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ABSTRACT: The paper presents an approach to model the behaviour of a representative volume element 
(unit cell) of textile reinforcement in in-plane deformation (bi-axial tension and shear) and in compression. 
The model is a further development of a virtual textile concept implemented in the WiseTex software, and is 
based on the concept of hierarchical description of textile properties and systematic application of the 
principle of minimum energy to calculate the textile geometry in the relaxed and deformed state. With the 
internal geometry of the unit cell built, the model computes overall parameters of the deformed textile, such 
as fibre volume fraction, porosity etc. The internal geometry is visualised and such properties as pore 
structure in typical cross-sections are analysed. The load-deformation curves for compression, tension and 
shear are computed via the balance between change of the internal energy of the unit cell and mechanical 
work of the applied loads. The internal geometry description is further fed into flow modelling software, 
which allows computing local permeability of the deformed reinforcement, and micro-mechanical modelling 
to calculate homogenised local stiffness of the composite.
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1. Introduction

Deformability of textile preforms plays a key role in quality of a composite part 
formed into 3D shape and processed using Liquid Transfer Moulding (LTM) 
technique. Ill-chosen placement of the preform, disregarding its behaviour under 
large strain in complex deformation may result in the preform wrinkling or even 
damage, deteriorating the performance of the composite part. This explains an 
importance of predictive modelling of deformability of textile preforms. The 
deformation modes of primary importance are in-plain deformation (tension and 
shear) and compression of the preform. Deformability of woven preforms in these 
modes is the subject of the present paper. Out-of-plane bending may also be 
considered, as it can affect internal geometry of the preform, especially for small 
bending radii; a model of the woven fabric bending can be found in (Lomov et al.,
2000). Naturally the deformability of woven fabrics is important as well for apparel 
textiles, and has attracted attention of textile materials researchers. Works of 
Kawabata, Niva and Kawai (Kawabata et al., 1973; Kawabata et al., 1973; 
Kawabata et al., 1973), de Jong and Postle (de Jong et al., 1978), Hearle and 
Shanahan (Hearle et al., 1978) have established an approach to mathematical 
modelling of deformation of woven fabrics, which can be summarised by three 
principles.  

First, the model uses deformations, rather then loads, as input for in-plane 
deformation (for compression model the applied pressure is the input). An overall 
deformation pattern is imposed over the woven fabric repeat (unit cell) to change the 
spacing of the yarns in tension and the angle between them in shear. As formulated 
by Komori and Ito (Komori et al., 1991), the unit cell is subject to transformation of 
coordinates defined by the given deformation. The contacts between yarns stay 
unchanged in tension, and experience rotation (not sliding) of the contacting yarns in 
shear. 

Second, the principle of minimum energy is applied to compute the internal 
geometry of the deformed fabric. With the spacing and orientation of the warp and 
weft given, the yarn paths are defined using one of available geometrical models 
(Peirce’s, elastica, splines), with crimp heights and dimensions of the cross-sections 
of the yarns (which can change under transversal force caused by tension) as 
parameters. These parameters are calculated via the principle of minimum total 
energy, associated with the yarns tension, bending and compression. Tension of the 
yarns is computed using the experimental tension diagram. Elongation of the yarn is 
estimated by the difference between yarn length in the repeat after and before the 
deformation. Experimental bending and compression diagrams are used to compute 
bending energy and resistance to compression. All these experimental diagrams are 
non-linear. Application of the principle of minimum energy to fibrous assemblies 
must be considered as heuristics, as it can be applied rigorously to conservative 
systems only. This means that frictional effects are not taken into account in the 
solution of the minimisation problem. The internal friction between fibres in the 
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yarns enters the calculations via non-linear bending and compression diagrams. The 
inter-yarn friction is absent in tension, and manifests itself in the rotation of the 
contacting yarns in shear.  

Third, the applied loads are computed via the balance between, on one hand, the 
mechanical work done by the loads on deformations of the unit cell, and, on the 
other hand, the sum of the change of the total energy of the deformed yarns and the 
work of friction (if any). 

In the papers cited above (Kawabata, Niwa et al. 1973a; Kawabata, Niwa et al. 
1973b; Kawabata, Niwa et al. 1973c; de Jong and Postle 1978; Hearle and Shanahan 
1978), and some others (Huang 1979; Christoffersen 1980; Anandjiwala et al., 1991; 
Anandjiwala et al., 1991; Dastoor et al., 1994; Pastore et al., 1995), the approach 
has been successfully applied to plain woven fabrics. It has been also reported to 
work for twills and satins (Reumann 1988). 

We will use this scheme for all three types of deformation under consideration: 
compression, bi-axial tension and shear. 

Returning to deformability of woven reinforcements for composites, one found 
quite a number of publications on modelling. The models complexity range from 
simple empirical models to elaborate finite element descriptions. Certain important 
points have been investigated, which were not covered by earlier “apparel-oriented” 
models. 

