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An experimental implementation of a rapid active control strategy for flexible structures combined with a

modal filter for state reconstruction is presented. The control law, which builds upon Komornik’s original

idea, is designed so as to achieve an arbitrarily large decay rate of the energy of the system, at the price of

solving once and for all a well-conditioned sm all-size linear system , instead of a Riccati equation. It is

applied to a slender beam. The fundamental ideas and properties of this simple but efficient strategy are

explained. The emphasis is put on the practical im plem entation and on the experim ental results, which show

an important increase of the apparent modal damping even for values of the resulting gain that do not

generate spill-over. The proposed feedback outperforms the standard LQ control. The actual behaviour of

the closed-loop system is accurately predicted by a complete electro-mechanical model that accounts for the

identified dynamics of the shaker.

1. Introduction

There exist various strategies to control the vibrations of structures: the simplest one is

probably the direct velocity feedback [1] that can also be implemented as the integral force

feedback [2,3]. This collocated approach does not rely on any model, and in principle does not

generate spill-over, but may lack efficiency due to the spatial localization of the damping effect

and to the necessary low- or high-pass filtering which strongly deteriorates the performances at

high or low frequencies. Moreover, spill-over shows up in practice due to the difficulty to achieve
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collocation, and due to sensor or actuator dynamics. Another usually non-collocated approach is

the classical LQ strategy and multiple variants, which are a priori more efficient and insure global

stabilization, provided that controllability hold [4–8]. Nevertheless, a state space model is required

for implementation purposes, and its necessary finite-dimensional approximation may give rise to

spill-over instabilities [9].

Following the earlier works of Lions [10] on the exact controllability of partial differential

equations, Komornik has introduced an efficient and simple strategy to stabilize flexible structures

[11,12]. His method assumes the exact controllability of the structure to hold at the continuous

level. This property depends on the mechanics of the structure and of the geometry, see e.g.

Refs. [10,13–20].

Whenever the exact controllability of the structure holds, a control law based on the inversion

of a modified controllability gramian [11,12] leads to a uniform decay rate of the total energy

which is larger than o where the parameter o can be arbitrarily chosen in the design of the control

law. Therefore, this control law can be as efficient as one wants in the sense that some suitable

norm of the state is bounded by CðoÞe�ot at any time t: Moreover this property holds uniformly
with the modal discretization [21]. This control algorithm behaves as a pole placement algorithm,

although the poles of the closed-loop system are not specified during the control synthesis. Recall

that it is not easy to predict the decay rate of the energy of the closed-loop system for a given

control law [12,22,23]. In general the rate at which the energy decays cannot be larger than some

critical damping that depends on the structure [3].

Therefore the most striking feature of Komornik’s control strategy is certainly the possibility

for the user to prescribe the resulting decay rate and to handle it as the unique design parameter

during the control synthesis.

Moreover, the control strategy can be implemented on-line in a simple way and, in particular,

does not require the solution of any Riccati equation, contrary to the standard LQ strategy. It

only requires to solve a simple linear system. On the other hand, a smoothed version of this

control strategy enables one to reduce the possible control spill-over [24]. See Refs. [24–27] for

computational aspects and variants of the original law.

This contribution aims at assessing experimentally the efficiency of Komornik’s feedback per se

and in comparison with the classical LQ strategy. The experimental results enhance previous ones

[28]. Moreover, the role of the actuator in the global closed-loop dynamics is analyzed. The

control system imposes the displacement at one endpoint of a simply supported beam [29].

This paper is organized as follows: Section 2 contains background information on the proposed

control strategy at the continuous level. The experimental setting is presented in Section 3. The

identification technique of the modal filter which helps reconstructing the state of the system is

detailed in the Appendix. An approximation of the feedback law is introduced in view of on-line

computations, and a similar framework is developed for the LQ feedback. Experimental results

regarding white noise and impulse disturbances are presented in Section 4. In both cases the

proposed strategy proves efficient to control the first modes of the system. The relative advantages

of LQ, IFF, and Komornik’s strategies are also discussed. Then, in Section 5, the experimental

results are analyzed by means of a complete electro-mechanical model that takes into account the

actuator behaviour. This approach enables one to explain the practical limitations of the proposed

control strategy in terms of the largest value of the parameter o preventing the closed-loop system

from instabilities.



2. Komornik’s feedback law

Consider a simply supported Euler–Navier–Bernoulli beam of length L: Let r;E;A; I denote its
mass density, Young’s modulus, cross-sectional area and inertia respectively. For the sake of

simplicity, the mass density per unit length rA and the stiffness EI are supposed to be constant

along the beam. Moreover, damping is not taken into account, mostly because the real beam that

has been investigated proves very lightly damped as shown in Table 1. Civil engineering structures

such as cables enjoy the same property. Even large structures like bridges may have no damping

or a negative damping because of wind–structure interaction. Therefore it seems fair to design

control laws without damping and to test them on slightly damped or undamped structures. But

introducing damping in the equations is possible from the theoretical point of view [30], provided

observability holds and the damping is not too large. It is shown that positive or negative

destabilizing damping can be overcome by a controller of the type described below, provided the

parameter o is large enough. Note that positive damping may not enhance the performance of the

controller.

