through the loop a shift d® + 1, and the multiplication will disappear. All equations beglare treated in the
same way.

Assume that the window sizeis = 13 hence) = 4. With the notations of figurE 5, state= (2,5, 00,5, 0)
is encoded by:

(]
o
]|

0:15 | O:

oy

L=|0:15|0:

The initial state is represented by:

Io=|0:1111| 0:1111| 0:1111| 0:1111]| 0:1111

3. Word s is aprefix (resp.suffiX of word ¢ iff there exists a word such that = sv (resp.t = vs).

Multiple serial episodes matching 7

or, writing 1 instead of the2 ones representingp:

Io=10:1]0:1|0:1|0:1]0:1

In transitionl = (1,...,1;) —— I’ = (I},...,1}), thel; component of the new stateis either Nexd({,,(;)
or Nexk(/;) according to whether the scanned lettes equal totr[i] or not. The casef = Nextq(l,.[;;) and
i = Nextq(l;) respectively yield dirst type computatioand asecond type computation

To generalise the algorithm df [BCGM[01], we must define saMmasks),, for each lettewr of alphabet A.
If o has several occurrences in tablewe will need as many maskd,, as occurrences:[i] andtr[i’] of o with
Jj=1i—prfi] # ¢ — pr[i'] = j’ (a single mask will suffice for the set of all occurrences sttt — pr[i] has
the same valug, because they correspond to the same shift big blocks). TheM/J are the masks preparing
first type computations. Precisely,tif[i] = o andi — pr[i] = j, the operatiofL < j(Q + 1))& M will shift
everything ofj big blocks leftwards and will erase the blocks for whieh# p; or i — pr[i] # j. Fori > 1, the

i-th block will thus contairi,,,.(; iff ¢r[i] = o andi — pr[i] = j. It will contain 0 otherwise.

In our examplen = tu, mo = tue, andmsg = tutu), we will need two maskd/; but a single masR/,, will
suffice:

where0 = 0000 andl = 1111.

Mask N, is the complement o{jj M, preparing second type computations. The operationV, will erase
the blocks for whiche = ¢r[i]. For our example, we have:

=
o
o

N,=|0:1/0:0/0:1|0:

N,=,0:0[0:12|0:1]0:0]0:1

=
o
o
o
=
o
=

N.=|0:1]0:

Generally, ifk is tabletr size,

M = 3 (((1<<Q)—1) < ((Q+1)(¢_1))).

trli|=c andpr[i]:i—j

1<i<k

and
No= > (<9 -1) < (@+1)60-1)).
DiFo
1<i<k
N, is the complement o} ; M.
Transitionl = (ly,..., 1) 1" = (I},...,1}) is computed by:

T=Y ((L<jQ+1)&M))+ (L&N,) + Ey
]
where:

8 CSIT'05. Volume /

E;={0:0001 | 0:0001 | 0:0001 | 0:0001 | 0:0001

Adding E'; amounts to add 1 to each small block.

In our example, if we scan letteythe transition is computed by:
T=((L <2(Q+1)&M?) + (L < (+ 1))&M}) + (L&N;) + By

yielding forl = (2,5, 00, 5, 00), encoded by:

[}
o
&
ot
o
(4]
o
N

L=1|0:75|0:

the result;

0:6|1:0]/0:6|0:1

<l

T=|1:

All the blocks contain the correct result, except for thenefst block and the middle block where an overflow
occurred. To treat blocks where overflow occurred it suffafesitialise again these blocks by replacifigwith
L'=T — ((T&E) >), where:

Fy=|1:0|1:0|1:0|1:0]1:0
We find:
T&E,=|1:0/0:0]1:0|0:0|0:0
Hence:
(T&E3)>Q=|0:T|0:0[0:1|0:0]|0:0
and finally:

L'=T- ((T&E>) > Q)= | 0:15 | 0:6 | 0:15 | 0:6 | 0:1

Last we define a countey for each pattermn;, and increment it whenevef;;; < w + 1, which is implanted
by: M;&L < (w + 1)2+DUE=Y fori =1,... k, whereM; = ((1 < Q) —1) < ((2+ 1)(f[i] — 1)).

Our algorithm treats the more complex case where we dematclihepisodes appear in a same window, a
case that cannot be treated by the separate counting of thieemwf windows containing each episode. A simple
modification of the counting condition enables us to alsatwith a single scan of the tettie number of windows
containing each individual episode, in a more efficient waantif the text were to be scanned for each episode.

