Jean Bertoin 
  
Ronald A Doney 
  
Ross A Maller 
email: ross.maller@anu.edu.au
  
Passage of Lévy Processes across Power Law Boundaries at Small Times *

Keywords: primary: 60J30, 60F15; secondary: 60G10, 60G17, 60J65 Lévy processes, crossing power law boundaries, limiting and limsup behaviour

HAL is

Introduction

Let X = (X t , t ≥ 0) be a Lévy process with characteristic triplet (γ, σ, Π), where γ ∈ R, σ 2 ≥ 0, and the Lévy measure Π has (x 2 ∧ 1)Π(dx) finite. See [START_REF] Bertoin | Lévy Processes[END_REF] and [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] for basic definitions and properties. Since we will only be concerned with local behaviour of X t , as t ↓ 0, we can ignore the "big jumps" in X (those with modulus exceeding 1, say), and write its characteristic exponent, Ψ(θ) = 1 t log Ee iθXt , θ ∈ R, as

Ψ(θ) = iγθ -σ 2 θ 2 /2 + [-1,1]
(e iθx -1 -iθx)Π(dx).

(1.1)

The Lévy process is of bounded variation, for which we use the notation X ∈ bv, if and only if σ 2 = 0 and |x|≤1 |x|Π(dx) < ∞, and in that case, we denote by

δ := γ - [-1,1]
xΠ(dx) its drift coefficient. We will continue the work of Blumenthal and Getoor [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF] and Pruitt [START_REF] Pruitt | The growth of random walks and Lévy processes[END_REF], in a sense, by investigating the possible limiting values taken by t -κ X t as t ↓ 0, where κ > 0 is some parameter. Recall that Blumenthal and Getoor [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF] introduced the upper-index β := inf α > 0 :

|x|≤1 |x| α Π(dx) < ∞ ∈ [0, 2],
which plays a critical role in this framework. Indeed, assuming for simplicity that the Brownian coefficient σ 2 is zero, and further that the drift coefficient δ is also 0 when X ∈ bv, then with probability one, lim sup

t↓0 |X t | t κ = 0 ∞ according as κ < 1/β κ > 1/β. (1.2) 
See also Pruitt [START_REF] Pruitt | The growth of random walks and Lévy processes[END_REF]. Note that the critical case when κ = 1/β is not covered by (1.2) One application of this kind of study is to get information on the rate of growth of the process relative to power law functions, in both a one and a two-sided sense, at small times. More precisely, we are concerned with the values of lim sup t↓0 |X t |/t κ and of lim sup t↓0 X t /t κ (and the behaviour of lim inf t↓0 X t /t κ can be deduced from the limsup behaviour by performing a sign reversal). For example, when lim sup t↓0 |X t | t κ = ∞ a.s., (1.3) then the regions {(t, y) ∈ [0, ∞) × R : |y| > at κ } are entered infinitely often for arbitrarily small t, a.s., for all a > 0. This can be thought of as a kind of "regularity" of X for these regions, at 0. We will refer to this kind of behaviour as crossing a "two-sided" boundary. On the other hand, when lim sup t↓0 X t t κ = ∞ a.s., (1.4) we have "one-sided" (up)crossings; and similarly for downcrossings, phrased in terms of the liminf. In general, the process crosses one or two-sided boundaries in quite different ways, and, often (for many values of κ), when the limsups are finite a.s., they are in fact zero, a.s., as we will show. But the limsups may in some circumstances take finite, nonzero, values, a.s. Our aim here is to give necessary and sufficient conditions (NASC) which distinguish all these possibilities, for all values of κ > 0.

Let us eliminate at the outset certain cases which are trivial or easily deduced from known results. A result of Khintchine [START_REF] Khintchine | Sur la croissance locale des processes stochastiques homogènes à accroissements indépendants[END_REF] (see Sato ([15], Prop. 47.11, p. 358)) is that, for any Lévy process X with Brownian coefficient σ 2 ≥ 0, we have lim sup Thus we immediately see that (1.3) and (1.4) cannot hold for 0 < κ < 1/2; we always have lim t↓0 X t /t κ = 0 a.s. in these cases. Of course, this also agrees with (1.2), since, always, β ≤ 2. More precisely, recall the decomposition

X t = σB t + X (0)
t , where X (0) is a Lévy process with characteristics (γ, 0, Π) and B is an independent Brownian motion. Khintchine's law of the iterated logarithm for B and (1.5) applied for X (0) give

-lim inf t↓0 X t 2t log | log t| = lim sup t↓0 X t 2t log | log t| = σ a.s. (1.6)
So the one and two-sided limsup behaviours of X are precisely determined when σ 2 > 0 (regardless of the behaviour of Π(•), which may not even be present). With these considerations, it is clear that throughout, we can assume σ 2 = 0 .

(1.7)

Furthermore, we can restrict attention to the cases κ ≥ 1/2. A result of Shtatland [START_REF] Shtatland | On local properties of processes with independent increments[END_REF] and Rogozin [START_REF] Rogozin | Local behaviour of processes with independent increments[END_REF] is that X / ∈ bv if and only if

-lim inf t↓0 X t t = lim sup t↓0 X t t = ∞ a.s.,
so (1.3) and (1.4) hold for all κ ≥ 1, in this case (and similarly for the liminf).

On the other hand, when X ∈ bv, we have lim t↓0

X t t = δ, a.s.,
where δ is the drift of X (cf. [START_REF] Bertoin | Lévy Processes[END_REF], p.84). Thus if δ > 0, (1.4) holds for all κ > 1, but for no κ ≤ 1, while if δ < 0, (1.4) can hold for no κ > 0; while (1.3) holds in either case, with κ > 1, but for no κ ≤ 1. Thus, when X ∈ bv, we need only consider the case δ = 0. The main statements for two-sided (respectively, one-sided) boundary crossing will be given in Section 2 (respectively, Section 3) and proved in Section 4 (respectively, Section 5). We use throughout similar notation to [START_REF] Doney | Stability and attraction to normality for Lévy processes at zero and infinity[END_REF], [START_REF] Doney | Stability of the overshoot for Lévy processes[END_REF] and [START_REF] Doney | Passage times of random walks and Lévy processes across power law boundaries[END_REF]. In particular, we write Π # for the Lévy measure of -X, then Π (+) for the restriction of Π to [0, ∞), Π (-) for the restriction of Π # to [0, ∞), and

Π (+) (x) = Π((x, ∞)), Π (-) (x) = Π((-∞, -x)) , Π(x) = Π (+) (x) + Π (-) (x), x > 0, (1.8) 
for the tails of Π(•). Recall that we assume (1.7) and that the Lévy measure Π is restricted to [-1, 1]. We will often make use of the Lévy-Itô decomposition, which can be written as

X t = γt + [0,t]×[-1,1] xN(ds, dx) , t ≥ 0 , (1.9) 
where N(dt, dx) is a Poisson random measure on R + × [-1, 1] with intensity dtΠ(dx) and the Poissonian stochastic integral above is taken in the compensated sense. See Theorem 41 on page 31 in [START_REF] Protter | Stochastic Integration and Differential Equations. A New Approach[END_REF] for details.

Two-Sided Case

In this section we study two-sided crossings of power law boundaries at small times. We wish to find a necessary and sufficient condition for (1.3) for each value of κ ≥ 1/2. This question is completely answered in the next two theorems, where the first can be viewed as a reinforcement of (1.2).

Theorem 2.1 Assume (1.7), and take κ > 1/2. When X ∈ bv, assume its drift is zero.

(i) If 1 0 Π(x κ )dx < ∞, (2.1) 
then we have lim t↓0

X t t κ = 0 a.s. (2.2) (ii) Conversely, if (2.1) fails, then lim sup t↓0 |X t -a(t)| t κ = ∞ a.s., for any deterministic function a(t) : [0, ∞) → R.
Remark 1 It is easy to check that (2.1) is equivalent to

[-1,1] |x| 1/κ Π(dx) < ∞.
The latter holds for 0 < κ ≤ 1/2 for any Lévy process, as a fundamental property of the Lévy canonical measure ([1], p.13). (2.2) always holds when 0 < κ < 1/2, as mentioned in Section 1, but not necessarily when κ = 1/2.

The case κ = 1/2 which is excluded in Theorem 2.1 turns out to have interesting and unexpected features. To put these in context, let's first review some background. Khintchine [START_REF] Khintchine | Sur la croissance locale des processes stochastiques homogènes à accroissements indépendants[END_REF] (see also Sato ([15], Prop. 47.12, p. 358)) showed that, given any function h(t), positive, continuous, and nondecreasing in a neighbourhood of 0, and satisfying

h(t) = o t log | log t| as t ↓ 0,
there is a Lévy process with σ 2 = 0 such that lim sup t↓0 |X t |/h(t) = ∞ a.s. For example, we can take h(t) = √ t (log | log t|) On the other hand, when κ = 1/2, Theorem 2.1 remains true for example when X ∈ bv, in the sense that both (2.1) and (2.2) then hold, as follows from the fact that X t = O(t) a.s. as t ↓ 0.

Thus we can have lim sup t↓0 |X t |/ √ t equal to 0 or ∞ a.s., and we are led to ask for a NASC to decide between the alternatives. We give such a condition in Theorem 2.2 and furthermore show that lim sup t↓0 |X t |/ √ t may take a positive finite value, a.s. Remarkably, Theorem 2.2 simultaneously solves the one-sided problem. These one sided cases are further investigated in Section 3, where it will be seen that, by contrast, the one and two sided situations are completely different when κ = 1/2.