Thus the transverse displacement yðx; tÞ satisfies

rA@ttyðx; tÞ þ EI@xxxxyðx; tÞ ¼ 0; ½0;L� � ½0;T �;

yð0; tÞ ¼ vðtÞ; ½0;T �;

yðL; tÞ ¼ @xxyð0; tÞ ¼ @xxyðL; tÞ ¼ 0; ½0;T �;

yðx; 0Þ ¼ y0ðxÞ; @tyðx; 0Þ ¼ y1ðxÞ; ½0;L�:

8

>

>

>

<

>

>

>

:

ð1Þ

Here the beam is controlled through the imposed transverse displacement at the left endpoint,

although other types of actuation can be considered as well, and the control horizon T can be

arbitrarily large. In order to design the state feedback law vðtÞ ¼ FðyðtÞ; @tyðtÞÞ; an adjoint state is
introduced : let jðx; sÞ denote the unique solution of the beam equation

rA@ssjðx; sÞ þ EI@xxxxjðx; sÞ ¼ 0; ½0;L� � ½0;S�;

jð0; sÞ ¼ jðL; sÞ ¼ @xxjð0; sÞ ¼ @xxjðL; sÞ ¼ 0; ½0;S�;

jðx; 0Þ ¼ j0ðxÞ; @sjðx; 0Þ ¼ j1ðxÞ; ½0;L�;

8

>

<

>

:

ð2Þ

where s denotes a fictitious time, and S a fictitious time horizon. The displacement field j depends

linearly on the initial conditions fj0;j1g: Hence, for any value of o one can define the modified
bilinear controllability gramian

ao;Sðfj
0;j1g; f #j0; #j1gÞ ¼

Z S

0

e�2osEI@xxxjð0; sÞEI@xxx #jð0; sÞ ds; ð3Þ

Table 1

Modal parameters of the initial set-up

Natural frequencies oi (Hz) Damping ratios xi ð%Þ

Mode 1 3.0 0.09

Mode 2 10.8 0.06

Mode 3 23.7 0.1



where #j denotes the solution of (2) with initial conditions f #j0; #j1g: The function e�2os

initially introduced by Komornik [11] has to be slightly modified in view of the theory [12]. But

from the numerical point of view, both choices yield similar results. Therefore the function e�2os

is kept.

Following e.g. Lebeau [15] it can be proved that for any smooth enough displacement

and velocity fields z0 and z1; there exists a unique solution fj0;j1g of the variational
equation

ao;Sðfj
0;j1g; f #j0; #j1gÞ ¼

Z L

0

rAðz1 #j0 � z0 #j1Þ dx 8f #j0; #j1g: ð4Þ

LetLo;S denote the operator defined by fj
0;j1g ¼ Lo;Sfz

0; z1g and P1: R
2
-R the projection

on the first component, i.e. P1ðfa; bgÞ ¼ a: The proposed feedback reads

vðtÞ ¼ �EI@xxxðP1Lo;SfyðtÞ; y
0ðtÞgÞðx ¼ 0Þ: ð5Þ

It is not obvious that the resulting system of equations is well-posed. Nevertheless, global

existence of a unique solution is proved in [12] for the wave and the thin plate equations, as well as

the decay estimate for the state of the closed-loop system

jjfyðtÞ; y0ðtÞgjjwpCe�otjjfy0; y1gjjw ð6Þ

for some constant C; where jj jjw stands for a suitable norm of the state, called the w-norm in the
sequel. This w-norm puts the emphasis on the low-frequency content of the state and underweights

the high-frequency components. The constant C depends exponentially on o [31]. Numerous

numerical tests show that the w-energy, i.e. the square of the w-norm, decays exactly as e�4ot for

S ¼ þN [31]. This conjecture has been proved in Ref. [30].

� Of course, there is no reason why y0ðx ¼ 0Þ ¼ vðt ¼ 0Þ although this condition would be

requested for compatibility. Numerical tests show that this condition is almost never satisfied if

the control is computed as above. However the response of the structure is well defined in a ‘‘very

weak’’ sense. Locally very strong stresses that may develop, can thus be smeared by smoothing

techniques [24]. The actuator dynamics may also play the same role.

� It turns out [12] that this feedback law is nothing but a particular optimal control strategy

associated with the quadratic cost functional

Jðy; vÞ ¼

Z þN

0

ð2o/Lo;Sfy; @tyg; f@ty;�ygSþ v2ðtÞÞ dt; ð7Þ

where /fc0;c1g; fZ0; Z1gS ¼
R L

0
ðc0ðxÞZ0ðxÞ þ c1ðxÞZ1ðxÞÞ dx: The control vðtÞ and the state yðtÞ;

subject to (1), minimize the functional Jðy; vÞ: After a modal discretization, the functional to be
minimized reads

JNðx; vÞ ¼

Z þN

0

ð2oxtðtÞQxðtÞ þ v2ðtÞÞ dt; ð8Þ



where the matrix Q exhibits the non-intuitive structure displayed in Eq. (9) in the case of the beam

described in the next section and discretized by means of the first three modes:

Q ¼

1:9238 �0:0003 �0:0001 0:1120 0:0149 0:0019

�0:0003 0:0300 �0:0000 �0:0037 0:0004 0:0003

�0:0001 �0:0000 0:0026 �0:0002 �0:0001 0:0000

0:1120 �0:0037 �0:0002 1:9285 0:0006 0:0001

0:0149 0:0004 �0:0001 0:0006 0:0301 0:0000

0:0019 0:0003 0:0000 0:0001 0:0000 0:0026
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: ð9Þ

� Some earlier works [32] contain a restricted version of this feedback, namely the case when

o ¼ 0: There is also a clear connection with receding horizon control [33] since an exact
controllability problem in open loop is solved at every time t and the resulting control is applied

over the next ‘‘sampling step’’ when it comes to real-time implementation.

� The full generality of the approach is not questionable since it can be developed in the case of

an abstract dynamical system in state-space form

’x ¼ Axþ Bu; xð0Þ ¼ x0: ð10Þ

In this setting, the modified controllability gramian (3) reads:

ao;Sðj;cÞ ¼

Z S

0

e�2osðB�eA
�sjÞðB�eA

�scÞ ds: ð11Þ

If the strong observability inequality
R T

0
ðB�eA

�tc dtÞ2 dtXajcj2; basic to the Hilbert

Uniqueness Method (HUM) [10], holds for some T and some positive a; then for S large

enough the operator Lo;S defined by /Lo;Sj;cS ¼ ao;Sðj;cÞ for the natural duality product
/:; :S is invertible. Define uðtÞ ¼ B�L�1

o;SxðtÞ; then [12] jjxðtÞjjpCe�otjjx0jj:
The observability inequality cannot be proved in the abstract setting and the physics of

the system must be taken into account. In the same way, convergent and fairly general

methods of approximation are based on the mechanical understanding of the main

quantities involved [26,27,34–37]. This is part of why a concrete pde-based approach seems

useful.