Theorem 1 There exists an on-line algorithm in ting&nq) solving the parallel search af serial episodes in a
sizen text (assuming the episode alphabet has at my6stq letters) on MP—-RAM.

Proof: Let a be the number of letters of the alphabet. As|in [DFGGK97], reattin the same way all letters not
occurring in the patterns; this leads to defining two magks;,., and N, common to all such letters. Léb|
be the length of the binary expansionwof The algorithm consists of four steps:

1) compute (at most) x (k + 1) integers representing the masky, (k + 1) integers representing the masks
N, and the integer®, A, I, F, E1, E9; all these integers are of siz€|w| + 2) and are computesimultaneously
in k iterations at most. The integéris the size of the trie representing the patteins: > 7_, |m;| < /n.

2) letc = 0 (c is the number ofv-windows containing all the patterns).

Multiple serial episodes matching 9

Figure 6: The continuous thin lines represent the execution time efMiP—RAM algorithm (with trie); the dotted line
represents the execution time of the MP—RAM algorithm (vaitimcatenation); the dashed lines the execution time of the
standard algorithm (with concatenation) and the contisubick lines the execution time of the standard algorithrith(tvie).

3) letL = Iy.
4) scan text; after scanning;, compute the new stafe(on-line and without preprocessingth an MP—RAM)
andifc; <wfori=1,...,q, increment by 1.

Our algorithm uses only the simple and fast operatignsogether with a careful implementation &, > and
addition. Step 1 of preprocessing is in tigig k+1)+q(k+1)+log(w) < q(v/n)*+2qv/n+q+log(w) = O(nq);

in generalk, ¢ andw are smaller than by several orders of magnitude and we will hayk(k + 1) + q(k+ 1) +
log(w) = o(n). In step 4 we scan textlinearly in timeO(n) and performy comparisons (one for each counter
¢;). Complexity is thus in timexg, hence finally a time complexit®(nq) for the algorithm O

4. Experimental results

The algorithm on MP—RAM has a better complexity than the ddadh algorithm, however, the underlying
computation models being different, we checked experiaigrthat the MP—RAM algorithm is faster. We imple-
mented all algorithms in C++. Experiments were realised ®Ca256 Mo, 1Ghz) with Linux. The text was a
randomly generated file. We measured the time with machoekdicks.

For searching multiple patterns, we took 3 to 5 patterns mftle 2 to 4; in figure[|6, case (a) is the case of
patterns having no common prefix, and case (b) is the casettefipghaving common prefixes. In case (a), the
MP—-RAM algorithm where we concatenate the patterns is at lgace as fast as the standard “naive” algorithm
where patterns are concatenated; both standard algorithithspatterns concatenated or organised in a trie) are
equivalent, the algorithm with concatenation being sligfdster; this was predictable since a trie organisation
will not give a significant advantage in that case; the MP—Rallybrithm where the patterns are organised in a
trie is 30 to 50% faster than the standard algorithm with txied 10 to 15% slower than the MP—RAM algorithm
where the patterns are concatenated. However, as soontataHiength of the patternsis larger than 7 or 8, or the
window size is larger than 30, if patterns are concaten#ttecutomaton state can no longer be encoded in a single
32 bits memory cell, and it is better to use the MP—RAM aldpomitwith trie (figure[p case (b)). Figuﬂa 6 case (b)
shows that, for patterns having common prefixes, the MP—RAgdrahm with trie is 1.3 to 1.5 times faster than
the standard algorithm with trie, itself 1.4 to 1.6 timegéashan the standard algorithm with concatenation.

5. Conclusion

We presented new algorithms for multiple episode searclthmmore efficient than the standard algorithms.
This was confirmed by our experimental analysis. Note th#t wur method, counting the number of windows
containing several episodes is not harder than checkingxistence of one window containing these episodes.
This is not true with most other problems; usually countimghtems are much harder than the corresponding
existence problems: for example, for the “matching with'toares” problem, the existence problem is in linear

time while the counting problem is in polynomial tinfe [KR%#d in the particular case f[MBYP1], the existence
problem is in logarithmic time while the counting problenirisub-linear time.

6. References

[A90] A. Aho, Algorithms for Finding Patterns in Strings, lfandbook of Theoretical Computer Science, Vol. 1, van Lesuw
Ed., North-Holland, Amsterdam (1990), pp. 255-300.

[AHU74] A. Aho, J. Hopcroft, J. Ullman, Design and Analysis@omputer Algorithms, Addison-Wesley, London (1974).

[BYRN99] R. Baeza-Yates, B. Ribeiro-Neto, Modern InforinatRetrieval, ACM Press Books, New-York (1999).