To state the theorem, we need the notation

V (x) = |y|≤x y 2 Π(dy), x > 0. (2.3)
Theorem 2.2 (The case κ = 1/2.) Assume (1.7), and put

I(a) = 1 0 x -1 exp - a 2 2V (x)
dx and λ * I := inf{a > 0 : I(a) < ∞} ∈ [0, ∞] (with the convention, throughout, that the inf of the empty set is +∞). Then, a.s.,

-lim inf t↓0 X t √ t = lim sup t↓0 X t √ t = lim sup t↓0 |X t | √ t = λ * I . (2.4) 
Remark 2 (i) (2.4) forms a nice counterpart to the iterated log version in (1.5) and (1.6). us that the only possible a.s. limit, as t ↓ 0, of X t / √ t is 0, and that this occurs iff λ * I = 0, i.e., iff I(λ) < ∞ for all λ > 0. Similarly, the iterated log version in (1.6) gives that the only possible a.s. limit, as t ↓ 0, of X t / t log | log t| is 0, and that this occurs iff σ 2 = 0. When κ > 1/2, Theorem 2.1 gives that lim t↓0 X t /t κ = 0 a.s. iff

(ii) If (2.1) holds for some κ > 1/2, then V (x) = o(x 2-1/κ ) as x ↓ 0, so 1 0 exp{-a 2 /2V (x)}dx/x converges for all λ > 0.
1 0 Π(x κ )dx < ∞, provided, when κ ≥ 1, the drift δ = 0.
Another result in this vein is that we can have lim t↓0 X t /t κ = δ a.s for a constant δ with 0 < |δ| < ∞, and κ > 0, iff κ = 1, X ∈ bv, δ is the drift, and δ = 0.

The following corollary shows that centering has no effect in the two-sided case. Finally, in this section, Table 1 summarises the conditions for (1.3):

Table 1 Value of κ NASC for lim sup t↓0 |X t |/t κ = ∞ a.s. (when

σ 2 = 0) 0 ≤ κ < 1 2 Never true κ = 1 2 λ * I = ∞ (See Theorem 2.2) 1 2 < κ ≤ 1 1 0 Π(x κ )dx = ∞ κ > 1, X ∈ bv, δ = 0 1 0 Π(x κ )dx = ∞ κ > 1, X ∈ bv, δ = 0 Always true κ > 1, X / ∈ bv Always true
3 One-Sided Case

We wish to test for the finiteness or otherwise of lim sup t↓0 X t /t κ , so we proceed by finding conditions for lim sup t↓0

X t t κ = +∞ a.s. (3.1)
In view of the discussion in Section 1, and the fact that the case κ = 1/2 is covered in Theorem 2.2, we have only two cases to consider:

(a)

X / ∈ bv, 1/2 < κ < 1; (b) X ∈ bv, with drift δ = 0, κ > 1.
For Case (a), we need to define, for 1 ≥ y > 0, and for λ > 0, W (y) := y 0 1 x zΠ (+) (dz)dx, and then

J(λ) := 1 0 exp    -λ y 2κ-1 κ W (y) κ 1-κ    dy y . (3.2) 
Also let λ * J := inf{λ > 0 : J(λ) < ∞}.

Theorem 3.1 Assume (1.7) and keep 1/2 < κ < 1. Then (3.1) holds if and only if (i)

1 0 Π (+) (x κ )dx = ∞, or (ii) 1 0 Π (+) (x κ )dx < ∞ = 1 0 Π (-) (x κ
)dx, and λ * J = ∞. When (i) and (ii) fail, we have in greater detail: suppose (iii)

1 0 Π(x κ )dx < ∞, or (iv) 1 0 Π (+) (x κ )dx < ∞ = 1 0 Π (-) (x κ )dx and λ * J = 0. Then lim sup t↓0 X t t κ = 0 a.s. (3.3)
Alternatively, suppose (v)

1 0 Π (+) (x κ )dx < ∞ = 1 0 Π (-) (x κ )dx and λ * J ∈ (0, ∞). Then lim sup t↓0 X t t κ = c a.s., for some c ∈ (0, ∞). (3.4)
Remark 3 (i) Using the integral criterion in terms of J(λ), it's easy to give examples of all three possibilities (0, ∞, or in (0, ∞)) for lim sup t↓0 X t /t κ , in the situation of Theorem 3.1.

(ii) Note that X / ∈ bv when

1 0 Π (+) (x κ )dx = ∞ or 1 0 Π (-) (x κ )dx = ∞ in Theorem 3.1, because Π (±) (x κ ) ≤ Π (±) (x) when 0 < x < 1 and κ < 1, so 1 0 Π(x)dx = ∞.
(iii) It may seem puzzling at first that a second moment-like function, V (•), appears in Theorem 2.2, whereas W (•), a kind of integrated first moment function, appears in Theorem 3.1. Though closely related, in general, V (x) is not asymptotically equivalent to W (x), as x → 0, and neither function is asymptotically equivalent to yet another second moment-like function on [0, ∞), U(x) := V (x)+x 2 Π(x). V (x) arises naturally in the proof of Theorem 2.2, which uses a normal approximation to certain probabilities, whereas W (x) arises naturally in the proof of Theorem 3.1, which uses Laplace transforms and works with spectrally one-sided Lévy processes. It is possible to reconcile the different expressions; in fact, Theorem 2.2 remains true if V is replaced in the integral I(λ) by U or by W . Thus these three functions are equivalent in the context of Theorem 2.2 (but not in general). We explain this in a little more detail following the proof of Theorem 3.1.

Next we turn to Case (b). When X ∈ bv we can define, for 0 < x < 1, 

A + (x) =
Π (+) (dx) x -1/κ + A -(x)/x = ∞ (3.6)
then (3.1) holds. Conversely, if (3.6) fails, then lim sup t↓0 X t /t κ ≤ 0 a.s.

Remark 4 (i) It's natural to enquire whether (3.6) can be simplified by considering separately integrals containing the components of the integrand in (3.6). This is not the case. For each κ > 1, it is possible to find a Lévy process X ∈ bv with drift 0 for which (3.6) fails but

(0,1] x 1 κ Π (+) (dx) = ∞ = (0,1] (x/A -(x)) Π (+) (dx).
The idea is to construct a continuous increasing concave function which is linear on a sequence of intervals tending to 0, which can serve as an A -(x), and which oscillates around the function x → x 1-1/κ . Note that (3.6) is equivalent to

(0,1] min x 1/κ , x A -(x) Π (+) (dx) = ∞.
We will omit the details of the construction. (ii) It is possible to have lim sup t↓0 X t /t κ < 0 a.s., in the situation of Theorem 3.2, when (3.6) fails; for example, when X is the negative of a subordinator with zero drift. The value of the limsup can then be determined by applying Lemma 5.3 in Section 4.

(ii) For another equivalence, we note that (3.6) holds if and only if

1 0 Π (+) (t κ + X (-) t )dt = ∞ a.s. (3.7)
where X (-) is a subordinator with drift 0 and Lévy measure Π (-) . This can be deduced from Erickson and Maller [START_REF] Erickson | Finiteness of integrals of functions of Lévy processes[END_REF], Theorem 1, and provides a connection between the a.s. divergence of the Lévy integral in (3.7) and the upcrossing condition (3.1).

Table 2 summarises the conditions for (3.1):

Table 2 Value of κ NASC for lim sup t↓0 X t /t κ = ∞ a.s. (when

σ 2 = 0) 0 ≤ κ < 1 2 Never true κ = 1 2 , X / ∈ bv See Theorem 2.2 1 2 < κ < 1, X / ∈ bv See Theorem 3.1 1 2 ≤ κ ≤ 1, X ∈ bv Never true κ > 1, X ∈ bv, δ < 0 Never true κ > 1, X ∈ bv, δ = 0 See Theorem 3.2 κ > 1, X ∈ bv, δ > 0 Always true κ ≥ 1, X / ∈ bv Always true
Our final theorem applies the foregoing results to give a criterion for lim t↓0

X t t κ = +∞ a.s. (3.8)
This is a stronger kind of divergence of the normed process to ∞, for small times. A straightforward analysis of cases, using our one and two-sided results, shows that (3.8) never occurs if 0 < κ ≤ 1, if κ > 1 and X / ∈ bv, or if κ > 1 and X ∈ bv with negative drift. If κ > 1 and X ∈ bv with positive drift, (3.8) always occurs. That leaves just one case to consider, in:

Theorem 3.3 Assume (1.7), suppose κ > 1, X ∈ bv, and its drift δ = 0. Then (3.8) holds iff K X (d) := 1 0 dy y exp -d (A + (y)) κ κ-1 y < ∞, for all d > 0, (3.9) 
and Phrased in such a general way the question is not interesting since we can always make X t = o(a(t)) a.s as t ↓ 0 by choosing a(t) large enough by comparison with X t (e.g., a(t) such that a(t)/ t log | log t| → ∞, as t ↓ 0, will do, by (1.5)), so the limsup in (3.11) becomes negative. So we would need to restrict a(t) in some way. Section 3 deals with the case a(t) = 0. Another choice is to take a(t) as a natural centering function such as EX t or as a median of X t . However, in our small time situation, EX t is essentially 0 or the drift of X, so we are led back to the case a(t) = 0 again (and similarly for the median). Of course there may be other interesting choices of a(t) in some applications, and there is the wider issue of replacing t κ by a more general norming function. Some of our results in Sections 4 and 5 address the latter, but we will not pursue these points further here.