In studies of compression the attention was given to compressibility of the 
reinforcement at high loads, which are characteristic for composite processing. The 
compression curve is broken into three regions (low, medium and high loads), with 
the different phenomena playing in each of them (Chen et al., 1999a; Chen et al.,
2000; Chen et al., 2001b; Chen et al., 2001c). The nesting of layers of the 
reinforcement is taken into account (Chen and Chou 2000; Lomov et al., 2000; 
Kurashiki et al., 2002). Models of shear of woven reinforcements (Long 2000; Long
et al., 2001a; Long et al., 2001b; Crookston et al., 2002) have to deal with very high 
shear angles (up to 60-70°) occurring in forming of complex 3D parts. This is dealt 
with by an introduction of models of lateral compression of the yarns, which come 
into contact when the shear angle reaches and exceeds the locking angle of the fabric 
“trellis”. The simple, but not true-to-life concept of preserving the volume of the 
unit cell to calculate the change of the thickness of fabric in shear, has been 
advanced to more correct considerations of the yarns compression.  

Recently finite element descriptions of deformability of textiles have been 
introduced for bi-axial tension (Boisse et al., 1999a; Boisse et al., 1999b; Launay et 
al., 1999; Gasser et al., 2000; Boisse et al., 2001a; Boisse et al., 2001b; Kuwazuru
et al., 2001; Sakakibara et al., 2001) and compression  (Kurashiki, Zako et al. 2002) 
of woven reinforcements. Based on the increasing power of the computers, these 
approaches aim to describe in detail the 3D behaviour of the fabric constituents 
including contact and friction and to obtain result fields at local level. 
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The finite element modelling encounters two difficulties. First, the geometry of a 
textile unit cell is very complex, and creating a solid model manually is not an easy 
task. The solution is provided by the use of textile geometry modeller as a 
preprocessor, capable to create a finite element model automatically (Kondratiev 
2001; Van Genechten 2002) Second, the description of the material behaviour used 
in finite element model must realistically represent the actual behaviour of the 
fibrous assemblies – yarns. Development of such a library of material model for 
textiles, available in finite element packages, presents a serious challenge to 
researchers. 

Models of textile deformability developed so far have built a solid foundation for 
their generalisation, encapsulating the achievements of textile material science in a 
modelling software tool, allowing wide variability of textile structure and yarn 
parameters, instrumented with visualisation features and able to transfer the models 
of textile geometry into specialised micro-mechanical and flow modelling software 
as well as into general purpose finite element packages. Such a tool can be 
considered as a preprocessor for calculation of homogenised properties – 
permeability tensor and stiffness matrix – of deformed textile reinforcement. These 
properties, in their turn, are used as input to provide local parameters in modelling of 
Darcy flow through the deformed preform and structural finite element analysis of a 
3D shaped composite part. This work is in progress in Composite Materials Group 
in the Department MTM, K.U.Leuven (Lomov et al., 2000; Lomov and Verpoest 
2000; Lomov et al., 2001a; Lomov et al., 2001b; Belov et al., submitted). It has 
resulted in the development of textile modelling software WiseTex, available via the 
Department MTM. The present paper describes models of deformability of woven 
fabrics, implemented in it. Early versions of the models described here, were 
published in (Lomov et al., 1992; Lomov et al., 1995a; Lomov et al., 1995b; Lomov
et al., 1997). 

2. Description of the geometry of woven fabric in relaxed state

The comprehensive description of the model of the relaxed state of a woven 
fabric can be found elsewhere (Lomov et al., 2000; Lomov et al., 2001a; Lomov et 
al., 2001b). Here we state its main components used in simulation of the fabric 
deformation. 

2.1. Weave pattern and elementary crimp intervals 

A weave pattern (for one- and multilayered fabrics) is coded with matrix coding 
(Lomov, Gusakov et al. 2000; Lomov and Verpoest 2000; Lomov, Huysmans et al. 
2001; Lomov, Huysmans et al. 2001). It allows separation of the crimped shape of 
the warp and weft yarns into elementary bent intervals (Figure 1), representing 
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sections of the yarn between interlacing sites. The shape of the yarn on an 
elementary interval is described using a parameterised function z(x;h/p), where z and 
x are coordinates of the yarn middle line, h is the crimp height and p is the distance 
between the interval ends (spacing of the yarns). The shape z(x;h/p) for a given 
relative crimp height h/p is computed using the principle of minimum of bending 
energy of the yarn on the interval and has a form 

( ) ( ) ( )( ) ( )( ) ( )( )]2/1/1////4/32/1[)( 2232 −−++−= pxpxpxphApxpxhxz     [1]

where the first term is a spline function, corresponding to the solution of the 
linearised minimum energy problem, and the second term represents a correction for 
a non-linear formulation. The function A(h/p) is calculated from the solution of the 
minimum energy problem and is tabulated. 

x

z

p

h z(x)