As a conclusion, the control law defined in Eq. (5) induces a prescribed decay rate of some norm

of the system according to estimate (6). The feedback gain results from solving a small-scale linear

system of equations, associated with a symmetric positive definite matrix, with no need of solving

any Riccati equation. In the case of a general, possibly damped, structure, the observability

condition still must be satisfied in view of positive definiteness. Besides, it is usually advocated to

assert the well-posedness of the infinite horizon LQ regulation problem. Therefore Komornik’s

feedback essentially applies in the same conditions as infinite horizon LQ regulator.

Computational details are to be found in Refs. [24–26,31].

An experimental implementation of this method is presented in the next section.



3. Experimental setting

The structure of interest is a simply supported steel beam of the following dimensions: length

L ¼ 1870 mm; width l ¼ 40 mm; and thickness h ¼ 4 mm (Fig. 1). The boundary conditions are

obtained by well-suited mechanical connections: a ball joint at the top and a pinching at the

bottom. As shown in Fig. 16, the electro-mechanical actuator and its amplifier enable one to impose

quasi-proportional structural displacements in a frequency range of 1 to 40 Hz; which includes the
first three modes. That the upper bound of this range coincides with the fourth eigenfrequency of

the structure is a matter of pure chance. The shaker has not been tuned but rather used as is. The

control feedback is computed by a 60 MHz Texas Instrument r DSP TMS320C31 DSP. All the

programming procedures build upon Matlab-Simulink r tools and fit in this environment. In

order to minimize if not eliminate from the measured displacements the contribution of mode 4,

whose natural frequency is 41 Hz; the sensors are placed at the theoretically predicted nodes of
mode 4. In this configuration, this mode cannot contribute to the observation spill-over provided

the theoretical or numerical placement coincide with the real one. This kind of strategy was

proposed among others in Refs. [38–40]. The main aim here is to experimentally prove the efficiency

of the simple boundary control strategy presented in the last section. Above treatment of spill-over

proves sufficient to achieve this goal since experiments match theory. Therefore, no special effort

has been dedicated to enhance this treatment of spill-over.

3.1. State estimation

In this section, the mode shapes of the simply supported beam at both ends are assumed to be

known. Attention is paid here to the estimation of the generalized modal co-ordinates. The

identification of the mode shapes will be detailed in the next subsection. The deflection of the

beam is only known at the three sensor locations. Then, in order to compute the feedback gain (5)

and to implement the strategy on the beam, a finite modal decomposition of the displacement is

useful. Let ðli; yiÞ
þN

i¼1 denote the family of eigenvalues and normal modes of the simply supported
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beam (when yð0; tÞ ¼ 0). The modes are assumed to be normalized so that they have a unit mass.
The displacement all over the beam is decomposed by mode superposition as follows:

yðx; tÞ ¼
X

þN

i¼1

aiðtÞyiðxÞ: ð12Þ

This decomposition seems to contradict the actuation at one end, since a displacement is

imposed but the modes vanish at that point. However this decomposition holds in a weak sense

and works practically. The static mode is implicitly accounted for in the decomposition, by means

of the Fourier coefficients aiðtÞ:
If M sensors located at ðxkÞ

M
k¼1 are available, the displacement at each sensor location xk

satisfies, at least formally (see remark below)

yðx1; tÞ

^

yðxk; tÞ

^

yðxM ; tÞ
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ð13Þ

where Cdðk; iÞ ¼ yiðxkÞ is the general term of the modal participation matrix CdAR
M�M : Thus,

whenever the matrix Cd is non-singular, an estimation ½ %a�M of the true modal intensities ½a�M of

the first M modes can be defined as follows:

½ %aðtÞ�M ¼C�1
d ½yðxk; tÞ�M

¼ ½aðtÞ�M þ
X

þN

i¼Mþ1

aiðtÞC
�1
d

yiðx1Þ

^

yiðxkÞ

^

yiðxMÞ
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; ð14Þ

where ½yðxk; tÞ�M stands for the vector ðyðx1; tÞ;y; yðxk; tÞ;y; yðxM ; tÞÞ0: The online estimation of
the modal intensity vector ½a�M is thus based on the outputs of the sensors using the classical

modal filter ½Filter�M�M ¼ C�1
d : See Refs. [38,39] for various properties of this method and some

sensor optimization based solutions to the problem of the spill-over introduced by the residual

term in Eq. (14), in view of enhancing the control efficiency.

Remark. (i) The series expansion (12) may not converge pointwise in space. Therefore, Eq. (13)

and the second line of Eq. (14) may not make sense but highlight the reason of observation spill-

over in this context. However, the first line of Eq. (14) does make sense, and this is all that is

needed in order to develop the rest of the control procedure.

(ii) If N modes were to be controlled with N > M then a state reconstruction, e.g. a Kalman

filter or a Luenberger observer, would be needed.

In view of the control synthesis, the so-called modelled dynamics will be spanned by the first

N ¼ M modes of the beam. The largest possible number of modes will then be controlled. The



velocities are assumed here to be reconstructed by numerical derivation and filtering of the

measured displacements. The beam transverse displacement is estimated here by only keeping in

Eq. (12) the modes whose participation has been estimated:

%yNðt; xÞ ¼
X

N

i¼1

%aiðtÞyiðxÞ @t %yNðt; xÞ ¼
X

N

i¼1

@t %ai; ð15Þ

where @t %aiðtÞ stands for a numerical time derivative of %aiðtÞ; realized by means of a specific second
order low-pass derivative filter.