(0,1] x A + (x) Π (-) (dx) < ∞. ( 3 
4 Proofs for Section 2

4.1 Proof of Theorem 2.1

The proof relies on a pair of technical results which we will establish first.

Recall the notation V (x) in (2.3).

Proposition 4.1 Let b : R + → [0, ∞) be any non-decreasing function such that

1 0 Π(b(x))dx < ∞ and 1 0 V (b(x))b -2 (x)dx < ∞.
Then

lim sup t↓0 |X t -a(t)| b(4t) ≤ 1 a.s.,
where

a(t) := γt - t 0 ds b(s)<|x|≤1 xΠ(dx), t ≥ 0. (4.1)
Proof of Proposition 4.1: Recall the Lévy-Itô decomposition (1.9). In this setting, it is convenient to introduce

X (1) t := [0,t]×[0,1] 1 {|x|≤b(s)} xN(ds, dx)
and X

(2) t

:= γt + [0,t]×[0,1] 1 {b(s)<|x|≤1} xN(ds, dx) ,
where again the stochastic integrals are taken in the compensated sense. Plainly, X = X (1) + X (2) .

The assumption

1 0 Π(b(x))dx < ∞ implies that N ({(s, x) : 0 ≤ s ≤ t and b(s) < |x| ≤ 1}) = 0
whenever t > 0 is sufficiently small a.s., and in this situation X (2) is just γt minus the compensator, a.s.; i.e., X

t = γt - t 0 ds b(s)<|x|≤1 xΠ(dx) = a(t). (2) 
On the one hand, X (1) is a square-integrable martingale with oblique bracket

X (1) t = t 0 ds |x|≤b(s) x 2 Π(dx) = t 0 V (b(s))ds ≤ tV (b(t)).
By Doob's maximal inequality, we have for every t ≥ 0

P ( sup 0≤s≤t |X (1) s | > b(2t)) ≤ 4tV (b(t))b -2 (2t).
On the other hand, the assumptions that b(t) is non-decreasing and that

1 0 dxV (b(x))b -2 (x) < ∞ entail ∞ n=1 2 -n V (b(2 -n ))b -2 (2 -n+1 ) < ∞.
By the Borel-Cantelli lemma, we thus see that

lim n→∞ sup 0≤s≤2 -n |X (1) 
s | b(2 -n+1 ) ≤ 1 a.s.,
and the proof is completed by a standard argument of monotonicity.

Proposition 4.2 Suppose there are deterministic functions a : R + → R and b : (0, ∞) → (0, ∞), with b measurable, such that

P lim sup t↓0 |X t -a(t)| b(t) < ∞ > 0. (4.2)
Then there is some finite constant C such that

1 0 Π(Cb(x))dx < ∞. (4.3)
Proof of Proposition 4.2: Symmetrise X by subtracting an independent equally distributed X ′ to get

X (s) t = X t -X ′ t , t ≥ 0. Then (4.
2) and Blumenthal's 0-1 law imply there is some finite constant C such that

lim sup t↓0 |X (s) t | b(t) < C 2 , a.s. (4.4)
Suppose now that (4.3) fails. Note that Π (s) (•) = 2Π(•), where Π (s) is the Lévy measure of X (s) , so that

1 0 Π (s) (Cb(x))dx = ∞.
Then from the Lévy-Itô decomposition, we have that, for every ε > 0,

#{t ∈ (0, ε] : |∆ (s) t | > Cb(t)} = ∞, a.s., where ∆ (s) t = X (s) t -X (s) t-. But whenever |∆ (s) t | > Cb(t), we must have |X (s) t-| > Cb(t)/2 or |X (s)
t | > Cb(t)/2; which contradicts (4.4). Thus (4.3) holds.

Finally, we will need an easy deterministic bound. Lemma 4.1 Fix some κ ≥ 1/2 and assume

|x|<1 |x| 1/κ Π(dx) < ∞. (4.5)
When κ ≥ 1, X ∈ bv and we suppose further that the drift coefficient

δ = γ -|x|≤1 xΠ(dx) is 0. Then, as t → 0, a(t) = γt - t 0 ds s κ <|x|≤1 xΠ(dx) = o(t κ ).
Proof of Lemma 4.1: Suppose first κ < 1. For every 0 < ε < η < 1, we have

ε<|x|≤1 |x|Π(dx) ≤ ε 1-1/κ |x|≤η |x| 1/κ Π(dx) + η<|x|≤1 |x|Π(dx) = ε 1-1/κ o η + c(η), say,
where, by (4.5), lim η↓0 o η = 0. Since κ < 1, it follows that lim sup

t↓0 |a(t)|t -κ ≤ κ -1 o η ,
and as we can take η arbitrarily small, we conclude that a(t) = o(t κ ).

In the case κ ≥ 1, X has bounded variation with zero drift coefficient. We may rewrite a(t) in the form

a(t) = t 0 ds |x|≤s κ xΠ(dx).
The assumption (4.5) entails |x|≤ε |x|Π(dx) = o(ε 1-1/κ ) and we again conclude that a(t) = o(t κ ).

We now have all the ingredients to establish Theorem 2.1.

Proof of Theorem 2.1: Keep κ > 1/2 throughout. (i) Suppose (2.1) holds, which is equivalent to (4.5). Writing |x| 1/κ = |x| 1/κ-2 x 2 , we see from an integration by parts (Fubini's theorem) that

1 0 V (x)x 1/κ-3 dx < ∞.
Note that the assumption that κ = 1/2 is crucial in this step. The change of variables x = y κ now gives that 

1 0 V (y κ )y -2κ dy < ∞.
P lim sup t↓0 |X t -a(t)| b(t) < ∞ > 0, then 1 0 Π(Cx κ )dx < ∞ for some finite constant C.
By an obvious change of variables, this shows that (2.1) must hold. This completes the proof of Theorem 2.1.

Finally we establish Corollary 2.1.

Proof of Corollary 2.1: This hinges on the fact that when (2.5) fails, then (X t -a(t))/t κ P → 0, with a(t) defined as in (4.1) -even for κ = 1/2. We will omit the details.

Proof of Theorem 2.2

We now turn our attention to Theorem 2.2 and develop some notation and material in this direction. Write, for b > 0,

X t = Y (b) t + Z (b) t , (4.6) 
with

Y (b) t := [0,t]×[-1,1] 1 {|x|≤b} xN(ds, dx) , (4.7) 
Z (b) t := γt + [0,t]×[-1,1] 1 {b<|x|} xN(ds, dx) ,
where N(ds, dx) is a Poisson random measure on [0, ∞) × [-1, 1] with intensity dsΠ(dx), and the stochastic integrals are taken in the compensated sense.

Lemma 4.2 (No assumptions on X.) For every 0 < r < 1 and ε > 0, we have

∞ n=1 P ( sup 0≤t≤r n |Z (r n/2 ) t | > εr n/2 ) < ∞,
and as a consequence,

lim n→∞ r -n/2 sup 0≤t≤r n |Z (r n/2 ) t | = 0 a.s.
Proof of Lemma 4.2: Introduce, for every integer n, the set

A n := [0, r n ] × ([-1, -r n/2 ) ∪ (r n/2 , 1]) , so that ∞ n=1 P (N(A n ) > 0) ≤ ∞ n=1 r n Π(r n/2 ) ≤ (1 -r) -1 ∞ n=1 r n r n+1 Π( √ x)dx ≤ (1 -r) -1 1 0 Π( √ x)dx.
As the last integral is finite (always), we have from the Borel-Cantelli lemma that N(A n ) = 0 whenever n is sufficiently large, a.s.

On the other hand, on the event N(A n ) = 0, we have

Z (r n/2 ) t = t γ - r n/2 <|x|≤1 xΠ(dx) , 0 ≤ t ≤ r n .
Again as a result of the convergence of |x|≤1 x 2 Π(dx), the argument in Lemma 4.1 shows that the supremum over 0 ≤ t ≤ r n of the absolute value of the right-hand side is o(r n/2 

:= x∈R |x| k Π Y (dx), k = 2, 3, • • • . (i) Then lim t↓0 1 t E|Y t | 3 = m 3 .
(ii) For any x > 0, t > 0, we have the bound

P (Y t > x √ tm 2 ) -F (x) ≤ Am 3 √ tm 3/2 2 (1 + x) 3 , (4.8) 
where

F (x) = ∞ x e -y 2 /2 dy/ √ 2π = 1 2 erfc(x/ √ 2)
is the tail of the standard normal distribution function, and A is an absolute constant.

Proof of Lemma 4.3: (i) We can calculate EY 4 t = tm 4 + 3t 2 m 2 2 . So by Chebychev's inequality for second and fourth moments, for x > 0, t > 0,

1 t P (|Y t | > x) ≤ m 2 x 2 1 {0<x≤1} + m 4 + 3tm 2 2 x 4 1 {x>1} .
We can also calculate

1 t E|Y t | 3 = 3 t ∞ 0 x 2 P (|Y t | > x)dx.
By [START_REF] Bertoin | Lévy Processes[END_REF], Ex. 1, p. 39, P (|Y t | > x)/t → Π Y (x), as t ↓ 0, for each x > 0. The result (i) follows by dominated convergence.