10 CSIT’05. Volume /

[BYG92] R.Baeza-Yates, G. Gonnet, A new approach to textcbiray, Communications of the ACM, Vol 35 (1992), 74-82.

[BYN96] R. Baeza-Yates, G. Navarro, A faster algorithm fppeoximate string matching, Proc. 1996 Combinatoriald?att
Matching Conf., LNCS 1075, Springer-Verlag, Berlin (199&). 1-23.

[BG95] A.Ben-Amram, Z. Galil, On the power of the shift insttion, Inf. Comput. Vol 117 (1995), pp. 19-36.

[BCGMO1] L. Boasson, P. Cegielski, |. Guessarian, Y. Matgrdch, Window Accumulated Subsequence Matching is linear
Annals of Pure and Applied Logic Vol. 113 (2001), pp. 59-80.

[C88] M. Crochemore, String-matching with constraintspdrMFCS’88, LNCS 324, Springer-Verlag, Berlin (1988), pp.
44-58.

[CR94] M. Crochemore, W. Rytter, Text Algorithms, Oxford Mersity Press, Oxford (1994).

[CHLO1] M. Crochemore, C. Hancart, T.. Lecroq, Algorithragdu text, Vuibert, Paris (2001).

[DFGGK97] G. Das, R. Fleischer, L. Gasienic, D. GunopoulbhKarkkainen, Episode Matching, Proc. 1997 Combindltoria
Pattern Matching Conf., LNCS 1264, Springer-Verlag, Befli997), pp. 12-27.

[G81] z. Galil, String matching in real time, J. Assoc. CorhpMac. Vol 28, (1981), pp. 134-149.

[K97] D. Knuth, The art of computer programming, Vol. 1, Fangental algorithms, Addison-Wesley, Reading (1997).

[KMP77] D. Knuth, J. Morris, V. Pratt, Fast Pattern MatchiimgStrings, SIAM Journal of Comput. Vol 6(2), (1977), pp.
323-350.

[KR97] G. Kucherov, M. Rusinovitch, Matching a Set of Stréngith variable Length Don’t Cares, Theor. Comput. Sc. Vol
178, (1997), pp. 129-154.

[MBY91] U. Manber, R. Baeza-Yates, An Algorithm for Stringatthing with a Sequence of Don't Cares, Inform. Proc.
Letters Vol 37, (1991), pp. 133-136.

[M02] H. Mannila, Local and Global Methods in Data Mining: 8a Techniques and open Problems, Proc. ICALP 2002,
LNCS 1186, Springer-Verlag, Berlin (2002).

[M97] H. Mannila, Methods and Problems in Data Mining, Pra®97 ICDT Conf., LNCS 1186, Springer-Verlag, Berlin
(1997), pp. 41-55.

[MTV95] H. Mannila, H. Toivonen, A. Verkamo, Discovering équent Episodes in Sequences, Proc. 1995 KDD Conf.,
(1995), pp. 210-215.

[Ma71] Y. Matiyasevich, Real-time recognition of the insion relation, Zapiski Nauchnykh Leningradskovo Otdetariiat.
Inst. Steklova Akad. Nauk SSSR, Vol. 20, (1971), pp. 104--Ttédnslated into English, Journal of Soviet Mathematics,
Vol. 1, (1973), http://logic.pdmi.ras.ru/"yumat/Jouirzp. 64—70.

[NRO2] G. Navarro, M. Raffinot, Flexible Pattern MatchingStrings Practical on-line search algorithms for texts antbg-
ical sequences, Cambridge University Press, Cambridd¥j20

[PRS74] V. Pratt, M. Rabin, L. Stockmeyer, A charaterizatid the power of vector machines, Proc. SToC 74, pp. 122-134.

[S71] A. Slissenko, String-matching in real time, LNCS 6griSger-Verlag, Berlin (1978), pp. 493-496.

[TRL92] J. Trahan, M. Loui, V. Ramachandran, Multiplicatjadivision and shift instructions in parallel random acces-
chines, Theor. Comput. Sc. Vol. 100, (1992), pp.. 1-44.

[TO2] Z. Tronicek, Episode matching, 12th Annual Symposi@ombinatorial Pattern Matching 2001, Jerusalem, LNCS
2089, Springer-Verlag, Berlin (2002), pp. 143-146.

[U95] E. Ukkonen, On-line construction of suffix-trees, Atghmica, Vol. 14, (1995), pp.. 249-260.

[WM92] S. Wu, U. Manber, Fast text searching, Communicatiofithe ACM, Vol 35 (1992), 83-91.