3.2. Modal filter identification

The mode shapes of an ideal simply supported Euler–Navier–Bernoulli beam are well known.

However, they are not exactly similar to the experimentally observed ones because of imperfect

boundary conditions, error in the material characteristics or in the dimension of the system.

Therefore the modes shapes must be identified.

The modal parameters of the beam and, above all, the terms ½yiðxkÞ�i;k¼1;y;3; basic to the
expression of the modal filter, have been obtained by means of an impulse testing method relying

on a hammer with incorporated force sensor [41,42]. After curve fitting, poles and residues are

computed from the transfer functions between the measured displacements and the impulse load.

These experimental transfer functions and corresponding fitting curves are shown in Figs. 2–4. As

expected the fourth mode is not measured by the sensors. On the other hand, the second sensor

does not pick up the modal intensity of the second mode because it measures the displacement at

the middle of the beam. Within the 0–40 Hz bandwidth, the first three eigenfrequencies and the
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Fig. 2. Experimental transfer function (..) and the fitted curve (-) of sensor 1.



associated modal damping ratios are identified and given in Table 1. Only the corresponding

modal intensities are considered to compute the control by using relations (15) in Eq. (5).

The quality of the filtered signal, which will be used as a modal estimator in the control

feedback, is shown in Figs. 5–7. In the frequency band of interest (0–40 Hz), the modal estimators
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Fig. 3. Experimental transfer function (..) and the fitted curve (-) of sensor 2.
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are good enough to be used in the control feedback. The modal signal corresponding to

the third mode is not really uncoupled from the first two because of difficulties in reaching

sufficient accuracy when estimating the modal parameters from the sensors. These difficulties

may come from signal processing parameters, sensor non-linearities, or boundary condi-

tions. Nevertheless, the first observed residual mode at 68 Hz is far enough from the

frequency band of interest to be filtered by a classical temporal low-pass filter which has been

implemented together with the feedback itself. In this way, the risk of spill-over instabilities is

partly mitigated.

3.3. Real-time approximation of the control law

Table 1 confirms the small damping assumption. This justifies the equations displayed in

Section 2. From now on, damping is neglected in the elastodynamic equations used for the design

of the control laws that are tested in this paper.

Let VN denote the space spanned by the first N modes yi of the simply supported beam. In

order to compute a control with the discrete estimated state ( %yNðt;xÞ; @t %yNðt;xÞ), the bi-linear
controllability gramian (3) is projected over VN � VN : for every pair of functions fz

0; z1g; define
fj0N ;j

1
NgAVN � VN as the solution of the variational equation

ao;Sðfj
0
N ;j

1
Ng; f #j

0
N ; #j

1
NgÞ ¼

Z L

0

rAðz1 #j0N � z0 #j1NÞ dx 8f #j0N ; #j
1
NgAVN � VN ð16Þ
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Fig. 5. FRF of the first mode estimator signal.



and set j0N ¼ LNfz
0; z1g: In the same way as in the continuous case, the control is defined as:

vNðtÞ ¼ �EI@xxxLNf %yNðtÞ; @t %yNðtÞgðx ¼ 0Þ; or equivalently in matrix form:

vNðtÞ ¼ �½T�N ½K�N�2N ½½%a�NðtÞ; @t½%a�NðtÞ�
t; ð17Þ
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Fig. 6. FRF of the second mode estimator signal.
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where ½T�N ¼ ½t1;y; tN �; and ti ¼ EI@xxxyiðx ¼ 0Þ stands for the end shear force of the ith mode of

the reference model (1) with vðtÞ ¼ 0; and K represents the matrix associated to LN; the
computation of which is detailed in Refs. [29,31]. Note that K depends on o;S and ½T�N : Here the
first three modal participations are estimated and N ¼ 3: Thus, it is now possible to test the
efficiency of above feedback law, per se, but also in comparison with the classical LQ feedback.

3.4. LQ implementation

The same mechanical system with the same actuator is used for the implementation of the LQ

strategy. Therefore the state equation must accomodate for displacement controls. In order to

describe the dynamics of the system, a ‘‘spatially very weak’’ formulation of the beam equation is

introduced as in Refs. [25,26,31]. Formal integrations by parts of (1) after multiplication by a

smooth displacement field w lead to the formulation:

For all wðxÞ smooth enough such that wð0Þ ¼ wðLÞ ¼ @2wð0Þ=@x2 ¼ @2wðLÞ=@x2 ¼ 0:
Z L

0

rA
@2y

@t2
ðx; tÞwðxÞ dxþ EI

Z L

0

yðx; tÞ
@4w

@x4
ðxÞ dxþ EIvðtÞ

@3w

@x3
ð0Þ ¼ 0: ð18Þ

This equation is supplemented with initial conditions. An approximation yNðx; tÞ in VN of the

displacement y is defined as the solution of Eq. (18) with wAVN : The N resulting equations can be
written in a state space form:

’XðtÞ ¼ ½A�XðtÞ þ ½B� vNðtÞ;

X ¼ ½%bNðtÞ; @t %bNðtÞ�
t

(

ð19Þ

with initial conditions ½bNð0Þ�i ¼
R L

0
rAy0ðxÞyiðxÞ dx; ½@tbNð0Þ�i ¼

R L

0
rAy1ðxÞyiðxÞ dx: The LQ

regulator results from minimizing the cost functional: JðX ; vÞ ¼
RþN

0
XT½Q�X þ vTRv dt; over

all v and X satisfying Eq. (19). HereQ ¼ diagðliÞ
0

0
I

� �

and R ¼ rI in order to minimize the mechanical

energy. Note that r has been decreased as much as possible during the experiment in order to

maximize the control efficiency while still avoiding the spill-over instability. As usual, this

minimization leads to the resolution of an algebraic Riccati equation, that has been solved with

Matlab.