(ii

) Write Y t = n i=1 Y (i, t), for n = 1, 2, • • • , where Y (i, t) := Y (it/n) - Y ((i -1)t/n) are i.i.d.
, each with the distribution of Y (t/n). According to a non-uniform Berry-Esseen bound (Theorem 14, p.125 of Petrov [START_REF] Petrov | Sums of Independent Random Variables[END_REF]), for each n = 1, 2, • • • , (4.8) holds with the righthand side replaced by

AE|Y (t/n)| 3 √ n(tm 2 /n) 3/2 (1 + x) 3 = AE|Y (t/n)| 3 /(t/n) √ tm 3/2 2 (1 + x) 3
.

By Part (i) this tends as n → ∞ to the righthand side of (4.8).

Proposition 4.3 In the notation (4.7), we have, for a > 0, 0 < r < 1,

n≥0 P Y (r n/2 ) r n > ar n/2 < ∞ ⇐⇒ 1 0 V (x) exp -a 2 2V (x) dx x < ∞. (4.9) 
Proof of Proposition 4.3: For every fixed t > 0, Y

( √ t) s
is the compensated sum of jumps of X smaller in magnitude than 

( √ t) t > x tV ( √ t) -F (x)| ≤ Aρ( √ t) tV 3 ( √ t)(1 + x) 3
.

Replacing x by a/ V ( √ t), a > 0, we have

P Y ( √ t) t > a √ t -F a/ V ( √ t) ≤ ε(t) := Aρ( √ t) √ ta 3 ,
and we claim that

ε(r n ) < ∞.
In fact, for some c > 0,

∞ n=0 ρ(r n/2 ) r n/2 = ∞ n=0 1 r n/2 j≥n r (j+1)/2 <|y|≤r j/2 |y| 3 Π(dy) = ∞ j=0 j n=0 r -n/2 r (j+1)/2 <|y|≤r j/2 |y| 3 Π(dy) ≤ c ∞ j=0 r -j/2 r (j+1)/2 <|y|≤r j/2 |y| 3 Π(dy) ≤ c ∞ j=0 r (j+1)/2 <|y|≤r j/2 y 2 Π(dy) = c |y|≤1 y 2 Π(dy) < ∞.
The result (4.9) follows, since the monotonicity of F shows that the convergence of n≥1 F a/ V (r n/2 ) is equivalent to that of

1 0 F a/ V ( √ x) dx x = r n 2 r n+1 2 F a/ V ( √ x) dx x ,
and it is well-known that F (x) ∽ (2π) -1/2 x -1 e -x 2 /2 as x → ∞.

We can now establish Theorem 2.2.

Proof of Theorem 2.2: Recall the definition of I(•) in the statement of Theorem 2.2. We will first show that for every given a > 0

I(a) < ∞ ⇒ lim sup t↓0 X t √ t ≤ a a.s. ( 4.10) 
To see this, observe when I(a) < ∞, the integral in (4.9) converges, hence so does the series. Use the maximal inequality in Theorem 12, p.50 of Petrov [START_REF] Petrov | Sums of Independent Random Variables[END_REF], to get, for t > 0, b > 0, x > 0,

P sup 0<s≤t Y (b) s > x = lim k→∞ P max 1≤j≤⌈kt⌉ Y (b) j/k > x = lim k→∞ P max 1≤j≤⌈kt⌉ j i=1 ∆(i, k, b) > x ≤ lim sup k→∞ 2P   ⌈kt⌉ i=1 ∆(i, k, b) > x -2ktV (b)/k   = 2P Y (b) t > x -2tV (b) , (4.11) 
where we note that

∆(i, k, b) := Y (b) i/k -Y (b) (i-1)/k i≥1
are i.i.d., each with expectation 0 and variance equal to V (b)/k. Given ε > 0, replace t by r n , b by r n/2 , and x by ar n/2 + 2r n V (r n/2 ), which is not larger than (a + ε)r n/2 , once n is large enough, in (4.11). The convergence of the series in (4.9) then gives

n≥0 P sup 0<s≤r n Y (r n/2 ) s > (a + ε)r n/2 < ∞ for all ε > 0.
Hence Then let r ↑ 1 to get lim sup t↓0 X t / √ t ≤ a a.s. For a reverse inequality, we show that for every a > 0,

I(a) = ∞ ⇒ lim sup t↓0 X t √ t ≥ a, a.s. (4.13)
To see this, suppose that I(a) = ∞ for a given a > 0. Then the integral in (4.9) diverges when a is replaced by a -ε for an arbitrarily small ε > 0, because V (x) ≥ ε exp(-ε/2V (x))/2, for ε > 0, x > 0. Hence, keeping in mind (4.6), Lemma 4.2 and Proposition 4.3, we deduce

n≥0 P X r n > a ′ r n/2 = ∞ (4.14)
for all a ′ < a. For a given ε > 0, define for every integer n ≥ 0 the events

A n = {X r n /(1-r) -X r n+1 /(1-r) > a ′ r n/2 }, B n = {|X r n+1 /(1-r) | ≤ εr n/2 }.
Then the {A n } n≥0 are independent, and each B n is independent of the collection 

{A n , A n-1 , • • • , A 0 }. Further, n≥0 P (A n ) = ∞
(A n ∩ B n i.o.) = 1. This implies P (X r n /(1-r) > (a ′ -ε)r n/2 i.o.) = 1, thus lim sup t↓0 X t √ t ≥ (a ′ -ε) √ 1 -r a.s.,
in which we can let a ′ ↑ a, ε ↓ 0 and r ↓ 0 to get (4.13).

As just mentioned, we have X t / √ t P → 0, as t ↓ 0, so lim inf t↓0 X t / √ t ≤ 0 ≤ lim sup t↓0 X t / √ t a.s. Together with (4.10) and (4.13), this gives the statements in Theorem 2.2 (replace X by -X to deduce the liminf statements from the limsup, noting that this leaves V (•) unchanged).

5 Proofs for Section 3

Proof of Theorem 3.1

We start with some notation and technical results. Recall we assume (1.7). Take 0 < κ < 1 and suppose first

1 0 Π (+) (x κ )dx = ∞. (5.1)
Define, for 0 < x < 1,

ρ κ (x) = 1 κ 1 x y 1 κ -1 Π (+) (y)dy = 1 x 1 κ Π (+) (y κ )dy.
Since Π (+) (x) > 0 for all small x, ρ κ (x) is strictly decreasing in a neighbourhood of 0, thus x -1/κ ρ κ (x) is also strictly decreasing in a neighbourhood of 0, and tends to ∞ as x ↓ 0 (because of (5.1)). Also define

U + (x) = 2 x 0 yΠ (+) (y)dy.
By a similar argument, x -2 U + (x) is strictly decreasing in a neighbourhood of 0, and tends to ∞ as x ↓ 0. Next, given α ∈ (0, κ), define, for t > 0,

c(t) = inf x > 0 : ρ κ (x)x -1/κ + x -2 U + (x) ≤ α/t .
Then 0 < c(t) < ∞ for t > 0, c(t) is strictly increasing, lim t↓0 c(t) = 0, and

tρ κ (c(t)) c 1 κ (t) + tU + (c(t)) c 2 (t) = α. (5.2) 
Since lim t↓0 ρ κ (t) = ∞, we have lim t↓0 c(t)/t κ = ∞.

We now point out that (5.1) can be reinforced as follows.

Lemma 5.1 The condition (5.1) implies that

1 0 Π (+) (c(t))dt = ∞ .
Proof of Lemma 5.1: We will first establish

1 0 Π(dx) x -1/κ ρ κ (x) + x -2 U + (x) = ∞. (5.3) Suppose (5.3) fails. Since f (x) := 1 x -1/κ ρ κ (x) + x -2 U + (x)
is nondecreasing (in fact, strictly increasing in a neighbourhood of 0) with f (0) = 0, for every ε > 0 there is an η > 0 such that, for all 0 < x < η,

ε ≥ η x f (z)Π(dz) ≥ f (x) Π (+) (x) -Π (+) (η) , giving f (x)Π (+) (x) ≤ ε + f (x)Π (+) (η) = ε + o(1), as x ↓ 0. Letting ε ↓ 0 shows that lim x↓0 f (x)Π (+) (x) = lim x↓0 Π (+) (x) x -1/κ ρ κ (x) + x -2 U + (x) = 0. (5.4)
It can be proved as in Lemma 4 of [START_REF] Doney | Stability of the overshoot for Lévy processes[END_REF] that this implies

lim x↓0 x -1/κ ρ κ (x) x -2 U + (x) = 0 or lim inf x↓0 x -1/κ ρ κ (x) x -2 U + (x) > 0. (5.5)
Then, since (5.3) has been assumed not to hold,

1/2 0 x 1 κ ρ κ (x) Π(dx) < ∞ or 1/2 0 x 2 U + (x) Π(dx) < ∞. (5.6) 
Noting that, under (5.1),

ρ κ (x) = Π (+) (1) -x 1 κ Π (+) (x) + 1 x y 1 κ Π(dy) ≤ Π (+) (1) + 1 x y 1 κ Π(dy) ∼ 1 x y 1 κ Π(dy), as x → 0,
we see that the first relation in (5.6) is impossible because it would imply the finiteness of

1/2 0 x 1 κ 1 x y 1 κ Π(dy) -1 Π(dx);
but this is infinite by (5.1) and the Abel-Dini theorem. In a similar way, the second relation in (5.6) can be shown to be impossible. Thus (5.3) is proved. Then note that the inverse function c ← of c exists and satisfies, by (5.2),

c ← (x) = α x -1/κ ρ κ (x) + x -2 U + (x)
.

