
HAL Id: hal-00020254
https://hal.science/hal-00020254v1

Preprint submitted on 8 Mar 2006 (v1), last revised 29 May 2006 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quadratic Backward Stochastic Differential Equations
(BSDEs) Driven by a Continuous Martingale and
Application to the Utility Maximization Problem

Marie Amélie Morlais

To cite this version:
Marie Amélie Morlais. Quadratic Backward Stochastic Differential Equations (BSDEs) Driven by a
Continuous Martingale and Application to the Utility Maximization Problem. 2006. �hal-00020254v1�

https://hal.science/hal-00020254v1
https://hal.archives-ouvertes.fr


Quadratic BSDEs Driven by a Continuous Martin-
gale and Application to the Utility Maximization Prob-
lem

Marie-amélie Morlais
IRMAR
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Abstract

In this paper, we will study some quadratic Backward Stochastic
Differential Equations (BSDEs) in a continuous filtration which arise
naturally in the problem of utility maximization with constraints on
the portfolio.
In a first part, we will show existence and uniqueness for those BSDEs.
Then we will give an application to the utility maximization problem
for three different cases : the exponential utility function, the power
one and the logarithmic one.
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1 Introduction :

1.1 Motivation :

In this paper, we will study some quadratic BSDEs : these equations arise naturally in
the utility maximization problem.
There is a long list of papers dealing with the classical problem of utility maximization
and we will mention only a few of them, close to our setting.
The main interest comes from the existence of incomplete markets in which all contingent
claims (or random variables depending on the information available at terminal time T)
are not attainable. This explains the interest to introduce a new notion of optimality (and
especially of optimal strategy).
To this aim, we consider a usual probability space (Ω, F , P, F = (Ft)) equipped with a
right-continuous and complete filtration F = (Ft)t∈[0,T ].
Then, we define the utility maximization problem by setting the value process
V = (V(xt))t∈[0,T ] as follows :

V (xt) = esssup
ν

E(U(Xν
T )|Ft) = esssup

ν
E(U(xt +

∫ T

t

ν
′

s

dSs
Ss

)|Ft) (1)
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where xt will be a fix Ft-measurable random variable, S is the price process and the process
: Xν = x+

∫
(ν

′
.dSS ) stands for the wealth process associated to the strategy ν.

The problem (1) is studied extensively in the literature see [13] (or [14]) for a survey
on this topic. The convex duality method is largely used for this type of problem, but this
method requires the constraint on the portfolio to be convex.
Another method to solve this problem is to apply the BSDE technique see for example
[5], [6] or recently [8]. We mention that in [5] the constraint on the portfolio is a convex
cone, and that in [8], no constraint is imposed on the portfolio, but the authors study the
problem in a general filtration. On the other hand in [6], the authors study the problem
(1) in a Brownian filtration and, in particular, they prove the existence of optimal portfo-
lio with a closed (but non necessarily convex) constraint on the portfolio. Because those
authors work in a Brownian setting, the results on quadratic BSDEs are available (for this
see [2]).

In the present article, we will study the problem (1) using the BSDE technique inspired
by [6] but, since we will work on a continuous (but non Brownian) filtration, no results
on quadratic BSDE are available. Hence we begin by a study of the problems of existence
and uniqueness for those quadratic BSDEs.
Then, in a second part, we will apply those results to find a construction of the utility
value process (V(xt))t. We will compute for three types of utility functions the expression
of this value process.

1.2 Theoretical background :

In this part, we are going to introduce the form of the BSDE we will consider in the sequel.
We consider as usual a probability space (Ω, F, P) equipped with a right continuous and
complete filtration F = (Ft) and with a local and continuous d-dimensionnal martingale
M .
In the sequel, all processes will be considered on [0, T] where T is a deterministic time (T
is the horizon or maturity time in finance).
All local and R-valued martingales are supposed to be of the form : K = Z

′
.M + L, where

Z is a process taking its values in Rd×1 and L is a real valued martingale which is strongly
orthogonal to M (that is to say that for each i : < M i, L > = 0).
We have moreover that each component d< M i,M j > (i, j ∈ [1, d]2) of the quadratic
variation of M is absolutely continuous with respect to dC̃s = d(

∑
i d < M i >) .

This is a simple consequence of Kunita-Watanabe’s inequality for local continuous
martingales. In fact, using the result of Proposition 1.15 (chapter IV in Revuz-Yor, [12]),
we have the following controls (for all i,j) :∫ t

0

|d < M i,M j >s | ≤
√
< M i >t.

√
< M j >t ≤

1
2
(< M i >t + < M j >t)

Since the process C̃ is in general unbounded, we set C as the bounded, real-valued and
increasing process defined by : Ct = arctan(C̃t).
It entails that : dCt = 1

1+C̃2
t

dC̃t, and as a consequence, each component d< M i,M j > of
the quadratic variation process d< M > is absolutely continuous w.r.t dCt.
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For each i,j we have also existence of a random Radon Nikodym density zi,j such that :
d < M i,M j >s= zi,jdCs.
Finally thanks to the fact that z =(zi,j) is a non negative and symetric matrix, it implies
that we can write : d< M,M >s= m

′

smsdCs,
where m is a predictable process taking its values in Rd×d. We will impose furthermore
that the matrix m

′
m is invertible (for all s).

We are interested in finding a solution to the following BSDE :

(1.1)

 dYs = −F (s, Ys, Zs)dCs − β
2 .d < L >s

+Z
′

s.dMs + dLs
YT = B

A solution to such a BSDE is a triple of processes (Y, Z, L) in the following space :
S∞ × L2(d < M > ×dP)×M2([0, T ]) equipped with the norms :
|Y |S∞ = esssup( sup

0≤t≤T
|Yt|)

|Z|L2(d<M>×dP) = E(
∫ T
0

(ms.Zs)
′
(msZs)dCs)

1
2

|L|M2([0,T ]) = E(< L >T )
1
2

In the sequel, we will impose furthermore that we have the following controls on F :

∃ α ∈ L1(dCs),
∫ T

0

|αs|dCs ≤ a (a > 0) and : b, γ > 0, such that :

(H1) |F (s, y, z)| ≤ αs(1 + b|y|) +
γ

2
|mz|2 (2)

We impose furthermore that : γ ≥ β (β has been introduced in the expression of the
BSDE (1.1)), and γ ≥ b .
To obtain the existence, we will, in a first step, impose the restrictive condition on F :