Q

Q

d2

d1

ΔΔΔΔZ

Figure 1. Elementary crimp interval of a woven fabric 

With this function known, the characteristic function F of the crimp interval is 
computed, representing the bending energy of the yarn: 
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where B(κ) is the (measured experimentally) bending rigidity of the yarn, which 
depends (non-lineary) on the local curvature κ(x), or, after the integration, on an 
average curvature over the interval 
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Function F(h/p) is also tabulated. With the function F known, the transversal forces 
acting on the interval ends can be estimated as 
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2.2. Compression of the yarns in the relaxed fabric 

Warp and weft yarns in the relaxed fabric are compressed by the transversal 
forces Q [4] according to experimental diagrams, measured on "virgin" yarns  

( ) ( )QddQdd 22021101 , ηη == [5] 

where subscript "0" refer to the uncompressed state of the yarn, d1 and d2 are 
dimensions of the yarn cross-section (Figure 1). These dimensions and crimp heights 
of the yarns are interconnected: 

( ) 2/)( 21
WeWaWeWaWa hhddZh +−++Δ= [6] 

where superscripts refer to the warp and weft yarns, subscripts "1" and "2" refer to 
two weft yarns in different layers, ΔZ is the distance between fabric layers (Figure 
1).

With crimp heights of weft yarns given, equations [4-6] provide a closed system 
of non-linear equations for calculation of the transversal forces Q and yarn 
dimensions d1 and d2.

2.3. Minimum energy problem – calculation of the weft crimp heights 

The weft crimp heights are found using the principle of minimum bending 
energy of the yarns inside the unit cell. Using [2], it is written as 

min
1 11 1
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where subscripts i,j refer to different warp and weft yarns, k – to the elementary 
crimp interval of the warp/weft yarn. The minimum problem [7] is solved for the 
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weft crimp heights, all other parameters defined inside the minimisation algorithm 
via solution of the system [4-6] for the given current crimp heights. It takes about 
15s on Pentium II (405 MHz) PC to compute parameters for a 3D fabric with 20 
yarns in the repeat, and about 0.5 s – for a plain weave fabric.  

3. Compression

A comprehensive description of the compression model of a woven fabric can be 
found elsewhere (Lomov and Verpoest 2000). Here we give an outline of the 
algorithm and discuss two issues not covered in that paper: behaviour of z-yarns in 
thick 3D fabrics and nesting of the layers in compression of laminate. 

3.1. Outline of the algorithm 

When a fabric is compressed, the following changes in geometry take place: 

– Warp and weft yarns are compressed;

– The less crimped yarn system increases its crimp and vice versa.

These two processes are treated in the model separately. This follows from the 
assumption of an even distribution of the compressive force over warp/weft 
intersections, because this assumption implies that force per one intersection, which 
compresses the yarn cross-sections and bends the yarns, is independent of any 
changes of warp and weft crimp or cross-section dimensions. 

3.1.1. Compression of yarns 

To compute this, the compression force per one intersection is evaluated: 

Qc=F/(NWaNWe ) [8]

where F is the pressure force on fabric repeat. This value is added to all the Qij – 
transversal forces acting on the intersections and computed with [4], to evaluate the 
dimensions of the yarns with [5]. Hence, both the compression due to yarn bendind 
and the compression due to external force are accounted for. The algorithm 
presented above is then applied to yield the compressed dimensions of the yarn 
cross-sections and the new values of the yarn crimp. 

3.1.2. Change of crimp 

The change of crimp in compression (increasing for warp and decreasing for 
weft, or vice versa) leads to a decrease of the fabric thickness. Therefore the basic 
mechanical equation governing this process is 
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work of compressive force Q on change of thickness db = [9]
= change of bending energy of yarns dW 

The compression of yarns has been accounted for before and the resulting 
changed cross-section dimensions are “frozen”, that’s why the work of yarn 
compression does not enter the balance [9].  

Changes of the fabric thickness db and bending energy of the yarns dW depend 
on the change of the set of weft crimp heights {dhj

We} and therefore [9] has a set of 
unknown variables. A reasonable assumption to cope with this difficulty is: “The 
crimp changes in such a way as to provide the maximum possible change of 
thickness”. This means that if we consider the function b({hj

We}) (b being the fabric 
thickness) then changes of crimp will follow the direction of the maximum slope (in 
the opposite direction): 

{dh’j} = - x grad b({hj
We}) 

where x is computed to satisfy [8]; slashed values refer to changed crimp. Equation 
[9] is then written as follows: 
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 [10a] 

{ }( )We
j

We
j

We
j hgradbxhh ⋅−=′ [10b] 

to be solved numerically for x, which should also satisfy 

0<=hj
We<= hj

We,max  and { }( ) { }( ) 0>=′− We
j

We
j hbhb [11] 