Thus, by (5.3),

1 0 c ← (x)Π(dx) = ∞ = c ← (1) 0 Π (+) (c(x))dx. (5.7)
This proves our claim.

Proposition 5.1 For every κ < 1, (5.1) implies lim sup t↓0

X t t κ = ∞ a.s.
Proof of Proposition 5.1: The argument relies on the analysis of the completely asymmetric case when the Lévy measure Π has support in [0, 1] or in [-1, 0]. Since κ < 1, we can assume γ = 0 without loss of generality, because of course γt = o(t κ ). The Lévy-Itô decomposition (1.9) then yields

X t = X t + X t (5.8) with X t = [0,t]×[0,1]
xN(ds, dx) and

X t = [0,t]×[-1,0] xN(ds, dx) , (5.9) 
where, as usual, the Poissonian stochastic integrals are taken in the compensated sense.

Choose α so small that

(1 + κ)α < 1/2 and α/(1/2 -(1 + κ)α) 2 ≤ 1/2,
and then ε so small that c(ε) < 1. Observe that for every 0 < t < ε t

{c(t)<x≤1} xΠ(dx) = tc(t)Π (+) (c(t)) + tλ(c(t)) ≤ tU + (c(t)) c(t) + tλ(c(t)) ≤ α(1 + κ)c(t), (5.10) 
where the last inequality stems from (5.2) and λ(x) :=

1 x Π (+) (y)dy = 1 x y 1-1 κ y 1 κ -1 Π (+) (y)dy ≤ κx 1-1 κ ρ κ (x) (since κ < 1), so tλ(c(t)) c(t) ≤ κtρ κ (c(t)) c 1 κ (t)
≤ κα (by (5.2)).

We next deduce from Lemma 5.1 that for every ε > 0, the Poisson random measure N has infinitely many atoms in the domain {(t, x) : 0 ≤ t < ε and x > c(t)}, a.s. Introduce

t ε := sup{t ≤ ε : N({t} × (c(t), 1]) = 1},
the largest instant less than ε of such an atom. Our goal is to check that P (X tε-≥ -c(t ε )/2) ≥ 1/33 (5.11) for every ε > 0 sufficiently small, so that P (X tε > c(t ε )/2) > 1/33. Since t κ = o(c(t)), it follows that for every a > 0

P (∃t ≤ ε : X t > at κ ) ≥ 1/33 ,
and hence lim sup t↓0 X t /t κ = ∞ with probability at least 1/33. The proof is completed by an appeal to Blumenthal's 0-1 law.

In order to establish (5.11), we will work henceforth conditionally on t ε ; recall from the Markov property of Poisson random measures that the restriction of N(dt, dx) to [0, t ε ) × [-1, 1] is still a Poisson random measure with intensity dtΠ(dx).

Recalling (5.10) and discarding the jumps ∆ of X such that ∆ s > c(t ε ) for 0 ≤ s < t ε in the stochastic integral (5.9), we obtain the inequality

X tε-≥ Y tε--α(1 + κ)c(t ε ) + X tε- (5.12)
where Y tε-is given by the (compensated) Poissonian integral

Y tε-:= [0,tε)×[0,c(tε)]
xN(ds, dx) .

By a second moment calculation, there is the inequality

P | Y tε-| > (1/2 -α(1 + κ))c(t ε ) ≤ E| Y tε-| 2 (1/2 -α(1 + κ)) 2 c 2 (t ε ) ≤ t ε {0<x≤c(tε)} x 2 Π(dx) (1/2 -α(1 + κ)) 2 c 2 (t ε ) ≤ t ε U + (c(t ε )) (1/2 -α(1 + κ)) 2 c 2 (t ε ) ≤ α (1/2 -α(1 + κ)) 2 ,
where the last inequality derives from (5.2). By choice of α, the final expression does not exceed 1/2. We conclude that

P Y tε--α(1 + κ)c(t ε ) ≥ -c(t ε )/2 ≥ 1/2.
(5.13)

We will also use the fact that X is a mean zero Lévy process which is spectrally negative (i.e., with no positive jumps), so lim inf t↓0 P ( X t > 0) ≥ 1/16 ; see [START_REF] Gihmann | Theory of Stochastic Processes[END_REF], p. 320. As furthermore X is independent of Y tε-, we conclude from (5.12) and (5.13) that (5.11) holds provided that ε has been chosen small enough. Now suppose (5.1) fails. The remaining results in Theorem 3.1 require the case κ > 1/2 of: Proposition 5.2 Assume that Y is a spectrally negative Lévy process, has zero mean, and is not of bounded variation. Define, for y > 0, λ > 0,

W Y (y) := y 0 1 x zΠ (-) Y (dz)dx, and 
J Y (λ) := 1 0 exp    -λ y 2κ-1 κ W Y (y) κ 1-κ    dy y , (5.14) 
where Π

(-) Y

is the canonical measure of -Y , assumed carried on (0, 1], and let λ * Y = inf{λ > 0 : J Y (λ) < ∞}. Then with probability one, for

1/2 ≤ κ < 1, lim sup t↓0 Y t t κ    = ∞ ∈ (0, ∞) = 0 according as λ * Y    = ∞ ∈ (0, ∞) = 0 .
The proof of Proposition 5.2 requires several intermediate steps. Take Y as described, then it has characteristic exponent

Ψ Y (θ) = (0,1] (e -iθx -1 + iθx)Π (-) Y (dx).

So we can work with the Laplace exponent

ψ Y (θ) = Ψ Y (-iθ) = (0,1] (e -θx -1 + θx)Π (-)
Y (dx), (5.15) such that Ee θYt = e tψ Y (θ) , t ≥ 0, θ ≥ 0. Let T = (T t , t ≥ 0) denote the first passage process of Y ; this is a subordinator whose Laplace exponent Φ is the inverse function to ψ Y ([1], p.189), and since Y (T t ) ≡ t we see that the alternatives in Proposition 5.2 can be deduced immediately from lim sup

t↓0 Y t t κ    = ∞ ∈ (0, ∞) = 0 ⇐⇒ lim inf t↓0 T t t 1/κ    = 0 ∈ (0, ∞) = ∞.
The subordinator T must have zero drift since if lim t↓0 T t /t := c > 0 a.s. then sup 0<s≤Tt Y s = t (see [START_REF] Bertoin | Lévy Processes[END_REF], p.191) would give lim sup t↓0 Y t /t ≤ 1/c < ∞ a.s., thus Y ∈ bv, which is not the case. We can assume T has no jumps bigger than 1, and further exclude the trivial case when T is compound Poisson. So the main part of the proof of Proposition 5.2 is the following, which is a kind of analogue of Theorem 1 of Zhang [START_REF] Zhang | The lower limit of a normalized random walk[END_REF].

Lemma 5.2 Let T be any subordinator with zero drift whose Lévy measure Π T is carried by (0, 1] and has

Π T (0+) = ∞, where Π T (x) = Π T {(x, ∞)} for x > 0. Put m T (x) = x 0 Π T (y)dy and for d > 0 let K T (d) := 1 0 dy y exp -d (m T (y)) γ γ-1 y
, where γ > 1.

(5.16) of S. Then by a standard truncation argument, and using a first-moment Markov inequality,

P (S t > εt γ ) ≤ t (0,bε] xΠ S (dx) εt γ + tΠ S (bε) ≤ t (0,bε] xΠ S (dx) εt γ + tΠ S (bε) εt γ (once εt γ ≤ 1) = tm T (bε) εt γ ≤ tm T (b) εt γ . Now choose b = h(εt γ-1 /2), where h(•) is the inverse function to m T (•).
Then the last ratio is smaller than 1/2. Replacing t by r n+1 in this gives

P (B n ) ≥ 1/2 for n large enough. Finally P (A n ∩ B n i.o.) = 1 implies P (S r n ≤ r nγ (a/(1 -r) + εr γ ) i.o.) = 1, thus lim inf t↓0 S t t γ ≤ a 1 -r + εr γ a.s.,
in which we can let ε ↓ 0 and r ↓ 0 to get (5.17). Applying Lemma 5.3 to T t , we see that the alternatives in (i)-(iii) of Lemma 5.2 hold iff for some r < 1, for all, none, or some but not all, a > 0, n≥1 P (T r n ≤ ar nγ ) < ∞.

(5.19)

The next step is to get bounds for the probability in (5.19). One way is easy. Since Π T (0+) = ∞, Π T (x) is strictly positive, and thus m T (x) is strictly increasing, on a neighbourhood of 0. Recall that we write h(•) for the inverse function to m T (•). Lemma 5.4 Let T be a subordinator with canonical measure Π T satisfying Π T (0+) = ∞. Then there is an absolute constant K such that, for any c > 0 and γ > 0,

P (T t ≤ ct γ ) ≤ exp - ct γ h(2ct γ-1 /K) , t > 0.
(5.20)

Proof of Lemma 5.4: We can write

Φ(λ) = - 1 t log Ee -λTt = (0,1]
1 -e -λx Π T (dx), λ > 0.
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Markov's inequality gives, for any λ > 0, c > 0,

P (T t ≤ ct γ ) ≤ e λct γ E(e -λTt ) ≤ exp{-λt(λ -1 Φ(λ) -ct γ-1 )} ≤ exp{-λt(Km T (1/λ) -ct γ-1 )}, for some K > 0,
where we have used [START_REF] Bertoin | Lévy Processes[END_REF], Prop. 1, p. 74. Now choose λ = 1/h(2ct γ-1 /K) and we have (5.20).