(H
′

1) − αs − C0(|y|+ |mz|) ≤ F (s, y, z) ≤ αs(1 + b|y|) +
γ

2
(mz)

′
(mz) (3)

We impose here the same assumptions on the parameters α, b and γ, plus the condition :
C0 > 0.
The assumption that F has a lower bound which is globally Lipschitz in its variables y
and z will be useful in the proof of existence.
In the preceding inequalities, s is fixed (s ∈ [0, T ]), the notation |.| stands for the Euclidean
norm on Rd×1.
In the proof of existence, we will introduce a second BSDE of the following type :

(1.2)
{
dUs = −g(s, Us, Vs).dCs + V

′

s dMs + dNs
UT = eβ.B

We will show that we have a one to one correspondence between the solutions of those
two BSDEs when defining U = eβ.Y (exponential change), where (Y, Z, L) is a solution of
(1.1).
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2 Results about quadratic BSDEs

In this section, we will begin by giving some a priori estimates on the norms of processes
solving BSDE of the form (1.1) and (1.2) : this will be of great interest to prove the results
of existence and uniqueness.
Before giving these proofs, we state here the results we are able to obtain :
We state below the result of existence :

Theorem 1 (i) Suppose that the generator g satisfies the assumption (H
′

1), then the
BSDE (1.2) has a solution (U, V, N) in the space S∞ ×L2(d < M > ×dP)×M2([0, T ]).

(ii) If the generator F satisfies the assumption (H1) , then there exists a solution (Y,
Z, L) in the space S∞ × L2(d < M > ×dP)×M2([0, T ]) to the BSDE (1.1).

To prove a result of uniqueness, we need another assumption on the increments of the
generator F :
we will impose furthermore that there exists two sequences of processes (λN )N and (κN )N
such that :
(i) For each N ∈ N∗, there exists two processes (λN )N and (κN )N = (κN (z1, z2)) such
that :

∀z ∈ Rd, ∀y1, y2, |y1|, |y2| ≤ N (y1 − y2).(F (s, y1, z)− F (s, y2, z)) ≤ λN |y1 − y2|2

∀y ∈ R, |y| ≤ N, ∀z1, z2 ∈ Rd, F (s, y, z1)− F (s, y, z2) = (m.κN )
′
.(m(z1 − z2)) (4)

(ii) For each N ∈ N∗, the process λN is integrable w.r.t dC, and the martingale κN .M is
a BMO martingale.
We recall here that M is a BMO martingale if there exists a constant c (c > 0) such that,
for all stopping time τ of F, we have :

E(< M >T − < M >τ |Fτ ) ≤ c

Theorem 2 Under the assumption (H1) and the conditions (i) and (ii) on the generators
and provided the terminal condition is bounded, the BSDEs of the form (1.1) (resp. of the
form (1.2)) defined in the section 1.2 has at most one solution (Y, Z, L) in S∞ ×L2(d <
M > ×dP)×M2([0, T ]) (resp. (U, V, N) in S∞ × L2(d < M > ×dP)×M2([0, T ]) )

2.1 A priori estimates

In this section, we will study under the assumption that the generator F satisfies the con-
dition (H1) or (H

′

1).
One remark is that it suffices here to consider a BSDE of the form (1.1) with a generator
satisfying (H1) (we obtain a BSDE of the second form when : β ≡ 0).

Proposition 1 Keeping the same notations as those mentioned in section 1.2, all triple
(Y, Z, L) of processes solving the BSDE (1.1) with the process Y bounded (P-almost surely
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and for all t) satisfies the following assertions : there exists some constants c and C de-
pending only on the parameters of the BSDE ( i.e the constants a, b and |B|∞) and a
constant C

′
depending on the estimate of the norm of Y in S∞ such that :

P− almost surely ∀t, c ≤ Yt ≤ C (5)

∃C
′
∀τ (τ Fstopping time)

E(
∫ T

τ

Z
′

sm
′

smsZsdCs+ < L >T − < L >τ |Fτ ) ≤ C
′

(6)

Proof :
One first remark is that the second estimates will give us a control of the BMO norms of
the square integrable martingales Z

′
.M and L.

We suppose in the sequel that we are given a solution (Y, Z, L) of the BSDE (1.1) with a
generator satisfying (H1) and with the process Y bounded.

To prove the estimates given by (5), we introduce the process : U = eK.Y .

It can be easily proven, by using Itô’s formula, that this process is solution of a BSDE
whose generator g is given by the expression :

g(s, u, v) = K.u
(
F (s,

ln(u)
K

,
v

K.u
)− K

2
(m.

v

K.u
)
′
(m.

v

K.u
)
)

As a simple consequence resulting from the computation of Itô’s formula, if we want to
give a majoration of g independent of |m.v|2, it entails that we have to take : K ≥ γ. In
the sequel, we fix K = γ.
Since F satisfies the assumption given by (H1), it entails that we obtain the following
control on g :

g(s, u, v) ≤ γ.αsu.(1 +
b

γ
.|ln(u)|) (7)

We proceed hereafter with the same method as the one in Briand and Hu in [11], we
will compare the process U to the solution of a differential equation. To this aim, fixing
ω and setting : z = B(ω) (z is real), we consider the solution φ(z) of the following equation :

φt(z) = eγ.z +
∫ T

t

H(φs)dCs

where H is given by :

H(x) = γ.αs.x(1 +
b

γ
.ln(x))1x>1 + γ.αs1x≤1

We recall here that : b
γ ≤ 1 .

It is also easy to check :

∀ u > 0, γ.αsu.(1 +
b

γ
.|ln(u)|) ≤ H(u) (8)

As in [11], we remark that H is locally Lipschitz and convex. But, contrary to their paper,
we work here in a non Brownian setting (the random process C =(Cs) (which is of finite
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variation) replaces the deterministic process (s) ).
To give the expression of the solution φ, we have to discuss the sign of z, because the
expression of H depends on whether or not the function φ is greater than one .
(i) if z ≥ 0 :
It is the simpliest case, since we can see easily that : t → φt is a decreasing function with
terminal value equal to eγ.z (which is greater than one in this case). The expression of φ
is given by :

φt(z) = exp(γ.
e
∫ T

t
b.αudCu − 1

b
)exp(γ.z.e

∫ T
t
b.αudCu)

(ii) if z ≤ 0 (then : φT (z) = eγ.z ≤ 1) :
(a) If : eγ.z +

∫ T
0
γ.αudCu ≤ 1, then the solution is defined for all t by :

φt = eγ.z + γ.