3.2. Behaviour of the z-yarns in 3D fabric 

The algorithm described above does not preserve the length of the yarns after 
compression, hence introducing an error on the final fabric geometry. In the 
compaction of a 2D fabric this error is small and can be considered to be negligible. 
When a 3D fabric is compacted, its z-yarns (going through the thickness), deviate 
considerably from their paths, as the length of the yarn must be preserved when the 
thickness of the fabric is reduced. In a 3D fabric with z-yarns initially almost 
vertical, they will acquire S/Z shapes. If the interlacing yarns are oblique, their 
initial sinusoidal shape is transformed into meander. 
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Figure 2 Compression of 3D fabric. Above: Compression diagram, measured (lines) 
and computed (dots). Inlet: Computed and observed shape of z-yarn at 300 kPa 

To describe such behaviour rigorously, one would have to account for all kinds 
of contacts between yarns occurring during the compaction. This task may be an 
interesting challenge for the finite element modelling. In the present model, 
implemented in WiseTex, a simple geometrical approach is followed. A spline 
correction is added to the yarn path, with a factor chosen as to preserve the yarn 
length after the deformation. The result is illustrated in Figure 2.  

Figure 2 shows the results of measurement and simulation of compression of 3D 
glass fabric (yarns 4x4x33 tex, 35 yarns/cm in warp and weft, areal density 3900 
g/m2, weave is shown in Figure 2). The fabric is proposed in (Parnas et al., 1995) as 
a benchmarking case for study of LTM composite processing. Compression of the 
fabric has been measured on the KES-F textile compression tester for the low load 
range and on Instron for higher loads. The input data on compressibility of the yarns 
and their bending rigidity has been measured on KES-F. Other fabric data was taken 
as specified in (Parnas, Howard et al. 1995). We see that the described algorithm 
provides a reasonable prediction of the compression diagram as well as the fabric 
internal structure after compression. 

3.3. Nesting in a laminate 

In composites forming processes normally stacked 2D fabric layers are 
compressed to form a plate or a 3D shaped laminate. It is well known that due to 
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nesting of the fabric layers thickness of the laminate per one layer is decreasing with 
the number of layers (for a given pressure) (Luo et al., 1999; Chen and Chou 2000; 
Lomov and Verpoest 2000) (there exists an evidence of an anomalous opposite 
behaviour (Pearce et al., 1995)). The presented model of the fabric geometry and 
compression accounts for this fact. 
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Figure 3. Thickness of a laminate of plain woven glass fabric. Error bars for the 
calculated points (thick lines) show the standard deviation of Monte-Carlo 
simulation. A: 5 layer random arrangement. 

Consider a plain woven glass fabric, made of glass rovings 480 tex, with the yarn 
density of 36/34 yarns/cm. The fabric has been thoroughly studied in (Lomov, 
Gusakov et al. 2000; Lomov and Verpoest 2000), where additional information can 
be found. In these papers a WiseTex model of the fabric geometry and compression 
has been verified against experimental data.   

Consider a laminate made out of L layers of this fabric, compressed at a given 
pressure. The layers are randomly shifted relative to each other and nested. The 
nesting algorithm searches for the minimum vertical coordinate of a layer mid-plane 
when it is just in contact with the layer beneath it. Figure 3 shows the results of a 
Monte-Carlo calculation of the average thickness of the laminate (500 runs), at 
pressure 100 kbar (compression of the fabric taken into account). The results 
correspond very well with the experimental variation of the thickness with the 
number of layers, measured in compression tests. 
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Figure 4. Distributions of fibre volume fraction, computed for laminates with 
different number of layers 

The model of a laminate allows also studying the statistical characteristics of the 
nesting of the layers. Figure 4 depicts results of such calculations. The distribution 

11



of fibre volume fraction becomes more narrow and smooth with increase of the 
number of layers. 

It is interesting to note the correspondence between these simulations and the 
variability of the permeability of the laminate studied in (Hoes et al., 2001). The 
distribution of permeability of the laminate has been found to have a width of one 
binary order of magnitude (3 times, from 90 to 280 μm2). On the experimental 
dependency of the permeability on fibre volume fraction (Parnas et al., 1997; Belov
et al., 2002) the change of the permeability by 3 times corresponds to the change of 
fibre volume fraction by 5%, which is exactly the width of the distributions shown 
in Figure 4. 

4. Tension

4.1. Bi- and uniaxial tension algorithms 

Consider first a woven fabric under bi-axial tension characterised by 
deformations in warp (x-axis) and weft (y-axis) directions ex = Y/Y0-1, ey = X/X0-1,
where X and Y are sizes of the fabric repeat, subscript "0" designates the undeformed 
state. As discussed above, inside the WiseTex model the internal structure of the 
fabric is described based on weft crimp heights hj

We and weft and warp cross-section 
dimensions at the intersections dij

Wa and dji
We (subscripts designate different yarns in 

the fabric repeat). These values change after the deformation. Tension of the yarns 
induces transversal forces, which compress the yarns, changing d's. The same 
transversal forces change the equilibrium conditions between warp and weft, which 
leads to a redistribution of crimp and change of crimp heights. When the mentioned 
values in the deformed configuration are computed, the internal geometry of the 
deformed fabric is built using the WiseTex algorithms as explained above. Change of 
length of the yarns determines their average (in the repeat) deformations, which, 
through the tension-deformation diagrams of the yarns allow computing tensions of 
the yarns. When summed up, with yarns inclinations due to the crimp accounted for, 
the yarn tensions are transformed into loads, caused the fabric deformations. This 
computational scheme has been proposed for plain weaves in 70s and also recently 
implemented via FEA (see the Introduction); the present implementation of it puts it 
into the scope of WiseTex modelling, covering a wide range of woven structures. 