Notice that even if the way the control is designed is different for Komornik’s and LQ

feedbacks, the resulting control equations are similar in the sense that, for each strategy, vNðtÞ ¼

�½G�N ½½%b�NðtÞ; @t½%b�NðtÞ�
t; where ½%b�N stands for a real-time estimation of ½b�N ; and similarly for the

time derivatives. This estimation is carried out by means of the modal filter described in Section 3,

in order to compare the feedback laws with the same state estimator.

Remark. (i) the choice of the weighting matrix Q refers to the minimization of the total energy at

the discrete level, whereas this quantity is too strong a norm to be defined since a boundary

displacement is imposed. A matrix corresponding to a weak norm should be introduced, in view

of the continuous case. However, at the discrete level, all choices are possible, therefore the above

choice is made in view of comparing the proposed algorithm with standard ones.

(ii) Although optimal in some sense, Kalman filtering proved much less efficient than modal

filtering in view of stabilizing the beam, probably because it needs some time to reconstruct the

true dynamics of the beam. But in the case of a sudden external load, allowing some time for state



reconstruction before controlling would clearly result in a poor efficiency. In this case, a

preliminary and continuous training of the Kalman filter might be of interest.

4. Experimental results

Two different disturbances are considered: a white Gaussian noise in view of testing disturbance

rejection, and an impact to highlight the stability of the controlled system.

It is noteworthy to emphasize that both disturbances are applied far from the actuator, with a

coil or a hammer. Generally speaking, excellent results might be obtained with classical control

laws when the actuator is located very close to the point where the disturbance is applied. In

practice, wind- and earthquake loads may be considered as distributed, at least in a frame

attached to the moving ground.

4.1. Komornik’s feedback with exogeneous white noise disturbance

A white Gaussian force is applied via a field coil fixed at the 3=4th of the length of the beam.
The feedback control starts after 8 s of recording. The control parameters chosen in the algorithm

are o ¼ 1; S ¼ 30 s: The displacement imposed by the actuator is presented on the bottom left
curve of Fig. 8, while the other three curves above (Fig. 8 left) show the displacement at the sensor

locations that is to say at 1=4; 1=2; 3=4 of the length of the beam. The corresponding modal
intensities estimated with the modal filter are shown in Fig. 8 on the right. Only the first two

modes are well stabilized.

The w-energy is computed from the experimental results. Let %yNðx; tÞ denote the estimated
displacement as in Eq. (15). It only contains the flexible components of the movement and no term

takes into account the static displacement imposed by vðtÞ: Then [31]

jj %yNðtÞ; %y
0
NðtÞjj

2
w ¼

X

N

i¼1

%a2i ðtÞL
2

rAi2p2
þ

X

N

i¼1

ðd%aiðtÞ=dtÞ
2L6

rAi6p6
:

For a white noise disturbance, a �15 dB decrease can be observed on the w-energy, with o ¼ 1;
and S ¼ 30 s (Fig. 9).

4.2. Komornik’s feedback with exogeneous impulse disturbance

In this section, an impact is applied to the beam with a hammer. The frequency range which is

actually excited by this perturbation includes the frequency band of interest. The corresponding

energy (the power spectral density) is constant over the whole frequency band. The displacements

are being recorded during 10 s: The impact is given at 0:1 s after the beginning of the recording,
therefore the reference position is estimated during the first 0:1 s: Fig. 10 shows the imposed
control and resulting displacement at sensors 1,2 and 3 with o ¼ 1; S ¼ 30 s on the right-hand

side. The same displacements in the uncontrolled case are shown on the left of the same figure.

The modal intensities computed with the modal filter are shown in Fig. 11, with o ¼ 1 on the left

and o ¼ 2 on the right. As expected, the larger o; the faster the decay of the response.



The modal damping ratios of the controlled displacements are estimated and shown in Table 2,

which shows a dramatic improvement with respect to the uncontrolled case (Table 1).

It turns out that Komornik’s strategy is very efficient to stabilize the first two modes. The

damping ratios are very important compared with other algorithms. It is noteworthy to notice

that experiments match simulations that rely on the spatially very weak formulation (18) [25,31].

Fig. 9. w-energy of the structure, with white noise excitation, control starting at t ¼ 6:5 s; o ¼ 1; S ¼ 30 s:
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However the stabilization of the third mode is not increased when the control changes from

o ¼ 1 to 2. In fact, the third natural frequency is quite close to the cutting frequency of the

actuator (see Fig. 16). So, a coupling effect between the actuator and the mechanical system

occurs explaining that the third mode is not very well controlled. An instability even appears on

this degree of freedom when the parameter o is larger than 2.2. The analysis of this phenomenum

is presented in Section 4. The w-energy is shown in Fig. 12 in the impulse case for different values

of the parameters o and S:
The energy before the impulse disturbance is observed during the first 0:1 s; then the impact

furnishes energy to the beam, and the control damps the system during the next 2 s (�30 dB). The

final level of energy is the same as the one before the impulse. It can be noticed that the energy
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Fig. 10. Measured displacements with sensors 1,2,3 and imposed control after an impulse excitation given at t ¼ 0:1 s;
uncontrolled (left), controlled (right).
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decays truly as e�4ot: In both graphs e�4ot; e�2t; e�t are plotted in dotted lines. Again, the larger o;
the faster the decay of the response. The actual decay rate coincides with the theoretically

expected one.

4.3. LQ results with exogeneous impulse disturbance

Here, r ¼ 5� 104 is the smallest value of r before the spill-over instability occurs. Therefore this

LQ control is the most efficient one for Q ¼ diagðliÞ
0

0
I

� �

: Fig. 13 shows the same results as before in
the case of LQ strategy. See Figs. 10 and 11 for a comparison. Obviously this stabilization

procedure is less efficient than Komornik’s one.