The corresponding lower bound is trickier:

Lemma 5.5 Suppose that T is as in Lemma 5.2, and additionally satisfies lim t↓0 P (T t ≤ dt γ ) = 0 for some d > 0 and γ > 1. Then for any c > 0

P (T t ≤ ct γ ) ≥ 1 4 exp - ct γ h(ct γ-1 /4)
for all small enough t > 0. (5.21)

Proof of Lemma 5.5: Take γ > 1 and assume lim t↓0 P (T t ≤ dt γ ) = 0, where d > 0. First we show that

t γ h(t γ-1 ) → ∞ as t ↓ 0. (5.22) 
To do this we write, for each fixed t > 0, T t = T

t , where the distributions of the independent random variables T (1 -e -λx )Π T (dx)

and log Ee -λT (2) t = -t (h(εt γ-1 ),1]
(1 -e -λx )Π T (dx), for a given ε > 0. Observe that

ET (1) t = t (0,h(εt γ-1 )]
xΠ T (dx) ≤ tm T (h(εt γ-1 )) = εt γ , so that

P (T t > dt γ ) ≤ P (T (1) t 
> dt γ ) + P (T (2) t = 0) ≤ ET (1) t dt γ + 1 -P (T (2) t = 0) ≤ ε/d + 1 -P (T (2) t = 0).
Thus for all sufficiently small t,

P (T (2) t = 0) ≤ ε/d + P (T t ≤ dt γ ) ≤ 2ε/d,
because of our assumption that lim t↓0 P (T t ≤ dt γ ) = 0. Now

P (T (2) t 
= 0) = exp -tΠ T (h(εt γ-1 )) and tΠ T (h(εt γ-1 )) ≤ t h(εt γ-1 ) m T (h(εt γ-1 )) = εt γ h(εt γ-1 )
, so we see, taking say ε = d/4, that h(t γ-1 ) ≤ at γ for a constant a > 0, or, equivalently, h(t) ≤ at 1+β , where β = 1/(γ -1) > 0, for all sufficiently small t. However, m T (•) is concave, so its inverse function

h is convex, so h(t/2) ≤ h(t)/2 ≤ a(1/2) β (t/2) 1+β , or h(t) ≤ a(1/2) β t 1+β , for small t.
Iterating this argument gives (5.22). Now write η = η(t) = h(ct γ-1 /4) and define processes (Y

(i) t ) t≥0 , i = 1, 2, 3, such that (T t ) t≥0 and (Y (1) 
t ) t≥0 are independent, and (Y

t ) t≥0 and (Y

t ) t≥0 are independent, and are such that log E(e -λY (i)

t ) = -t (0,1] (1-e -λx )Π (i) T (dx), i = 1, 2, 3, where Π (1) 
T (dx) = Π T (η)δ η (dx), Π (2) 
T (dx) = Π T (η)δ η (dx) + 1 (0,η] Π T (dx), Π

T (dx) = 1 (η,1] Π T (dx), and δ η (dx) is the point mass at η. Then we have

T t + Y (1) t d = Y (2) t + Y (3)
t , and We are now able to establish Lemma 5.2. Again, recall, h(•) is inverse to m T (•).

P (T t ≤ ct γ ) ≥ P (T t + Y (1) t ≤ ct γ ) ≥ P (Y (3) t = 0)P (Y (2) t ≤ ct γ ) = e -tΠ T (η) P (Y (2) t ≤ ct γ ). Since tΠ T (η) = η -1 tηΠ T (η) ≤ η -1 tm T (η) ≤ ct γ /h(ct γ-1 /
Proof of Lemma 5.2: (i) Suppose that K T (d) < ∞ for some d > 0 and write x n = h(cr n(γ-1) ), where γ > 1 and 0 < r < 1. Note that since h(x)/x is increasing we have 1) ) .

x n+1 ≤ r γ-1 x n . Also we have m T (x n ) = Rm T (x n+1 ) where R = r 1-γ > 1. So for y ∈ [x n+1 , x n ), m T (y) γ γ-1 y ≤ m T (x n ) γ γ-1 x n+1 = R γ γ-1 m T (x n+1 ) γ γ-1 x n+1 = (Rc) γ γ-1 r (n+1)γ h(cr (n+1)(γ-
Thus

xn x n+1 dy y exp -d m T (y) γ γ-1 y ≥ exp    - d(Rc) γ γ-1 r (n+1)γ h(cr (n+1)(γ-1) )    log x n x n+1 ≥ (log R) exp - c ′ r (n+1)γ h(2c ′ r (n+1)(γ-1) /K) ,
where K is the constant in Lemma 5.4 and we have chosen

c = K 2d γ-1
R -γ and c ′ = Kc/2.

Then K T (d) < ∞ gives ∞ 1 P (T r n ≤ c ′ r nγ ) < ∞,
and so lim inf t↓0 T t /t γ ≥ c ′ > 0 a.s., by Lemma 5.3. Thus we see that lim inf t↓0 T t /t γ = 0 a.s. implies that K T (d) = ∞ for every d > 0, hence d * K = ∞. Conversely, assume that lim inf t↓0 T t /t γ > 0 a.s. Then by Lemma 5.3, ∞ 1 P (T r n ≤ cr nγ ) < ∞ for some c > 0 and 0 < r < 1. Then P (T r n ≤ cr nγ ) → 0, Lemma 5.5 applies, and we have

∞ 1 exp - cr nγ h(cr n(γ-1) /4) < ∞.
Putting x n = h(cr n(γ-1) /4) (similar to but not the same x n as in the previous paragraph), and

c ′ = 4 γ γ-1 /c 1 γ-1 , we see that ∞ 1 exp - c ′ m T (x n ) γ γ-1 x n < ∞. (5.23) 
We have m T (x n-1 ) = Rm T (x n ) where R = r 1-γ > 1. Take L > R and let

k n = min(k ≥ 1 : x n-1 L -k ≤ x n ), so that x n-1 L -kn ≤ x n .
Then for any d > 0

x n-1 xn exp -d m T (y) γ γ-1 y y -1 dy ≤ kn i=1 x n-1 L 1-i x n-1 L -i exp -dm T (y) 1 γ-1 m T (y) y y -1 dy ≤ kn i=1 x n-1 L 1-i x n-1 L -i exp -dm T (x n ) 1 γ-1 m T (x n-1 L -i ) x n-1 L -i y -1 dy ≤ log L ∞ i=1 exp -dm T (x n ) 1 γ-1 L i m T (x n L -1 ) x n-1 ≤ log L ∞ i=1 exp -dm T (x n ) 1 γ-1 L i-1 m T (x n ) x n-1 = log L ∞ i=1 exp -dL i-1 R -γ γ-1 m T (x n-1 ) γ γ-1 x n-1
.

Approximate this last sum with an integral of the form ∞ 0 a L x n dx, where So we see that θ -1 ψ Y (θ) and ψ ′ Y (θ) are Laplace exponents of driftless subordinators, and using the estimate in [START_REF] Bertoin | Lévy Processes[END_REF], p.74, twice, we get

a n = exp(-c ′ m T (x n-1 ) γ γ-1 /x n-1 ), with d = c ′ LR γ γ-1 = 4 γ γ-1 Lr -γ /c
ψ Y (θ) ≍ θ 2 W Y (1/θ) and ψ ′ Y (θ) ≍ θW Y (1/θ), where W Y (x) = x 0 A Y (y)dy and A Y (x) := 1 x Π (-)
Y (y)dy, for x > 0, we recall the definition of W Y just prior to (5.14), and " ≍ " means that the ratio of the quantities on each side of the symbol is bounded above and below by finite positive constants for all values of the argument. However, putting

U Y (x) = x 0 2zΠ (-) Y (z)dz, for x > 0, we see that W Y (x) = x 0 1 y zΠ (-) Y (dz)dy = 1 2 U Y (x) + W Y (x), and 
W Y (x) = 1 2 U Y (x) + xA Y (x); thus W Y (x) ≤ W Y (x) = U Y (x) + xA Y (x) ≤ 2 W Y (x).
Hence we have

θ 2 W Y (1/θ) ≍ ψ Y (θ) ≍ θψ ′ Y (θ). ( 5 

.24)

We deduce that J Y (λ) = ∞ for all λ > 0 is equivalent to J Y (λ) = ∞ for all λ > 0, where

J Y (λ) = 1 0 exp -λy -1 1-κ ψ Y (1/y) -κ 1-κ dy y = ∞ 1 exp -λy 1 1-κ ψ(y) -κ 1-κ dy y .
But we know that Φ, the exponent of the first-passage process T , is the inverse of ψ Y , so making the obvious change of variable gives

J Y (λ) = ∞ ψ Y (1)
exp -λΦ(z)

1 1-κ z -κ 1-κ Φ ′ (z)dz Φ(z) . 
From (5.24) we deduce that zΦ ′ (z)/Φ(z) ≍ 1 for all z > 0, so J Y (λ) = ∞ for all λ > 0 is equivalent to J Y (λ) = ∞ for all λ > 0, where

J Y (λ) = ∞ 1 exp -λΦ(z) 1 1-κ z -κ 1-κ dz z , = 1 0 exp -λΦ(z -1 ) 1 1-κ z κ 1-κ dz z .
Since Φ(z -1 ) is bounded above and below by multiples of z -1 m T (z) ([1], p.74), our claim is established.