The key problem in the bi-axial modelling is computation of crimp heights and 
transversal forces in the deformed structure. Assuming that the spacing of the yarns 
in the fabric is changed proportionally to the change of the repeat size, we compute 
the x and y positions of intersections of warp and weft in the deformed structure. The 
configuration of the yarns in the crimp intervals between the intersections is 
determined by these positions and (unknown) crimp heights. Consider some values 
of the crimp heights. Then the WiseTex geometrical model determines positions of 
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the ends of crimp intervals (warp/weft intersections) and bent shape of the yarns in 
the intervals.  

Q
θθθθ1 θθθθ2

T1 T2

Figure 5. Transversal forces in the fabric under tension 

The transversal forces are computed then using the following formula (Figure 5): 

2211 sinsin θθ TTQQ bend ++= [12] 

where Qbend is the transversal force due to the yarn bending [4], T1,2 are the yarn 
tensions on two crimp intervals adjacent to the point of application of the transversal 
force, θ1,2 are the angles of inclination of the yarn on these crimp intervals. We 
assume that the tension of the yarn can be computed based on the average 
deformation ε of the yarns (therefore T1=T2):

( )
0

0
21 ;

l
ll

TTT
−

=== εε

where l is the yarn length. Note that T depends on yarn length after the deformation, 
which in its turn depend on crimp heights and yarn dimensions.  

The transversal forces compress the yarns according to an experimental law of 
the compression [5]. When the yarn dimensions are computed and "frozen", then 
crimp heights are determined using the minimum energy condition: 

min→+= tensbend WWW

where Wbend and Wtens are the bending and tension energy of the yarns. The former is 
computed summing up bending energies of the yarns in crimp intervals between 
yarn intersections [7], the latter is the sum of tension energies of all the yarns, which 
are computed using their (linear or non-linear) tension diagrams and yarn 
deformations. 
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Step 1. Compute spacing pWa =
pWa0(1+εy); pWe = pWe0(1+ εx)

Step 2. Set changes of weft crimp
heights Δhlj=0

Step 3. Compute fabric internal
structure for hlj= hlj0 + Δ hlj

Step 4. Compute average yarns
strains ε = l/l0 -1

Step 5. Compute yarns tensions
T=T(εεεε)

Step 6. Compute transversal forces
Q (due to bending and
tension)

Step 7. Compute compression of the
yarns under the forces Q.
Check convergence of Q

Step 8. Compute Δhlj using the
condition of minimum of
total (bending plus
tension) energy of the
yarns in the repeat.

Step 9. Check convergence of Δhlj ; if
not, go to Step 3.

Step 10. Compute applied forces
summing up the yarns
tensions

Step 1. Set initial
deformations and tensions.
Step 2. Compute
dimensions of yarns and
transversal forces.
Step 3. Compute length of
the yarns.
Step 4. Compute
deformations and tensions
Step 5. Check convergence
for the deformations. If not,
go to Step 2.

Step 1. Set an
approximation {hWe

lj}
Step 2. Compute
grad(W{hWe

lj})
Step 3. Solve the
minimization problem in the
gradient direction
Step 4. Check the
convergence of {hWe

lj}; if
not, go to Step 2.

Figure 6. Biaxial tension algorithm 

The computations described above determine one step in the iteration process: 
starting from current values of the crimp heights we compute yarn lengths, yarn 
tensions, transversal forces, yarn compressed dimensions and then new values of the 
crimp heights. The full algorithm is depicted in Figure 6. 

If one side of the fabric is kept free (uni-axial tension, say, along the warp), then 
the described algorithm has another, the outmost iteration loop, searching for X<X0
(negative ey) which would lead to zero loads along weft (y) direction. This allows 
computing Poisson coefficient for the fabric. 