Further comparison of Komornik’s and LQ strategies involves the mechanical energy (see

Fig. 14) EmðtÞ ¼
R L

0
1=2rAð@yðx; tÞ=@tÞ2 dxþ

R L

0
1=2EIð@2y=@x2ðx; tÞÞ2 dx for both controlled

beams. To compute this energy, the real displacement yðx; tÞ is now discretized as yNðx; tÞ ¼

Fig. 12. w-energy of the controlled structure, with impulse excitation given at t ¼ 0:1 s; left: o ¼ 0:5; S ¼ 30 s; right:

o ¼ 1; S ¼ 30 s:

Table 2

Modal parameters for different values of the control parameter o

o Modes (Hz) Frequencies (Hz) Damping ratio ð%Þ

0.5 1 3.2 3.3

2 11.24 1.15

3 23.7 0.4

1 1 3.1 6.1

2 11.4 1.28

3 23.5 0.54

2 1 3.06 9.5

2 11.3 2.4

3 23.62 0.15



ð1� x=LÞvðtÞ þ
PN

i¼1 %aiðtÞyiðxÞ; where the first term represents the static part of the movement.
Then an estimation of the mechanical energy reads

%EmðtÞ ¼
1

2

X

3

i¼1

%a0iðtÞ
2 þ v0ðtÞ

X

3

i¼1

%a0iðtÞ

Z L

0

1�
x

L

� �

yiðxÞ dx

þ
rAL

4
ðv0ðtÞÞ2 þ

1

2

X

3

i¼1

li %aiðtÞ
2: ð20Þ

Remark. (i) That the definition of the approximate state has changed has no influence on the

control design since the energy is computed off-line at a postprocessing stage.

(ii) Choosing the mechanical energy as a performance index proves very severe and even unfair

for this version of Komornik’s algorithm that is inherently designed to rather minimize a weak

norm which is totally different from the mechanical energy that LQ strategy aims at minimizing.

Let it be emphasized that the mechanical energy amplifies the high frequencies whereas the w-

energy amplifies the low frequencies.

Nevertheless, the mechanical energy is plotted for LQ and Komornik’s algorithms in the case of

an impulse disturbance. The parameters are chosen to generate the most efficient LQ control for

the experimental set-up considered. However, as shown in Fig. 14, for Komornik’s control only

2 s are required to let the energy decrease by 30 dB; whereas the LQ control requires almost 10 s:

4.4. Comparison between Komornik’s algorithm and other feedbacks

The goal of this section is to compare the main features of integral force feedback, direct

velocity feedback, linear quadratic regulator, and Komornik’s feedback.
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* IFF, DVF: These strategies can be physically or numerically implemented without resorting to

any model, although a model is definitely of interest for simulation purposes. In principle, these

strategies are free of instability if no time delay is considered, but the necessary low- or high-

pass filters as well as the dynamics of the sensors and actuators may introduce instabilities

[2,43]. Moreover they are mostly effective close to the resonance frequency. The theoretical

efficiency is bounded [3] and not uniform among the possible multiple modes to be damped

simultaneously.
* LQ feedback: The advantage of that control is the minimization of control and state together.

This global strategy attenuates all disturbances within a predefined bandwidth in a slightly

damped system. However, instabilities due to spill-over may appear, due to the amplification of

potential disturbances outside the frequency band of validity of the model. Except when special

frequency-domain techniques apply, the classical LQ strategy requires the solution of an

algebraic Riccati equation. A good approximation scheme that preserves the dynamics of the

closed-loop system is thus needed, and this point remains partly open for the boundary control

of an undamped wave or plate equation [8]. Recall [44,45] that standard discretization schemes

can destroy the properties of the controlled system and thus fail to represent its real behaviour,

even for a simple bar under traction and discretized by low-order finite elements: A general

three-parameter method of approximation [27,34–37] however restores the stability and the

convergence even when low-order finite elements are used. Moreover, a good Riccati solver is

needed for the LQ synthesis and standard packages may not work well if the dimension of the

system is too large (say X10 states or five modes) or if the number of sensors differs from the

number of actuators.
* Komornik’s feedback: As optimal control, it features similar advantages and disadvantages as

LQ feedback. The differences are the simpler software implementation and the better efficiency,

at least when using boundary control. While the decay rate of IFF is limited by a maximum

damping value, Komornik’s feedback ensures an arbitrarily large decay rate in w-energy.

Fig. 14. Mechanical energy of the structure, with impulse excitation given at t ¼ 0:1 s; left: Komornik’s algorithm
o ¼ 2; right: LQ r ¼ 5� 104:



Moreover, the uniform stability of the control algorithm with respect to the number of modes

[21] and to the discretization parameters holds for boundary control, in the absence of natural

damping and for any kind of discretization tool, including low order finite elements.

Furthermore, the implementation of Komornik’s feedback does not involve the resolution of

any Riccati equation although this is a particular LQ strategy, but rather the resolution of a

simple non-singular linear system. Finally, a single parameter, which is the expected efficiency,

needs to be tuned. The control algorithm proves thus very easy to use. The main disadvantage

of this method, with respect to DVF of IFF only, remains the spill-over instability which occurs

for large values of the parameter o: This problem is studied and original tricks are under

development. See Refs. [24,46] for preliminary results.

5. Analysis of the experimental results by using a complete electro-mechanical model

The previous section showed that instability occurs on the third mode when o > 2:2: This
problem probably originates from the coupling between the actuator and the structure. In order

to explain this interaction, the whole electro-mechanical model of the system described in Fig. 15

is simulated.