∫ T

t

αudCu

(b) Otherwise : ∃S < T, eγ.z + γ.
∫ T
t
αudCu = 1,

φt =
(
eγ.z + γ.

∫ T

t

αudCu
)
1]S,T ](t) + exp(γ.

e
∫ S

t
b.αudCu − 1

b
)1]0,S](t)

Then, we introduce the adapted process Φ defined by :
∀t, Φt = EFt

(φt(B)).(EFt
stands for the conditional expectation w.r.t Ft)

Introducing the following martingale : Kt = EFt

(
φT (B) +

∫ T
0

EFs
(H(φs))dCs

)
,

we claim that Φ is a semimartingale (whose martingale part is K) which satisfies the
following BSDE :

Φt = eγ.B +
∫ T

t

EFsH(φs(B))dCs − (KT −Kt)

Thanks to the inequalities (7) and (8) and applying the same method as that in Briand
and Hu in [11], we can conclude that a comparison result holds and that, for all t:
Ut = eγ.Yt ≤ Φt, or equivalently : Yt ≤ 1

γ ln(EFt(φt(B))
To obtain the minoration of Y, it is enough to apply the same method to the process e−γ.Y

: this is justified since the BSDE given by the parameters (F
′
, -B) (where F

′
is defined by

: F
′
(s, y, z) = - F(s, -y, -z)) and whose solution is (-Y,-Z,-L) is such that : the generator

F
′
satisfies again the assumption H1 with the same parameters and so, it implies that we

have : −Yt ≤ 1
γ .ln(EFt

(φt(−B))) .

We also obtain the estimates given by (5) by setting :

c = essinf
ω

inf
t
− 1
γ
ln(Φt(−B)) , and : C = esssup

ω
sup
t

1
γ
ln(Φt(B))

One important remark is that it is easy to show that it is possible to give estimates of the
process Y in S∞ which are independent of the parameter γ : in the case where : B > 0,
we recall that the expression of φ(B) is :

φt(B) = exp(γ.
e
∫ T

t
b.αudCu − 1

b
)exp(γ.B.e

∫ T
t
b.αudCu)
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This entails that : EFt(φt(B)) ≤ eγ.
eb.a−1

b .eγ.|B|∞e
b.a

.
and consequently, we obtain : ∀s Ys ≤ eb.a−1

b + |B|∞eb.a P− almost surely.
Similarly, we have : ∀s − Ys ≤ eb.a−1

b + | −B|∞eb.a P− almost surely.

Then, to prove the estimates given by (6), we will apply Itô’s formula to the process
ψK(Y +m) (K and m are constants which will be explicited later).
The expression of ψK is given by : ψK(x) = eK.x−1−K.x

K .
The following properties will be useful in the sequel :

ψK
′(x) ≥ 0 if : x ≥ 0.

−K.ψ
′

K + ψ
′′

K = K.

Moreover, we will use the fact that there exists a constant m such that :
∀s ∈ [0, T ], Ys +m ≥ 0 P- almost surely.
Since Y is a bounded process, it suffices to choose : m = - |Y |∞ (norm of the process in
S∞).
Let τ be an arbitrary stopping time of (Ft)t∈[0,T ]. Taking then the conditional expectation
with respect to Fτ , it provides us with :

ψK(Yτ +m)︸ ︷︷ ︸
=EFτ (ψK(Yτ+m))

−EFτ
ψK(YT +m)

= −EFτ

(∫ T
τ
ψ
′

K(Ys +m)(−F (s, Ys, Zs)dCs − β
2 .d < L >s)

)
−EFτ

(∫ T
τ
ψ
′

K(Ys +m)(Z
′

sdMs + dLs)
)

−EFτ

(∫ T
τ

ψ
′′
K

2 (Ys +m)((ms.Zs)
′
(ms.Zs)dCs + d < L >s)

)

The second term in the right-hand side is equal to zero, because it is of the form :
EFτ

(KT −Kτ ), where K is a martingale of the filtration F).
Then, remembering the majoration on the generator F given by the assumption (H1) and
after simple computations, we obtain :

ψK(Yτ +m) −EFτψK(YT +m)
≤ EFτ

∫ T
τ
ψ
′

K(Ys +m)(|αs|(1 + b|Y |)∞)dCs
+EFτ

∫ T
τ

(β2ψ
′

K − 1
2ψ

′′

K)(Ys +m)d < L >s
+EFτ

∫ T
τ

(γ2ψ
′

K − 1
2ψ

′′

K)(Ys +m)|m.Zs|2dCs

We have easily that the terms of the left member are bounded (independently of the
stopping time τ) and it is the same for the first term of the right member (thanks to the
integrability assumption on α).
We put in the left member the two last terms of the second member of the preceding
inequality, and then we claim that : fixing K such that : K = γ, and remembering that :
γ ≥ β, we have : ∀x ≥ 0, f1(x) = 1

2 .(−γ.ψ
′

γ + ψ
′′

γ )(x) = γ
2 > 0, on the one hand, and :
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1
2 (−β.ψ′γ + ψ

′′

γ )(x) = f1(x) + 1
2 (−β + γ)ψ

′

γ(x) ≥
γ
2 , on the other hand.

We use those inequalities for x = Ys + m, quantity which is almost surely non nega-
tive. It implies that there exists a constant C

′
( depending only on the parameters γ, a

and |Y |∞ ) and which is independent of the stopping time τ) such that :

E

(∫ T

τ

(ms.Zs)
′
(ms.Zs)dCs + (< L >T − < L >τ )|Fτ

)
≤ C

′

2.2 Uniqueness for the BSDE (1.1)

Proof of Theorem 2 :

We suppose that we are given two solutions (Y1, Z1, L1) and (Y2, Z2, L2) of the BSDE
(1.1) with Y1 and Y2 bounded. Let N be a constant such that, P- almost surely: |Y 1| ≤ N
(respectively |Y 2| ≤ N).
The existence of such a constant N is justified by the estimates established in the preceding
section under the assumptions (H1) and (4) on the generator F.
To achieve it, we begin by applying Itô’s formula to the non negative semimartingale
(Ỹ 1,2) defined as follows :

∀t, Ỹ 1,2
t = e−

∫ T
t

2.λNdCs |Y 1,2
t |2 .