4.2. Comparison with experiment and finite element simulations 

4.2.1. Experimental 

Experimental  bi-axial tensile properties of  fibre fabrics have been tested at 
LMSP (UMR CNRS ESAM-ESEM Paris/Orléans). The device presented on Figure 
7 is based on two deformable parallelograms (Ferron, 1992). When the system is 
compressed (on a classical traction-compression machine), it generates tensile 
deformation in a given ratio in each direction of the cross specimen located at the 
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centre of the device. One of the lozenges has adjustable dimensions, in order to set 
various deformation ratio (the ratio is denoted k). The measurements of loads in both 
directions are made using captors, positioned close to the specimen. Strain 
measurements are done by optical methods or by mechanical extensometers. The 
optical measurement permits to check the homogeneity of the strain field within the 
active part of the specimen. Both methods give equivalent global results, but the 
optical measures give the strain field and allow checking its homogeneity (Launay et
al, 2002). The bi-axial tension experiments can be done for warp/weft angles from 
90° to 60°. The cross-shaped specimen is well adapted to the biaxial test of fabrics 
because of the very weak in-plane shear stiffness. The results of a bi-axial test on a 
balanced glass plain weave fabric (2.2 yarns/cm, 1220 tex) are given in comparison 
with calculations in Figure 8 and Figure 9. More details on the experimental 
procedure and experimental results on other fabrics can be found in (Boisse et al,
2001a,b). 

Figure 7. Biaxial tension device 

4.2.2. Finite element analysis 

The biaxial tensile behaviour of a fabric can also be obtained from 3D finite 
element analyses. The main feature is the specific mechanical behaviour of the 
single yarn. For the fabrics under consideration, this yarn is composed of thousand 
of fibres with very small sections which are very flexible and that can slide with 
regards to others. The behaviour of the yarn is assumed to be orthotropic. Shear 
modulus are very small. Young moduli in the direction perpendicular to the yarn are 
all very small in comparison to the modulus in the direction of the yarn. A very 
important point is to give at each time, the orthotropic properties in the frame based 
on the direction of the fibres. A hypoelastic orthotropic model is used and the 
rotation of the orthotropic frame (as well as the rotational objective derivative) is 
based on the rotation of the yarn. Numerical difficulties in the analysis are due to 
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very weak values of some coefficients (especially shear modulus) in comparison to 
Young modulus in the fibre direction. In order to avoid these problems, the 
stabilization technique used for finite elements with reduced integration, called 
hourglass control, is used (Flanagan 1981).  
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The crushing of the yarn is very important in bi-axial tension, because the 
undulation variations are directly depending of these thickness changes. Generally 
the models relate the thickness to the contact force for a given yarn. In finite element 
analysis of fabric, the local value of the young modulus in the direction 
perpendicular to the yarn. When the yarn is under tension, the crushing is more 
difficult. Consequently he transverse young modulus is assumed to be in the form.  

n m
3 0 33 11E E Eε= + ε ε [13]

E0, m and n are three material parameters. Eε is the transverse Young modulus of the 
unloaded state. It is very weak (nearly equal to zero) for the single yarns of the 
studied fabrics.  The parameters E0, m, n are determine using an inverse method 
from the biaxial test for k=1. For this ratio crushing is maximum. The results of the 
finite element analysis are in a very good agreement with the experimental data 
(Gasser et al 2000,  Boisse et al, 2001a,b). 

4.2.3. Comparison with WiseTex model 

The current formulation of the model does not envisage the dependency of the 
compression diagrams of the yarns on the applied tension. It would not be a problem 
to modify equations [5] accordingly, to be used in the iterations shown in Figure 6. 
However, this information is not normally available and standard textile KES-F 
compression tester does not have a tension installation. Therefore the comparison of 
the experimental data and results of finite element simulations can answer two 
questions: 

– Does the iterative algorithm of Figure 6, simplified vis-à-vis finite element
modelling, provide results close to it (and to experiment)?

– What are the errors introduced by using compression diagrams obtained
without the yarn tension?

To answer these questions, WiseTex modelling of the tension of the fabrics, 
described above, have been performed. The yarn tension resistance was assumed to 
be the sum of tension resistance of the fibres. Bending rigidity of the yarns has been 
measured on KES-F to provide the value of 0.5 N mm2. Compression law was 
derived from equation [13] using different constant levels of tension (ε1). These 
diagrams are referred below as "Compression  ε1=…%".

Figure 8 and Figure 9 show the results of the calculations (note that the ends of 
the curves do not represent failure). We can conclude the following: 

– The calculations describe well the qualitative difference between deformation
regimes of uniaxial and biaxial tension.

– For the uniaxial tension the error of calculations is small whatever compression
diagram is used. The standard textile compression tester can be used to gather
input data for simulation of this tension regime.
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– For the biaxial tension the difference between calculations with compression
laws corresponding to different tensions can be as large as 30%. A reasonable
correlation is found when the compression diagram used corresponds to the
highest level of strain of the yarns. For the low strain region the experimental
curve corresponds better to the calculations with compression diagrams for low
tension, and vice versa for higher strain.

5. Shear

5.1. Internal geometry of a sheared woven fabric 

When a woven fabric is sheared, the orthogonal directions of warp and weft 
become skewed. Such a configuration is similar to a braided structure. A model for 
internal geometry of braids is proposed in (Lomov et al., 2002) and is used to 
construct the sheared woven fabric internal geometry.  