We are now able to complete the proof of Theorem 3.1:

Proof of Theorem 3.1: The implications (i)⇒(3.1) and (iii)⇒(3.3) stem from Proposition 5.1 and Theorem 2.1, respectively. So we can focus on the situation when

1 0 Π (+) (x κ )dx < ∞ = 1 0 Π (-) (x κ )dx .
Recall the decomposition (5.8) where X t has canonical measure Π (+) (dx). Thus from Theorem 2.1, X t is o(t κ ) a.s. as t ↓ 0. Further, X is spectrally negative with mean zero. When (ii), (iv) or (v) holds, X / ∈ bv (see Remark 3 (ii)), so X t /t takes arbitrarily large positive and negative values a.s. as t ↓ 0, and lim inf t↓0 X t /t κ ≤ 0 ≤ lim sup t↓0 X t /t κ a.s. The implications (ii)⇒(3.1), (iv)⇒(3.3) and (v)⇒ (3.4) Proposition 5.3 Assume X ∈ bv and δ = 0. Suppose a(x) is a positive deterministic measurable function on [0, ∞) with a(x)/x nondecreasing and a(0) = 0. Let a ← (x) be its inverse function. Suppose

1 0 Π(dx) 1/a ← (x) + A -(x)/x = ∞. (5.25) Then we have lim sup t↓0 X t a(t) = ∞ a.s. ( 5 

.26)

Proof of Proposition 5.3: Assume X and a as specified. Then the function a(x) is strictly increasing, so a ← (x) is well defined, positive, continuous, and nondecreasing on [0, ∞), with a ← (0) = 0 and a ← (∞) = ∞. Note that the function 1

a ← (x) + A -(x) x = 1 a ← (x) + 1 0 Π (-) (xy)dy
is continuous and nonincreasing, tends to ∞ as x → 0, and to 0 as x → ∞.

Choose α ∈ (0, 1/2) arbitrarily small so that

2α 2(1/2 -α) -2 + 1 ≤ 1,
and define, for t > 0,

b(t) = inf x > 0 : 1 a ← (x) + A -(x) x ≤ α t .
Then 0 < b(t) < ∞ for t > 0, b(t) is strictly increasing, lim t↓0 b(t) = 0, and In the last inequality we used the Feller-Chung lemma ( [START_REF] Chow | Probability Theory: Independence, Interchangeability, Martingales 2nd Ed[END_REF], p. 69). Thus lim sup t↓0 X t /b(t) ≥ 1/2, a.s. Now since a(x)/x is nondecreasing, we have for α < 1, b(t)/a(t) ≥ a(t/α)/a(t) ≥ 1/α, so lim sup t↓0 X t /a(t) ≥ 1/α a.s. Letting α ↓ 0 gives lim sup t↓0 X t /a(t) = ∞ a.s., as claimed in (5.26).

t a ← (b(t)) + tA -(b(t)) b(t) = α. ( 5 
We now state a strong version of the converse of Proposition 5.3 which completes the proof of Theorem 3.2. We will establish Proposition 5.4 using a coupling technique similar to that in [START_REF] Bertoin | Regularity of the half-line for Lévy processes[END_REF]. For this purpose, we first need a technical lemma, which is intuitively obvious once the notation has been assimilated. Let Y be a Lévy process and ((t i , x i ), i ∈ I) a countable family in (0, ∞) × (0, ∞) such that the t i 's are pairwise distinct. Let (Y i , i ∈ I) be a family of i.i.d. copies of Y , and set for each i ∈ I ρ i := inf s ≥ 0 : Y i s ≥ x i ∧ a ← (x i ), where a(•) is as in the statement of Proposition 5.3. More generally, we could as well take for ρ i any stopping time in the natural filtration of Y i , depending possibly on the family ((t i , x i ), i ∈ I).

Now assume that T t := t i ≤t ρ i < ∞ for all t ≥ 0 and i∈I ρ i = ∞, a.s.

(5.34)

Then T = (T t , t ≥ 0) is a right-continuous non-decreasing process and (5.34) enables us to construct a process Y ′ by pasting together the paths (Y i s , 0 ≤ s ≤ ρ i ) as follows. If t = T u for some (unique) u ≥ 0, then we set

Y ′ t = t i ≤u Y i (ρ i ) .
Otherwise, there exists a unique u > 0 such that T u-≤ t < T u , and thus a unique index j ∈ I for which T u -T u-= ρ j , and we set

Y ′ t = t i <u Y i (ρ i ) + Y j (t -T u-) .
and τ x denotes the first-passage time of X (-) in [x, ∞). So it suffices to check that (0,∞) (1 ∧ y)µ(dy) < ∞.

In this direction, recall (e.g. Proposition III.1 in [START_REF] Bertoin | Lévy Processes[END_REF]) that there is some absolute constant c such that

E (-) (τ x ) ≤ cx A -(x)
, ∀x > 0.

As a consequence, we have (0,∞) yµ(dy) = (0,∞)

Π (+) (dx)E (-) (τ x ∧ a ← (x)) ≤ (0,∞) Π (+) (dx) E (-) (τ x ) ∧ a ← (x) ≤ c (0,∞) Π (+) (dx) x A -(x)
∧ a ← (x) .

Recall that we assume that Π (+) has support in [0, 1]. It is readily checked that convergence of the integral in (5.32) is equivalent to (0,∞)

Π (+) (dx) x A -(x) ∧ a ← (x) < ∞.
Our claim is established. We can thus construct a process X ′ , as in Lemma 5.6, by pasting together the paths (X (-,i) s , 0 ≤ s ≤ ρ i ). This enables us to complete the proof of Proposition 5.4.

Proof of Proposition 5.4: An application of Lemma 5.6 shows that X ′ is a subordinator which is independent of X (+) and has the same law as X (-) . As a consequence, we may suppose that the Lévy process X is given in the form X = X (+) -X ′ .

Set Y t := X ′ t + a(t). For every jump (t i , x i ) of X (+) , we have by construction Y (T t i ) -Y (T t i -) = X (-,i) (ρ i ) + a(T t i -+ ρ i ) -a(T t i -) ≥ X (-,i) (ρ i ) + a(ρ i ) (as a(x)/x increases) ≥ x i (by definition of ρ i ) .

t↓0

  |X t | 2t log | log t| = σ a.s. (1.5) 

Theorem 3 . 2

 32 Assume (1.7), suppose κ > 1, X ∈ bv, and its drift δ = 0. If (0,1]

  √ t, up to time s. It is a centered Lévy process with canonical measure 1 {|x|≤ √ t} Π(dx), x ∈ R. Applying Lemma 4.3, we get m 2 = V ( √ t) and m 3 = |y|≤ √ t |y| 3 Π(dy) = ρ( √ t), say. Then we get, for x > 0, |P Y

  h(εt γ-1 )]

1 γ- 1 1 0

 111 , to see that it is bounded above by a constant multiple of a n . It follows from (5.23) that a n < ∞, hence we get K T (d) < ∞, and Part (i) follows. (ii) If K T (d) < ∞ for all d > 0 then, because c ′ → 0 as d → ∞ at the end of the proof of the forward part of Part (i), we have lim inf t↓0 T t /t γ = ∞ a.s., i.e., lim t↓0 T t /t γ = ∞ a.s. Conversely, if this holds, then because d → ∞ as c → 0 at the end of the proof of the converse part of Part (i), we have K T (d) < ∞ for all d > 0. This completes the proof of Lemma 5.2. Proof of Proposition 5.2: To finish the proof of Proposition 5.2, we need only show that J Y (λ) = ∞ for all λ > 0 is equivalent to K T (d) = ∞ for all d > 0, where K T (d) is evaluated for the first-passage process T of Y, and γ = 1/κ. We have from (5.15), after integrating by parts, ψ Y (θ) = (e -θx -1 + θx)Π

5. 2 2 Theorem 3 . 2

 2232 Proof of Theorem 3.follows by taking a(x) = x κ , κ > 1, in the Propositions 5.3 and 5.4 below, which are a kind of generalisation of Theorem 9 in Ch. III of[START_REF] Bertoin | Lévy Processes[END_REF]. Recall the definition of A -(•) in(3.5).

  .27) Also b(t) ≥ a(t/α), and the inverse function b ← (x) exists and satisfiesb ← (x) = α 1/a ← (x) + A -(x)/x. (y)dy.Then we have the upper-boundstΠ (-) (b(t)) ≤ tA -(b(t)) b(t) ≤ α, and tU -(b(t)) b 2 (t) ≤ 2tA -(b(t)) b(t) ≤ 2α.Since X ∈ bv and δ = 0 we can express X in terms of its positive and negative jumps, ∆(+) s = max(0, ∆ s ) and ∆ t)) > b(t)/2 + P ∆ (-) s > b(t) for some s ≤ t ≤ P 0<s≤t (∆ (-) s ∧ b(t)) -tA -(b(t)) > (1/2 -α)b(t) + tΠ (-) (b(t)).Observe that the random variable 0<s≤t (∆(-) s ∧b(t)) -tA -(b(t)) is centered with variance tU -(b(t)). Hence P 0<s≤t (∆ (-) s ∧ b(t)) -tA -(b(t)) > (1/2 -α)b(t) ≤ tU -(b(t)) (1/2 -α) 2 b 2 (t), so that, by the choice of α, we finally arrive at 2 -α) 2 + 1 α ≤ 1/2.(5.31) By (5.29), P (X(+) t > b(t) i.o.) ≥ P (∆ (+) t > b(t) i.o.) = 1. Choose t n ↓ 0 such that P (X (+) tn > b(t n ) i.o.) = 1.Since the subordinators X (+) and X(-) are independent, we haveP (X tn > b(t n )/2 i.o.) tn > b(t n ), X(-) tn ≤ b(t n )/2 for some n > m) ≥ (1/2)P (X (+) tn > b(t n ) i.o.) (by (5.31)) = 1/2.