It gives us :

d(Ỹ 1,2
s ) = 2.λN Ỹ 1,2

s dCs
+e−

∫ T
t

2.λNdCs2.Y 1,2
s dY 1,2

s

+ 1
2e
−

∫ T
t

2.λNdCs2d < Y 1,2 >s

We recall that we have :
dY 1,2 = −(F (s, Y 1

s , Z
1
s )− F (s, Y 2

s , Z
2
s ))dCs −

β
2 d(< L1 >s − < L2 >s) + dKs,

where K stands for the martingale part : dK = (Z1,2)
′
dM + dL1,2.

Then, taking the integral between T and t, and remembering that :
Y1,2
T = 0 ( the processes have the same terminal value B).

Ỹ 1,2
t − Ỹ 1,2

T︸︷︷︸
=0

= −
∫ T
t

2.λN Ỹ 1,2
s dCs

+
∫ T
t
e−

∫ T
t

2.λNdCs(2.Y 1,2
s (F (s, Y 1

s , Z
1
s )− F (s, Y 2

s , Z
2
s ))dCs)

+
∫ T
t
e−

∫ T
t

2.λNdCs2.Y 1,2
s

β
2 d(< L1,2, L1 + L2 >s

−
∫ T
t
e−

∫ T
t

2.λNdCs2.Y 1,2
s

(
Z1,2
s .dM + d < L1,2 >s

)
−
∫ T

t

e−
∫ T

t
2.λNdCs

1
2
.2d < Y 1,2 >s︸ ︷︷ ︸

≤0
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We write then more precisely the majoration of the increments in the variables y and
z of the generator F (given by (4)) .

2.Y 1,2
s (F (s, Y 1

s , Z
1
s )− F (s, Y 2

s , Z
2
s )) ≤ 2.λN |Y 1,2

s |2 + 2.Y 1,2
s .(m.κN )

′
(m.Z1,2

s )

Rewriting Itô’s formula, we obtain :

Ỹ 1,2
t ≤

∫ T
t

2.|Y 1,2
s |2e−

∫ T
t

2.λNdCs .(−λN + λN )dCs
+
∫ T
t

2.Y 1,2
s e−

∫ T
t

2.λNdCs(m.κN )
′
(m.Z1,2

s )dCs
+
∫ T
t

2.Y 1,2
s e−

∫ T
t

2.λNdCs β
2 .(d < L1,2, L1 + L2 >s)

−
∫ T
t

2.e−
∫ T

t
2.λNdCs .Y 1,2

s (Z1,2
s )dM −

∫ T
t

2.e−
∫ T

t
2.λNdCsY 1,2

s dL1,2

Considering the following stochastic integrals:

on the one hand : N =
(
2.e−

∫ T
t

2.λNdCsY 1,2Z1,2
)′
.M , and : N̄ = κ

′

N .M , and on the

other hand : L =
(
2.Y 1,2e−

∫ T
t

2.λNdCsL1,2
)
, and : L̄ = β

2 .(L
1 + L2)

It entails that the semimartingale Ỹ 1,2 satisfies the following inequality :

Ỹ 1,2
t ≤

∫ T

t

(d < N, N̄ >s −dNs) +
∫ T

t

d < L, L̄ >s −dLs

Replacing then the measure dM by dM̂ = dM − κ′N .d < M > and dL1,2 by :
dL̂ = dL1,2 − β

2 d(< L1 + L2, L1,2 >), and introducing the following measure :
dQ = E(κ

′

N .M+ β
2 .(L

1+L2))dP ( where E(K) stands for the exponential of the martingale
K),
we can write : Ỹ 1,2

t ≤ −Mt,T , where : Mt,T is the increment between t and T of a
martingale under the equivalent probability measure dQ of the filtration F. Its expression
is simply :

Mt,T =
∫ T

t

2.Y 1,2
s e−

∫ T
t

2.λNdCs
(
Z1,2
s .dM̂s + dL̂s

)
The fact that we have an equivalent probability measure is justified by the use of

Girsanov’s theorem because of the results obtained in the preceding section .
Thanks to the controls of the BMO norms of Z

′
.M and L, for all solution (Y, Z, L) to

the BSDE (1.1) with the process Y bounded and if the process κN satisfies the following
control :

∀s |(κN )s| ≤ Ĉ(1 + |Z1
s |+ |Z2

s |) P− almost surely

we can claim that E(κ
′

N .M + β
2 .(L

1 +L2)) is a uniformly integrable martingale (with con-
stant expectation equal to one) : it is a density of probability.
This is true in particular in the financial application given in the second part of this article
: in fact, the generator can be written under the following form :
F (s, y, z) = C̃.(m.z)

′
(m.z) + F0(s, y, z), where F0 is a Lipschitz function and C̃ a non

negative constant.
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Taking the conditional expectation with respect to Ft, we can conclude that : Ỹ 1,2 ≤ 0
Q- almost surely (and so : P- almost surely since the two measures are equivalent),
Y1,2 ≡ 0.
This achieves the proof of uniqueness.

2.3 Existence

Proof of Theorem 1 :
This proof will be achieved in three main steps and following the method given by Koby-
lanski in her phDthesis (see [2])

2.3.1 Building the approximation

Step 1 : Troncation in y

We aim at using the a priori estimates we have proven in Section 2.1 so that we can
relax the assumption on the generator and then obtain precise estimates for an interme-
diate BSDE .
In this step, we will show that it is possible to restrict ourselves to the assumption (H2),
instead of (H1), on our generator F :

(H2) ∃α̃
∫ T

0

α̃sdCs ≤ a (a > 0) , such that : |F (s, y, z)| ≤ α̃s +
γ

2
|m.z|2

Let (Y, Z, U) be a solution to the BSDE (1.1) with Y bounded such that F satisfies (H1),
and let introduce the following BSDEs (for K > 0):

dY Ks = −FK(s, Y Ks , ZKs )dCs −
β

2
d < LK >s +(ZKs )

′
dM + dLKs

where : FK(s, y, z) = F (s, ρK(y), z), and :
ρK is a regular function (at least a C2 function) verifying the following conditions :
ρK(x) = x, if : |x| ≤ K, and : ρK(x) = K + 1 , if : |x| ≥ K + 1.
We impose besides that : |ρK(x)| ≤ |x|.
Since F satisfies (H1), it implies that :

∀y ∈ R, z ∈ Rd, FK(s, y, z) ≤ αs(1 + b|ρK(y)|) +
γ

2
|m.z|2

Since : |ρK(x)| ≤ |x|, we can conclude that for all K, FK satisfies (H1) with the same
parameters as F : this implies that there exists a constant l depending only on |B|∞, a
and b and independent of K, and such that : ∀K |Y K |∞ ≤ l (all bounded solution of the
BSDEs characterized by (FK , B) (or (F, B)) satisfy the same a priori estimates).