The most important feature of non-orthogonal unit cell of a sheared fabric is the 
presence of twist of the yarns. The twist is evident in cross-sections of non-
orthogonal fabrics (Figure 10) and can be mathematically described using the 
algorithms of (Lomov, Nakai et al. 2002). As shown in this paper, the twist can be 
considerable, attaining the values as high as 30-40°. 

Figure 10. Cross-sections of a glass braid, braid angle 25°: Comparison of 
experimental section (above) with the computed contours (below)  

5.2. Shear diagram 

In formulating the model we again follow the lines sketched by S.Kawabata in 
70s (Kawabata, Niwa et al. 1973a; Kawabata, Niwa et al. 1973b; Kawabata, Niwa et 
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al. 1973c), which are also followed by more recent publications (Long 2000; Long, 
Clifford et al. 2001a; Long, Robitaille et al. 2001b; Crookston, Long et al. 2002). 

Consider a sheared unit cell of a woven fabric (Figure 11). For simplicity the 
illustrations below show a plain weave unit cell. The equations are however applied 
to elementary crimp intervals and the forces are summed up for the actual fabric 
repeat. An account is taken therefore of the differences imposed by the weave 
pattern, as shown in comparison with experimental data below. 

Our aim is, given a value of the shear angle, γ, compute the shear force, T, in the 
presence of (pre)tension of the fabric. The tension is dealt with according to the 
algorithms of the previous section, resulting in values of the tension of yarns and 
transversal forces Q, associated with it [12]. 

X

Y

X0

Y0

Fx

Fy

T

O

Figure 11. Element of a sheared unit cell 

The shear force T is related to a moment M at the point O and to the mechanical 
force A done at the shear deformation: 

γcos2TXYM = ; γMA
2
1=  [14] 

We will take into account the following mechanisms of the yarns deformation, 
determining the shear resistance: 

− Friction; 
− (Un)bending; 
− Lateral compression; 
− Torsion; 
− Vertical displacement. 

19



Accordingly the mechanical work A, moment M and shear force T are subdivided: 

torsionbendingdispfriction AAAAA +++= [15] 

The lateral compression of the yarns is introduced via the transversal forces. We do 
not consider intra-yarn friction here, as suggested in (Harrison et al., 2002). It is felt 
that this factor is accounted for by the lateral c7ompression calculations, but the 
question needs more careful examination in future work. 

5.2.1. Transversal forces: Lateral compression of the yarns 

The transversal forces, acting on the yarns, and determining the friction between 
them, are caused by tension and bending of the yarns, as we have seen before [12]. 
During the shear, yarns are subject of lateral compression. This will certainly happen 
after the locking angle is reached: γ*=arcos(w/p), where w is the yarn width, p is the 
spacing (Long 2001a; Long et al., 2002). The lateral compression is present also 
before this moment, under a pressure of crimped interlaced warp and weft yarns. 
The lateral compression creates a pressure inside yarns, which results in an 
additional component of the transversal force acting on the yarns of the interlacing 
system. Therefore the transversal forces at yarns intersections will be 

ncompressiotensionbending QQQQ ++= [16] 

where the first two terms are computed with [4] and [12].  

Vf0 Vf

d2

Q

Figure 12. Lateral compression. Left: Before shear; Right: After shear, Vf]Vf0

The last term in [16] is computed based on the change of fibre volume fraction in 
the deformed configuration (Figure 12). The geometric algorithm for non-orthogonal 
unit cell provides change of the shape of yarn cross-section and therefore the change 
of the fibre volume fraction. The pressure P inside the yarn and the transversal force 
are computed then using the experimental compression diagram of the yarn: 
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( ) WeWa
WeWancompressio ddPPQ 22⋅+= ; ( )( )newnew ddVfPP 21 ,= [17] 

where the superscripts “Wa” and “We” designate two intersecting yarns. 

5.2.2. Components of the shear resistance 

The components of the shear resistance are computed as follows. 

Friction moment:

fQrM friction =  ; 222
1;

3
2

WeWa ddRRr == [18] 

where f is the coefficient of friction, r – effective radius of the zone of friction for 
the normal force Q evenly distributed over a circle with radius R, d2 is width of the 
intersecting warp and weft yarns. 

Mechanical work of torsion:

2

2
1 τCAtorsion = ; ∫ ⎟

⎠
⎞⎜

⎝
⎛ ×⋅=

s

ds
ds
d

0

aatτ [19] 

where C is the torsional rigidity of the yarn, τ is the full angle of torsion, computed 
by integration of rotation of vector a, determining orientations of the yarn cross-
section axis, about the tangent to the yarn middle line t, over the yarn length. The 
torsional rigidity of the yarn can be estimated as  

2/1d
BC = [20] 

where B is the bending rigidity of the yarn, d1 – its thickness (Morton et al., 1970). 

Mechancial work of (un)bending of the yarns:

∫ ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

S

bending ds
ds

zdBA
0

2

2

2

2
1 δ [21] 

where δz is the difference between z-coordinate of the centre line of the yarn before 
and after the deformation (at a given coordinate along the yarn s).