5.1. Electro-mechanical modelling

The mechanical equations describing the interaction of the beam and the actuator write

rA@ttyðx; tÞ þ EI@xxxxyðx; tÞ ¼ 0; ½0;L� � ½0;T �;

yð0; tÞ ¼ vðtÞ ¼ yeðtÞ;�EI@xxxyð0; tÞ ¼ FpðtÞ; ½0;T �;

yðL; tÞ ¼ @xxyð0; tÞ ¼ @xxyðL; tÞ ¼ 0; ½0;T �;

yðx; 0Þ ¼ y0ðxÞ; @tyðx; 0Þ ¼ y1ðxÞ; ½0;L�;

8

>

>

>

<

>

>

>

:

ð21Þ

Mey
00
e ðtÞ þ KeyeðtÞ ¼ FeðtÞ þ FpðtÞ ð22Þ

and

LeI
0

ðtÞ þ ReIðtÞ þ Bly0eðtÞ ¼ V ðtÞ: ð23Þ

In these equations, Me and Ke represent the moving mass of the shaker and the stiffness of its

suspension respectively. Moreover, yeðtÞ stands for the displacement of the beam at x ¼ 0; and Fp

for the shear force at x ¼ 0; whereas Fe corresponds to the electro-mechanical force, given by

Laplace’s law FeðtÞ ¼ BlIðtÞ; where B is the permanent magnetic field, l corresponds to the coil
length and IðtÞ denotes the electrical current in the coil. Finally, Le; Re and V ðtÞ stand for the coil

inductance and resistance and for the imposed voltage respectively. In the previous developments

the actual controlling displacement yeðtÞ was assumed to be proportional to V ðtÞ; but this is not
the case.

A full variational formulation of Eqs. (21)–(23), and a Galerkin approximation based on P

modes of the simply supported beam, one static mode and one purely electric mode, result in a

finite set of coupled equations modelling the electro-mechanical behaviour of the discrete system,

where the modal intensities aiðtÞ; the end displacement yeðtÞ of the beam, and the electrical current



IðtÞ can be chosen as primary unknowns:

a00i ðtÞ þ ziy
00
e ðtÞ þ liaiðtÞ ¼ 0 for i ¼ 1;y;P;

Me þ
rAL

3

� �

y00e ðtÞ þ
PN

i¼1 zia
00
i ðtÞ þ KeyeðtÞ � BlIðtÞ ¼ 0;

LeI
0ðtÞ þ ReIðtÞ þ Bly0eðtÞ ¼ VðtÞ;

8

>

>

>

<

>

>

>

:

ð24Þ

where zi ¼
R L

0
rAð1� x=LÞyiðxÞ dx:

These equations differ from the ones obtained by applying the classical definition of the

reaction force of the beam at its tip to the discretized displacement.

The parameters Le; Re;Me; Ke and Bl are identified by means of the transfer function between

the displacement yeðtÞ measured by a dedicated sensor and the imposed voltage V ðtÞ; when the
actuator is disconnected from the beam (Fig. 16). The theoretical transfer function reads

*ye
*V
ðoÞ ¼

Bl

ðMeLeðioÞ
3 þMeReðioÞ

2 þ ioðLeKe þ ðBlÞ2Þ þ KeReÞ
: ð25Þ

A fitting technique leads to a rational function of io quite close to the measured transfer

function (Fig. 16). Term by term identification yields four among the five unknown parameters,

while Re is directly measured on the system: Re ¼ 2:5 O; Le ¼ 0:0069 H; Me ¼ 0:25 kg; Ke ¼

22800 N=m and Bl ¼ 9:0429 Tm: Fig. 17 shows the theoretical and measured transfer functions
between yeðtÞ and VðtÞ when the beam is connected to the actuator. The very good agreement

between these curves confirms the quality of the identified model.

5.2. The complete electro-mechanical simulation of the control

The open loop electro-mechanical system described by Eq. (24) is closed by the feedback loop

of the beam with ideal actuator. Mimicking the experiment, the first M modal participations are

observed by means of Eq. (15), where the measured displacement is now built according to the

Me

Beam

Ke

y

v(t)=ye

Fe

Re

Le
V

B

Electro-mechanical Actuator

Rigid link

Fig. 15. Complete electro-mechanical system.



electro-mechanical model, that is to say yðx; tÞ ¼
PP

i¼1 aiðtÞyiðxÞ þ yeðtÞð1� x=LÞ at every sensor
location. Now the contributions of the Pþ 2 unknowns of model (24) may appear in ½%aðtÞ�M ;
causing observation spill-over. For the sake of simplicity, the dependence of ½%aðtÞ�M with respect to

P will be skipped in the sequel.
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fitting curve.

Fig. 17. Experimental and computed transfer function between yeðtÞ and V ðtÞ when the beam is connected to the

actuator: left, the magnitudes in dB of each complex function; right: the phases with an artificial phase delay of p:



Moreover the filtered time-derivative of the generalized displacements, denoted by @t %aiðtÞ; is
defined as the output ’wiðtÞ of the state-space equation

@t
wiðtÞ

’wiðtÞ

" #

¼
0 1

�2xcoc �o2c

" #

wiðtÞ

’wiðtÞ

" #

þ
0

o2c

" #

%aiðtÞ;

wið0Þ ¼ ’wið0Þ ¼ 0; ð26Þ

where oc ¼ 2p:30 and xc ¼ 1=
ffiffiffi

2
p

: The discrete velocity estimator is implemented in the DSP as
the solution of a recursive z-filter.

Hence, the control vMðtÞ to be applied is defined as in Eq. (17) by

vMðtÞ ¼ �½T�M ½K�M�2M ½½ %a�MðtÞ; @t½ %a�MðtÞ�t: ð27Þ

Finally, this control has to be imposed via the voltage VðtÞ involved in Eq. (24). Let g denote

the average of the inverse transfer function between V ðtÞ and yeðtÞ in the frequency band of

interest, then set V ðtÞ ¼ gvMðtÞ: This closes the system.
The gain g may look somewhat arbitrary, but the transfer function of the shaker disconnected

from the beam proves relatively flat in the frequency band of interest (see Fig. 16).