Setting : ∀s, α̃s = αs(1 + b.l), we can conclude that both F and FK satisfies the
assumptions (H2).

Step 2: an intermediate BSDE
To solve the BSDE (1.1), we begin by setting formally : U = eβ.Y (exponential change)
and by supposing that we have a solution (Y, Z, L) to (1.1) .
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Using Itô’s formula, we show that this new process U is solution of a BSDE of the following
form :

(1.2)
{
dUs = −g(s, Us, Vs)dCs + d(V

′

s .Ms) + dNs
UT = eβ.B

where we have defined the following processes: Vs = β.Us.Zs, and: dNs = β.Us.dLs, so
that the martingale part of U can be written : V

′
.M + N. The finite variation term

is independent of d< N > and its expression (in the differentiate form) is simply :
−g(s, Us, Vs)dCs.
This BSDE is characterized by its generator g :

g(s, u, v) = β.u.F (s,
ln(u)
β

,
v

β.u
)− 1

β.u
(m.v)

′
.(m.v)

In this second step, we will use the fact that F satisfies the assumption (H2) to give
precise estimates of all solutions of the BSDE characterized by (g, eβ.B).
Defining (UK , VK , NK) as a solution of the BSDE characterized by (gK , eβ.B) and with
: gK(s, u, v) = g(s, ρK(u), v), we are going to show that we can give estimates which are
independent of K (those estimates will again hold true for all bounded solution of the
BSDE whose parameters are g and eβ.B).

Since F satisfies (H2), we deduce the following inequalities :

∀K gK(s, u, v) ≤ β.|u|(α̃s +
γK
2
|m.v|2) ≤ α̃s(1 + b|u|) +

γ̄K
2
|m.v|2

We can see that gK satisfies (H1) with the parameters : α = β.α̃ (and : a = |β.α̃|L1(dCs)),
b = 1 and : γ = γ̄K . Furthermore, since the BSDEs characterized by (gK , eβ.B) have
a positive bounded terminal condition (equal to eβ.B), the remark given in section 2.1
about a priori estimates allows us to claim that we have a bound independent of K for all
solutions to the BSDEs . In fact, the estimates of the norm in S∞ of all solution UK are
independent of the parameter γ.

More precisely, we obtain that all solutions (UK , VK , NK) satisfy :

1
eb.a−1
b + |e−β.B |∞eb.a

≤ UK ≤ eb.a − 1
b

+ |eβ.B |∞eb.a

The lower bound (which is strictly positive) is obtained by giving a majoration of the
process (UK)

′
= 1

UK , and by remarking that : 1
UK = e−β.Y

K

. Replacing Y by - Y, we
apply the same method as before to obtain a majoration of the process (UK)

′
: it satisfies

again the same type of BSDE with a generator g
′
defined by :

g
′
(s, u, v) = β.u(−F (s,− ln(u)

β
,− v

β.u
))− 1

β.u
(m.v)

′
.(m.v))

Thanks to the symetry of the assumptions (H2) on the generator F, the parameters a, b
which have been introduced for the generators gK remain unchanged .

Finally, let (U, V, N) be a solution of the equation of the form (1.2) characterized by
(g, eβ.B) we have that the process U is non negative and bounded, and so we can set :
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Y = ln(U)
β , Z = V

β.U , et: dL = dN
β.U ,

This provides us with a solution of the BSDE (1.1).

Step 2: Approximation
In this part, we aim at building a sequence of processes (Un, Vn, Nn) which are solu-
tions of BSDEs characterized by (gn, B) and such that (Un) is monotone.This will require
the contruction of a monotone sequence of Lipschitz functions (gn) which will converge
(locally uniformly) to g. Then, analogously to Kobylanski, we will establish the strong
convergence of the sequences ((Vn)

′
.M) and (Nn).

In the sequel, || is an arbitrary norm (on R or Rd).
To achieve this aim, we will suppose first that g has a lower bound with at most a linear
growth in z (and an upper bound with a quadratic growth) this corresponds to the control
given by the inequality (H

′

1).

If it is not the case, it will be enough to consider the solutions (Un,p, Vn,p, Nn,p) of
the BSDEs characterized by (gn,p, eβ.B), where gn,p is defined by :

gn,p(s, u, v) =ess inf
u′ ,v′

(
g+(s, u

′
, v

′
) + n|u− u

′
|+ n|m.(v − v

′
)|
)

−ess inf
u′ ,v′

(
g−(s, u

′
, v

′
) + p|u− u

′
|+ p|m.(v − v

′
)|
)

To obtain one solution to the BSDE we are interested in, it will be necessary to proceed
with two successive passages to the limit : the solution U of the BSDE characterized by
(g, eβ.B) will be equal to : U = limn ↗ (limp ↘ Un,p) .
It is the same justification that holds true for these two passages to the limit, so, without
any restriction, we suppose now that g satisfies the assumption given by (H

′

1).
In this case and analogously to the paper of Briand and Hu ([11]), we define the sequence
(gn) by setting:

gn(s, u, v) = ess inf
u′ ,v′

(
g(s, u

′
, v

′
) + n|u− u

′
|+ n|m.(v − v

′
)|
)

The infimum is taken over all u
′
and v

′
in Q×Qd, which is a countable (and dense) subset

of R× Rd : this ensures the measurability of each function gn.
This is an increasing sequence of Lipschitz functions which converges (locally and uni-
formly) to g (thanks to Dini’s theorem ) .

The Lipschitz property of the function gn is a simple consequence of the triangular
inequality and of the following result:

inf
u

((ǧ)(u, u1))− inf
u

((ǧ)(u, u2)) ≤ sup
u
|(ǧ)(u, u1)− (ǧ)(u, u2)| (9)

Besides we have that :

|g(s, 0, 0)| ≤ |αs| ⇒ (s→ g(s, 0, 0) ∈ L1(dCs)) (10)

Under the conditions (9) and (10) on the generators, we have existence and uniqueness
of solutions (Un, Vn, Nn) to those BSDEs and the usual comparison theorems (firstly
established by Pardoug and Peng in [10] and by Manuela Royer in the discontinuous case
) allow us to conclude that the sequence of processes (Un) is increasing .
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Moreover, it results from simple computations (we skip here) that all functions of the
sequence (gn) satisfy the assumption (H

′

1) with the same parameters C0, α, b, and γ as
the function g.