Proposition 5 . 4

 54 The notation and assumptions are the same as in Proposition 5

  1/4 . The corresponding Lévy process satisfies lim sup t↓0 |X t |/ √ t = ∞ a.s. Thus the implication (2.1) ⇒ (2.2) is not in general true when κ = 1/2.

  Thus λ * I = 0 and lim t↓0 X t / √ t = 0 a.s. in this case, according to Theorem 2.2. Of course, this agrees with Theorem 2.1(i). (iii) The convergence of |x|≤e -e x 2 log | log |x||Π(dx) implies the conver-/2V (x)}dx/x for all a > 0, as is easily checked, hence we have lim t↓0 |X t |/ √ t = 0 a.s. for all such Lévy processes. A finite positive value, a.s., for lim sup t↓0 |X t |/ √ t can occur only in a small class of Lévy processes whose canonical measures have Π(dx) close to |x| -3 dx near 0. For example, we can find a Π such that, for small x, V (x) = 1/ log | log x|. Then

	gence of 0 exp{-a 2 1/2 1 0 exp{-a 2 /2V (x)}dx/x = infinite for a ≤ √ 2. Thus lim sup t↓0 |X t |/ 1/2 0 | log x| -a 2 /2 dx/x is finite for a > √ t = √ 2 a.s. for this process; in √ 2 but fact, lim sup t↓0 X t / √ t = √ 2 a.s., and lim inf t↓0 X t / √ √ 2 a.s. t = -(iv) Theorem 2.2 tells

  Corollary 2.1 Assume (1.7), and, if X ∈ bv, assume it has drift zero. Suppose lim sup t↓0 |X t |/t κ = ∞ a.s., for some κ ≥ 1/2. Then

	lim sup t↓0	|X t -a(t)| t κ	= ∞ a.s., for any nonstochastic a(t).	(2.5)

  ). The Borel-Cantelli lemma completes the proof.In view of Lemma 4.2 we can concentrate on Y Let Y be a Lévy process with canonical measure Π Y , satisfying EY 1 = 0 and m 4 < ∞, where m k

	( √ t	t)	in (4.6). We next
	prove:		
	Lemma 4.3		

  by(4.14), so P (A n i.o.) = 1. It can be deduced easily from[START_REF] Bertoin | Lévy Processes[END_REF], Prop. 2(i), p.16, that X

t / √ t P → 0, as t ↓ 0, since (1.7) is enforced. Thus P (B n ) → 1 as n → ∞, and then, by the Feller-Chung lemma ([4], p. 69) we can deduce that P

  4), (5.21) will follow when we show that lim inf t↓0 P (Y To deal with the opposite case, tσ 2 t > c 2 t 2γ /9, we use the Normal approximation in Lemma 4.3. In the notation of that lemma, m 3 = |x|≤η |x| 3 Π

	so if we put Z t = Y to get	(2) t P Y -ct γ /4 and write tσ 2 t = EZ 2 t we can apply Chebychev (2) t ≤ ct γ ≥ P Z t ≤ ct γ 2 5 ≥ 9
	when tσ 2 t ≤ c 2 t 2γ /9. (2) T (dx) and m 2 = σ 2 t , in the present situation. Since, then,
	m 3 ≤ ησ 2 t , and we have η = h(ct γ-1 /4) = o(t γ ), as t ↓ 0, by (5.22), we get
	sup x∈R	P (Z t ≤ x √	tσ t ) -1 + F (x) ≤	Aησ 2 t √ tσ 3 t	= o(1), as t ↓ 0.
	Choosing x = ct γ /(2	√	tσ t ) gives P (Z t ≤ ct γ /2) ≥ 1/4, hence (5.21).
									(2) t	≤ ct γ ) ≥ 1/4. By construction we have
	EY	(2) t	= t	0	η	xΠ T (dx) + ηΠ T (η) = tm T (η) =	ct γ 4	,

  now follow from Proposition 5.2. Remark 5 Concerning Remark 3 (iii): perusal of the proof of Theorem 2.2 shows that we can add to X a compound Poisson process with masses f ± (t), say, at ± √ t, provided n≥1 √ t n f ± (t n ) converges, and the proof remains valid. The effect of this is essentially only to change the kind of truncation that is being applied, without changing the value of the limsup, and in the final result this shows up only in an alteration to V (x). Choosing f (t) appropriately, the new V (•) becomes U(•) or W (•), which are thus equivalent in the context of Theorem 2.2. Note that we allow κ = 1/2 in Proposition 5.2. We will omit further details, but the above shows there is no contradiction with Theorem 2.2.
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Let d *

Then, with probability one, (i)

T t t γ = c, for some c ∈ (0, ∞).

Before beginning the proof of Lemma 5.2, we need some preliminary results. To start with, we need the following lemma. Lemma 5.3 Let S = (S t , t ≥ 0) be a subordinator, and a and γ positive constants. Then lim inf t↓0 S t t γ ≤ a a.s.

(5.17)

if and only if for every r ∈ (0, 1) and η > 0

Proof of Lemma 5.3: One way is obvious, so suppose

(5.18)

For a given ε > 0, define events

Then the {A n } n≥0 are independent, and each B n is independent of the collection {A n , A n-1 , • • • , A 0 }. Further, n≥0 P (A n ) = ∞ by (5.18) (recall S is a subordinator), so P (A n i.o.) = 1. Then, by the Feller-Chung lemma ( [START_REF] Chow | Probability Theory: Independence, Interchangeability, Martingales 2nd Ed[END_REF], p. 69) we can deduce that

say, for n large enough. To see that this is the case here, take b > 0 and ε ∈ (0, 1) and truncate the jumps of S (which is of bounded variation) at bε > 0, where b will be specified more precisely shortly. Thus, let S ε t = 0<s≤t ∆S s 1 {∆Ss≤bε)} . Now S t -S ε t is nonzero only if there is at least one jump in S of magnitude greater than bε up till time t, and this has probability bounded above by tΠ S (bε), where Π S is the Lévy measure Lemma 5.6 Under the assumptions above, Y ′ is a version of Y ; in particular its law does not depend on the family ((t i , x i ), i ∈ I).

Proof of Lemma 5.6: The statement follows readily from the strong Markov property in the case when the family (t i , i ∈ I) is discrete in [0, ∞). The general case is deduced by approximation.

We will apply Lemma 5.6 in the following framework. Consider a subordinator X (-) with no drift and Lévy measure Π (-) ; X (-) will play the role of the Lévy process Y above. Let also X (+) be an independent subordinator with no drift and Lévy measure Π (+) . We write ((t i , x i ), i ∈ I) for the family of the times and sizes of the jumps of X (+) . By the Lévy-Itô decomposition, ((t i , x i ), i ∈ I) is the family of the atoms of a Poisson random measure on R + × R + with intensity dt ⊗ Π (+) (dx).

Next, mark each jump of X (+) , say (t i , x i ), using an independent copy X (-,i) of X (-) . In other words, (t i , x i , X (-,i) ), i ∈ I is the family of atoms of a Poisson random measure on R + ×R + ×D with intensity dt⊗Π (+) (dx)⊗P (-) , where D stands for the space of càdlàg paths on [0, ∞) and P (-) for the law of X (-) . Finally, define for every i ∈ I,

Lemma 5.7 In the notation above, the family ((t i , ρ i ), i ∈ I) fulfills (5.34). Further, the process T t : =

is a subordinator with no drift.

Proof of Lemma 5.7:

is a Poisson random measure on R + × R + with intensity dt ⊗ µ(dy), where µ(dy) := (0,∞)

By summation (recall that X (+) has no drift), we get that Y (T t ) ≥ X (+) t for all t ≥ 0.

As T = (T t , t ≥ 0) is a subordinator with no drift, we know from the result of [START_REF] Shtatland | On local properties of processes with independent increments[END_REF] that T t = o(t) as t → 0, a.s., thus with probability one, we have for every ε > 0

εt + a(εt), ∀t ≥ 0 sufficiently small .

Since a(x)/x increases, we deduce that for t sufficiently small

which completes the proof.

Proof of Theorem 3.3

Suppose (3.8) holds, so that X t > 0 for all t ≤ some (random) t 0 > 0. Thus X is irregular for (-∞, 0) and (3.10) follows from [START_REF] Bertoin | Regularity of the half-line for Lévy processes[END_REF]. But [START_REF] Bertoin | Regularity of the half-line for Lévy processes[END_REF] has that (3.10) implies 0<s≤t ∆

, a.s., as t ↓ 0, so, for arbitrary

t , a.s., when t ≤ some (random) t 0 (ε) > 0. Now X