It remains to plot (see Fig. 18) the pole locus of the closed-loop system as a function of o: The
choosen parameters are M ¼ 3; P ¼ 6 (there are 3þ 3 residual modes taken into account).

Fig. 18. The first five complex pole locus of the beam discretized with N ¼ 6; M ¼ 3; for control parameter o ¼

1; 1:5; 1:8; 2; 2:2:



From Fig. 18, it turns out that the third mode of the beam corresponding to the third plotted

pole becomes unstable for o ¼ 2:2: This purely numerical result coincides with the experimental
observations since instability of the real system occurs for o between 2 and 2:2: Thus, the
complete model describing as accurately as possible the real implementation of the system in

continuous time representation predicts the observed instability and the stability margin when the

parameter o varies. The third mode instability is induced by the electro-mechanical behaviour of

the actuator coupled with the derivative low-pass filter used in the control feedback loop. Some

solutions to this problem, in view of increasing stability and, so, the potential control efficiency

are being explored.

6. Conclusions

A new strategy to stabilize flexible structures mainly due to Komornik has been tested

experimentally. The algorithm has been described in detail for a simply supported beam. Then an

approximate modal approach has been introduced in view of carrying out the experimental

implementation. The classical LQ algorithm has also been implemented and compared to the new

algorithm that exhibited much better stabilization performances. Energy attenuation exceeds

30 dB; stabilization is achieved 5 times faster than with LQ.
However, it is shown that increasing the control amplifies potential disturbances outside the

considered frequency band, that is to say spill-over shows up for both algorithms. The

contribution of the highest mode considered in the model is increased by the control and becomes

unstable for a large value of the parameter o: This problem is fully explained in the last section
where a complete electro-mechanical model yields numerical results that perfectly match the

experiments.

On the other hand, the control design based on the complete electro-mechanical model has not

been undertaken.

Based on this experimental study the new feedback is shown:

(i) to be very efficient and to reject disturbances. It leads to a significant improvement of the

stability of structures;

(ii) to be really simple to implement;

(iii) to generate the same spill-over as LQ;

(iv) to outperform the classical LQ feedback in this case.

Ongoing research aims at expanding the above results to the case of a larger frequency band

and at engineering away spill-over by means of suitable mechanical formulations and feedback

implementations. Extension to general systems in state-space form is also in progress from the

computational viewpoint.

Appendix

The impact method [41,42] works as follows :

Let *f denote the Fourier transform of the function f : The theoretical transfer functions
between the measured signals yðxk; tÞ; kp3; and the external load F ðtÞ collocated with sensor 1



at x1 write

*yðx1;oÞ

*yðx2;oÞ

*yðx3;oÞ

2

6

4

3

7

5
¼

P

N

i¼1

yiðx1Þyiðx1Þ

o2i � o2 þ 2ixioio

P

N

i¼1

yiðx2Þyiðx1Þ

o2i � o2 þ 2ixioio

P

N

i¼1

yiðx3Þyiðx1Þ

o2i � o2 þ 2ixioio

2

6

6

6

6

6

6

6
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3

7

7

7

7

7

7

7

5

*FðoÞ: ðA:1Þ

Remark. Damping terms are introduced in the transfer functions for several reasons : first,

damping always shows up in any structure, and it is useful to identify it, no matter how small it is.

Second, the method described hereafter yields damping for free. Third, a correct value of damping

terms may help getting reliable values for other modal parameters. Finally, the small damping

assumption must be substantiated by experiments.

The identification of most terms in Eq. (A.1) yields the modal parameters and the modal filter,

made of the modal values at every sensor. Several steps are necessary:

Step 1: For a given impact at x1; each time-varying signal is sampled with a frequency of 500 Hz
for 10 s:
Step 2: A rectangular window is applied on the shock signal covering the useful part of

these data in order to avoid the problems induced by the input noise. The measured signals

given by the displacement sensors are multiplied by e�t=tc in order to enforce the response

signals to vanish before the end of the acquisition period of 10 s: The corresponding added
damping ratio (1=tc) will be removed from the computed damping ratios at the end of the

identification process.

Step 3: The FFT of above damped output signal is then divided by the FFT of the impact force

signal, hence the transfer function.

Step 4: steps 1–3 are repeated 10 times. Then the average value of these 10 transfer functions is

computed. Thus errors induced by the ouput noises are partly engineered away. Hence, an

experimental realization %HkðoÞ of the exact transfer function between each sensor k and the

impact force HkðoÞ ¼
PþN

i¼1 yiðx1ÞyiðxkÞ=ðo
2
i � o2 þ 2jxioioÞ is obtained.

Step 5: A rational fraction defined as

#HkðoÞ ¼
X

3

i¼1

Rki

ðjo� piÞ
þ

%Rki

ðjo� %piÞ
þ E ðA:2Þ

is fitted to each experimental transfer function %HkðoÞ obtained at Step 4.

Step 6: The modal parameters of the beam are identified by just comparing Eq. (A.2) with the

close-form approximation of the exact transfer function

HkðoÞE
X

3

i¼1

yiðx1ÞyiðxkÞ

ðo2i � o2 þ 2jxioioÞ
þ E ðA:3Þ



where the constant E ¼
PþN

i¼4 yiðx1ÞyiðxkÞ=o
2
i accounts for the participation of the neglected

modes. This identification leads to the system

xioi þ joi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2i

q

¼ pi;
jyiðx1ÞyiðxkÞ

2oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2i

q ¼ Rki; E ¼ E: ðA:4Þ

The first set of equations yields the damping ratios and the frequencies. The collocated transfer

functions, for k ¼ 1; yield yiðx1Þ for i ¼ 1;y; 3: The same equations then yield the non-collocated
values yiðxkÞ; hence an approximation %Cd of the modal matrix Cd introduced in (13), and an

approximate filter by inversion.
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