The main interest in those estimates of the generators (gn) is that the associated solu-
tions (Un, V n, Nn)n≥Ĉ0

satisfy the same a priori estimates which have been established for
all bounded solution to the BSDEs characterized by the parameters (g, B) ( the generator
g satisfies (H

′

1) ).
Using the fact that (Un) is increasing, we set Ũ : Ũ = limn ↗ (Un).
Moreover, thanks to the boundedness of the martingales Vn.M and Nn in their respective
BMO spaces, it is possible to give limits for this sequence in the weak sense :
On the one hand, we introduce Ṽ as the weak limit of the sequence (Vn) bounded in
L2(d < M > ×dP), and on the other hand,
we define Ñ as the weak limit of (Nn) : this means that, for each s : Ñs is a weak limit
of (Nn

s ) in L2(Fs).
Defining first ÑT as the weak limit of (Nn

T )n,
a weak limit of the sequence of processes (Nn) is given by this expression :
∀t Ñt = E(ÑT |Ft).

2.3.2 Monotone stability

Proposition 2 Considering the BSDE (1.2) and using the same notations as in the pre-
ceding section, if the sequence (gn)n is such that:
-s being fixed (s ∈ [0, T ]), the sequence (gn) converges locally uniformly on R× Rd to g .
- For all n, gn satisfies the property given by (H

′

1), that is to say :

∃α = (αs) ∈ L1(dCs), C0 > 0
−αs − C0.(|u|+ |mv|) ≤ g(s, u, v) ≤ αs.(1 + b|u|) + γ

2 (mv)
′
(mv))

- the sequence is increasing.
If, besides, we have existence of solutions (Un, Vn, Nn) to those BSDEs given by the
parameters (gn, B), B being a bounded FT measurable random variable, then :
the triple (Ũ , Ṽ , Ñ) is solution of the BSDE (1.2).

Proof :

Following the same method as the one used by Kobylanski in her pHDthesis ([2]), we
will in a first step begin to prove the strong convergence of the sequences (Vn.M)n and
(Nn)n to Ṽ .M and Ñ (this will require the a priori estimates established in the section 2.1 ).

We write Itô’s formula for the non negative semimartingale
ΦK(Um - Up) (m ≥ p), where ΦK is given by :

ΦK(x) =
e2K.x − 2K.x− 1

2.K

K will be determined later.
This is a C2 function which satisfies on the one hand: ΦK ≥ 0 , ΦK(0) = 0, and on the
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other hand : Φ
′

K(x) ≥ 0, if x ≥ 0.

Taking the opposite of the integral between 0 and T and the expectation, the martin-
gale part vanishes and it results :

EΦK(Um0 − Up0 )− EΦK(UmT − UpT )︸ ︷︷ ︸
=0

=

E
∫ T
0

(Φ
′

K(Ums − Ups ))(gm(s, Ums , V
m
s )− (gp(s, Ups , V

p
s ))dCs

−E
∫ T
0

Φ
′′
K

2 (Ums − Ups )(ms.(V ms − V ps ))
′
(ms.(V ms − V ps ))dCs

−E
∫ T
0

Φ
′′
K

2 (Ums − Ups )d < Nm −Np >s

We now aim at controlling the increments of the generators, so that we make appear
the norm of the stochastic integral (Vm − V p).M before putting it in the left-hand side
and passing to the liminf when p →∞.
Firstly, we claim that :

−gp(s, Ups , V ps ) ≤ αs + C0(|Ups |+ |m.V ps |) ≤ ᾱs + C̄.|m.V ps |2

We write that : ∀v ∈ Rd, C0|m.v| ≤ 1 + C̄|m.v|2.

Then, we have the following inequalities : those are obtained by remembering the
assumptions given by (H1) on the sequence (gn)) and by using both the convexity and of
the bilinearity of z → (m.z)

′
m.z :

gm(s, Ums , V
m
s ) ≤ αs.(1 + b|Um|S∞) + 3.γ

2

(
(m.(V ms − V ps ))

′
(m.(V ms − V ps ))

)
+ 3.γ

2 (m.(V ps − Ṽs))
′
(m.(V ps − Ṽs)) + 3γ

2 ((m.Ṽs)
′
(m.Ṽs))

and :

−gp(s, Ups , V ps )
≤ ᾱs + 2.C̄.

(
m.(V ps − Ṽs))

′
(m.(V ps − Ṽs)) + (m.Ṽs)

′
.(m.Ṽs)

)

We can easily find an integrable bound (w.r.t dCs) for the following processes :
(αs.(1 + b|Um|S∞)s, and : (ᾱs)s, those bounds do not depend on the integer m (or p)
because we have uniform estimates of the norm in S∞ of the processes (Um)m≥Ĉ .
Putting in the left-hand side all the terms containing (V m − V p), we obtain :

EΦK(Um0 − Up0 ) + E
∫ T
0

Φ
′′
K

2 (Ums − Ups )d < Nm −Np >s

+E
∫ T
0

((Φ
′′
K

2 − 3.γ
2 .Φ

′

K)(Ums − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps ))dCs)
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≤ E
∫ T
0
C̃1Φ

′

K(Ums − Ups )
(
(m.(V ps − Ṽs))

′
(m.(V ps − Ṽs)) + (m.Ṽs)

′
.(m.Ṽs)

)
dCs

+E
∫ T
0

(
C̄s.Φ

′

K(Ums − Ups )dCs
)

where we have set :
C̃1 = 3.γ

2 + 2C̄ , and : C̄s =
(
αs(1 + b.sup

m
|Um|∞) + ᾱs

)
.

C̄ is a process (integrable w.r.t the measure dCs),

Then, we introduce a new constant : C̃2 := C̃1 + 3.γ
2 .