Mechanical work of vertical displacement of the yarns (this displacement goes 
against the transversal forces Q):
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∫ ⋅⋅=
contact

disp dsz
l

QA δ1 [22] 

where l is the yarn length, and the integration is performed over the contact zones 
between warp and weft yarns, determined by the geometrical model (Lomov, 
Gusakov et al. 2000; Lomov et al., 2000). 

5.3. Examples of calculations 

Figure 13 shows the results of simulation of the initial study of shear for a twill 
1/3 glass (480 tex) fabric. The experimental curve was measured on KES-F shear 
tester. Bending properties of the yarns and friction coefficient was also measured on 
KES-F, resulting in the following values: B = 0.25 N mm2, f = 0.24. The results of 
compression tests on the yarns and yarn dimensions are given and discussed 
in(Lomov and Verpoest 2000).  Torsional rigidity of the yarns was estimated with 
[20]. The comparison of the calculations and experimental values is quite 
satisfactory for this low shear region. 

Figure 13. KES-F shear diagram of glass twill fabric. Points: calculated 

Calculations for larger shear angles produce qualitatively satisfactory results, 
representing the main features of the shear process: fast increase of the shear force 
when the angle of shear increases to a locking state, increase of the fabric thickness 
for large shear angles due to the lateral compression of the yarns. However, 
quantitative comparison with shear frame experiments should involve careful 
control over parameters of the experiment, especially (pre)tension of the sample 
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(Long 2001; Long, Souter et al. 2002) and will be a subject of future work. The 
model in the present formulation is not robust: it is sensitive to the variations of the 
input parameters, such as coefficient of friction or compression diagrams, which are 
measured with significant scatter. 

To assess the sensitivity of the model to variations of parameters, consider a set 
of numerical experiments: simulations of shear of glass plain woven fabrics. 
Available literature data (Lomov and Verpoest 2000; Long 2001a; Long, Souter et 
al. 2002) and special measurements of parameters of glass rovings allow 
establishing of a set of master curves for estimation of dimensions of cross-sections, 
bending rigidity and compression curve of a glass roving with given linear density. 
The averaged curves, shown in Figure 14 and Figure 15, were used to determine 
input data for three types of yarns: 500, 1000 and 2000 tex. Fabrics with different 
spacing of the yarns (inverse to the ends/picks count) were considered, the ratio of 
the spacing to the yarn width being 0.6, 0.75 and 0.9. This ratio characterises the 
tightness of the fabric. Friction coefficient was set to be 0.2 in all the cases. 
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Figure 14. Properties of glass rovings. Dimensions of cross-sections (measurements 
for rovings of different linear density and master curve) 
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Figure 16 depicts the results of calculation of shear resistance of these fabrics. 
The following conclusions can be drawn from comparison between the shear 
diagrams for different fabrics and between them and experimental results: 

– The model represents qualitatively the behaviour of the plain woven fabrics
in shear: fast increase of the shear force for high shear angles, deformability
of the fabric beyond the locking angle;
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– Shear resistance increases with the yarn linear density for the same fabric
tightness;

– Fabric tightness plays a definitive role between factors determining the shear
resistance.
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Figure 16. Shear resistance of plain woven glass fabrics. Arrows correspond to the 
geometrical locking angles, γ*=acos(d2/p) 

6. Conclusion

We have presented a family of models of internal structure of woven fabrics in 
relaxed and deformed state and of the load-deformation response for compression, 
bi- and uniaxial tension and shear. The models are based on the following common 
principles: 

− Description of the 2D and 3D weaves by a unified matrix coding 
methodology; 
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− Decomposition of the crimped shape of the yarns into a set of elementary 
crimp intervals, with the shape of each interval corresponds to the solution 
of the minimum bending energy problem; 

− Calculation of the compressed dimensions of the yarn cross-sections by the 
balance between transversal forces generated by bending of the yarns and 
compression resistance of the yarns; 

− Calculation of the crimp heights of the yarns via a solution of minimum 
energy problem. 

The models are implemented in WiseTex software package. The results of the 
simulations have been compared with the experimental observations and finite 
element simulations, resulting in a satisfactory agreement between them. However, 
more work has to be done to achieve robust and reliable predictions of the load-
deformation curves. A bottleneck here is creation of a database of measurements of 
properties of yarns in bending and compression, which can be readily used for 
predictive simulations of behaviour of preforms in composite forming. 

The internal geometry description after deformation can further fed into flow 
modelling software, which allows computing local permeability of the deformed 
reinforcement, and micro-mechanical modelling to calculate homogenised local 
stiffness of the composite. This opens way to creation an integrated design software 
tool, combining local meso-analysis on the scale level of unit cell, homogenisation,
resulting in permeability/stiffness parameters varying according to the local 
deformations and macro analysis of the filling/mechanical properties of the 
composite part. 
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