We then fix a value for the parameter K such that :

Φ
′′

K

2
− C̃2Φ

′

K ≥ C̃2 (11)

In the sequel, we fix : K = C̃2.
This last inequality (11) entails the strict positivity of the last term of the left-hand side.
Besides, thanks to the weak convergence of (Vm) to Ṽ , we have :

lim inf
m→∞

E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(Ums − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps )))dCs ≥ (12)

E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(Ũs − Ups )(m.(Ṽs − V ps ))
′
(m.(Ṽs − V ps ))dCs)

To prove this inequality, it is necessary to proceed in two steps : we can see that since

the real sequence (E
∫ T
0

((Φ
′′
K

2 − 3.γ
2 .Φ

′

K)(Ums − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps )))dCs)n

is bounded , it implies that the lim inf is well defined.
We are going to show the inequality (12) by giving a minoration of the following quantity :

lim inf
l,m→∞

E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(U ls − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps )))dCs (13)

We remark, firstly, that this quantity satisfies the following inequality:

∀m ≥ l E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(U ls − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps )))dCs ≤

E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(Ums − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps )))dCs

In a second step, we take the lim inf when m goes to ∞ in both sides of the last
inequality.
Finally, we take the lim inf when l goes to ∞, remarking that, since the right member is
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independent of l, it gives a majoration of the quantity given by (13).
To obtain the minoration of the expression given by (13), we have to justify two successive
passages to the limit.
If m, l and p are such that : p ≤ l ≤ m, and if m goes to ∞ then thanks to the mono-
tonicity of the sequence (Um), we obtain :

lim inf
m→∞

E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(U ls − Ups )(m.(V ms − V ps ))
′
(m.(V ms − V ps )))dCs

≥ E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(U ls − Ups )(m.(Ṽs − V ps ))
′
(m.(Ṽs − V ps )))dCs

We then pass to the limit when l goes to ∞ (p is always fixed).
This entails that the expression given by (13) is greater than :

E
∫ T

0

((
Φ
′′

K

2
− 3.γ

2
.Φ

′

K)(Ũs − Ups )(m.(Ṽs − V ps ))
′
(m.(Ṽs − V ps ))dCs)

This implies that the inequality (12) is satisfied .

The passage to the limit when m → ∞ in the right-hand side results from an applica-
tion of Lebesgue’s theorem.
On the one hand, we have almost sure convergence of (Um) to the process Ũ .
On the other hand, the following quantity :
Φ
′

K(Ums − Ups )(|m.(Ṽs − V ps )|2 + |m.Ṽs|2 + C̄s) is integrable with respect to dCs, because
it is the product of a bounded process and a sum of integrable processes .

Rewriting Itô’s formula after passing to the limit when m goes to ∞, it gives us :

EΦK(Ũ0 − Up0 ) + E
∫ T
0

Φ
′′
K

2 (Ũs − Ups )d < Ñ −Np >s

+E
∫ T
0

((Φ
′′
K

2 − 3.γ
2 .Φ

′

K)(Ũs − Ups )(m.(Ṽs − V ps ))
′
(m.(Ṽs − V ps ))dCs)

≤ E
∫ T
0

(
C̃Φ

′

K(Ũs − Ups )(m.(Ṽs − V ps ))
′
(m.(Ṽs − V ps ))dCs

)
+E

∫ T
0

(
C̃Φ

′

K(Ũs − Ups )(m.Ṽs)
′
.(m.Ṽs)dCs

)
+ E

∫ T
0

(
C̄s.Φ

′

K(Ũs − Ups )dCs
)

To justify the passage to the limit when p → ∞, it remains to put in the left-hand
side the terms containing the following quantity (m.(Ṽ − V p))′(m.(Ṽ − V p))) .

Using both the condition (11) and the inequality : Φ
′′
K

2 (Ũs − Ups ) ≥ 1
2 (satisfied P-almost

surely and for all s thanks to the strict positivity of (Ũ − Up)), we can conclude that the
limit of the left-hand side exists and is strictly larger than :

E

(∫ T

0

C̃.(m.(Ṽs − V ps ))
′
(m.(Ṽs − V ps ))dCs +

1
2
< Ñs −Np

s >T

)
Concerning the right-hand side, we use the two following results to justify the application
of Lebesgue’s theorem :
- The sequence (Up) converges almost surely to Ũ and,
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- The condition of domination results from the fact that Ṽ is square integrable with respect
to the measure d< M > ×dP and that the quantity Φ

′

K(Ũ − Up) is uniformly bounded,
the limit exists and is equal to zero.
Finally we can conclude :

lim inf
p

E

(∫ T

0

ĈU .(Ṽs − V ps )
′
(m.(Ṽs − V ps ))dCs +

1
2
< Ñs −Np

s >T

)
≤ 0

This can be expressed under the form :
Vp.M converges to Ṽ .M in L2(d < M > ×dP).
Np converges to Ñ in M2([0, T ]) .

2.3.3 Conclusion

To achieve the proof of existence, it remains to justify the passage to the limit in the
equation :

Unt = UnT +
∫ T

t

gn(s, Uns , V
n
s )dCs +

∫ T

t

V ns .dMs +Nn
T −Nn

t

It is necessary to check the following assertions :
(i)
∫ t
0
V ms dMs

m→∞−−−−→
∫ t
0
ṼsdMs P-almost surely and for all t .

(ii) Nn
t

n→∞−−−−→ Ñ (P-almost surely and for all t).
(iii)

∫ t
0
gn(s, Uns , V

n
s )dCs

m→∞−−−−→
∫ t
0
g(s, Ũs, Ṽs)dCs

Since we have proven the convergence in L2 of the sequences(Vn.M) and (Nn) we can
suppose that the convergence is achieved P-almost surely (taking a subsequence if neces-
sary) .
Concerning the assertion (iii), we can apply Lebesgue’s theorem which requires to check
the following two conditions:
On the one hand, we have almost sure convergence of (gn(s, Uns , V

n
s )) to g(s, Ũs, Ṽs) with

respect to the measure d< M >s ×dP.

On the other hand, we have domination of (gn(s, Uns , V
n
s ))n by a quantity which is in

the space L1(d < M > ×dP) and this domination holds true uniformly in n :
this results from the quadratic control of the sequence (gn) and from the fact that sup

n
(V n)

is in the space L2(d < M > ×dP).
The triple of processes (Ũ , Ṽ , Ñ) is a solution of (1.2).

By setting : Y = ln(Ũ)
β , Z = Ṽ

β.Ũ
,and the martingale measure dL = dÑ

β.Ũ
,

we obtain a solution to the BSDE (1.1). �
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3 Applications to finance :

3.1 The case of the exponential utility :

One important interest of this theoretical work is the link between the solution of BSDE
with quadratic growth and some problems arising from Mathematical Finance : we will
in this section focus our attention on one particular problem dealing with the notion of
utility value process as regards to the exponential utility of a portfolio.
We begin here by summing up the main assumptions about modelization in our case of a
general continuous filtration ( we refer here to Mania et Schweizer in [8]) .
As before, we are given a probability space and a continuous filtration F .
We set : S= (Sit) the semi martingale which takes its values in Rd and which modelizes
the discounted prices of d risky assets. Its evolution S is given by the following equation :

dSs
Ss

= dMs + dAs with : dA = d < M > .λ

We recall here that M is a local martingale of the filtration whose quadratic variation
d< M > can be written as explained in section 1.2 under the following form :
d< M >s= m.m

′
dCs.

A is a process with bounded variation : we will suppose in the sequel that λ is a Rd-valued
process which is besides almost surely bounded and which satisfies :

E(
∫ T

0

|m.λ|2dCs) <∞ (H3)

Furthermore, this expression for S provides a justification for the no arbitrage condi-
tion : this condition in our non Brownian setting is justified in the recent article [1].
We define then the notion of a portfolio associated to a strategy ν :

Définition 1 A Rd-valued process ν which is predictable with respect to the filtration F
is called trading strategy if the following stochastic integral :

∫
ν
′ dS
S =

∫ ∑
i
νi

Si dS
i is well

defined .
Each component νi of the trading strategy corresponds to the amount of money invested
in the ith asset.
The process Xν given below is called wealth process of an agent having the strategy ν and
x represents the initial wealth :

∀t ∈ [0, T ] , Xν
t = x+

∫ t

0

ν
′

s

dSs
Ss

(14)

We suppose besides that we have an incomplete financial market, that is to say that all
contingent claims (i.e square integrable variables with respect to FT ) are not attainable.
A contingent claim B is attainable provided it exists a strategy ν (and also a process Xν)
such that : B = Xν

T , where T represents the horizon (or maturity time) which will be a
deterministic time in this work.
We then introduce the utility value process at time t VB

t (xt) : it is a Ft random variable
defined by :

V Bt (xt) = esssup
ν∈C

E(Uα(Xν
T −B)|Ft)

18



Uα whose expression is given by : Uα(x) = −exp(−α.x), stands for the utility function,
and the set C represents the set of constraints : it is a set where all strategies take their
values (i.e for all t and P almost surely, νt(ω) is in C , C ⊂ Rd ). We impose besides that
the strategy defined by : ν ≡ 0, is in C.
Then, before explaining how to solve this problem, let us introduce the notion of admissible
strategy in our context :

Définition 2 Let C be a closed (and non necessarily convex set) in R1×d . The set A
of admissible strategies consists of all d-dimensional predictable processes ν = (νt)t∈[0,T ]

satisfying : E(
∫ T |m.ν|2dCs) <∞, as well as the uniform integrability of the family:

{exp(−α.Xν
τ ), τ stopping time with values in [0, T ]}

We aim here at giving an expression of the value process by a dynamical method : this ap-
proach will require the theoretical study we have made on quadratic BSDEs. The method
applied here is the same as the one used by Imkeller, Hu and Muller in their paper( see
[6])
To achieve this, we introduce for all strategies ν the process Rν by setting :
∀s, Rνs = Uα(Xν

s − Ys).

We search to construct Y such that Rν satisfies :
(i) RνT = -exp(-α(Xν

T − F )), for all strategies ν .
(ii) Rνt = Rt = Uα(xt − Yt) (where xt is a fix Ft random variable and such that :
for all strategy ν, Xν

t = xt).
(iii) Rν is a supermartingale for all strategies and there exists ν∗ such that Rν

∗
is a mar-

tingale.

Besides, this method allows us to give a positive answer to the existence of an optimal
strategy .

3.2 A dynamical way to solve the problem :

In this section, we will show that the process Y = (Yt) is solution of a BSDE with quadratic
growth of the same type as (1.1), whose parameters are β and the generator : F = F(s, z)
:  dYs = −F (s, Zs)dCs − β

2 .d < L >s
+Zs.

′
dMs + dLs

YT = B

Proposition 3 Keeping the same notations, the process Y ( such that the family of pro-
cesses (Rν) satisfies the assumptions (i), (ii) and (iii) introduced when describing the
problem in the exponential case) is solution of a BSDE with quadratic growth of the form
(1.1) with the following parameters : β is given by : β = α (corresponding to the risk
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aversion parameter ), and the expression of F is :

F (s, Zs) = ess inf
ν∈C

(α
2
|m(νs − (Zs +

λs
α

))|2
)

−(m.Zs)
′
(m.λs)−

1
2.α

(m.λs)
′
(m.λs) (15)

The expression of the value process at time t is a consequence of the dynamical principle
and it is given by :

V Bt (xt) = esssup
ν

E(Uα(Xν
T −B)|Ft) = Uα(xt − Yt)

Besides, there exists an optimal strategy ν∗ which satisfies :

ν∗ = argmin
ν∈C

|m.(ν − (Zs +
λs
α

))|2

Before justifying how we can find the expression of the generator, we can remark that the
expression of F given in Proposition 3 satisfies the assumption (H1) with : b ≡ 0 (F is
independent of y).
In fact, we have the following control on F :

F (s, Zs) ≥ −(m.Zs)
′
(m.λs)−

1
2.α

(m.λs)
′
(m.λs) ≥ −|(mZs)

′
.(m.λs)| −

1
2.α

(m.λs)
′
(m.λs)

Finally, we obtain :

F (s, Zs) ≥ −
(α
2
.|m.Zs|2 +

1
α
|m.λs|2

)
(16)

Then, if we set : ∀s, αs = 1
α |m.λs|

2 , we can claim : α is in L1(dCs), thanks to the
assumption (H3) made on the process λ.
The majoration is obtained by remarking that the essential infimum is lower than the
value of the expression in : ν ≡ 0, this entails that :

F (s, Zs) ≤
α

2
|m.Zs|2

According to the preceding section, this entails that we have existence and uniqueness for
the BSDE characterized by its terminal condition B and its generator F.

Proof of Proposition 3 To find the expression of the parameters β and F , we ap-
ply Itô’s formula to the semimartingale Rν = Uα(Xν − Y ), which is justified since Uα is
a C2 function :

dUα(Xν
s − Ys)

= −α.Uα(Xν
s − Ys)d(Xν − Y )s + α2

2 Uα(Xν − Ys)d < Xν − Y >s

= −α.Uα(Xν
s − Ys)(ν

′
.dMs − Z

′
dM − dL+ ν

′
d < M >s λs)

−α.Uα(Xν
s − Ys)(F (s, Zs)dCs + βs

2 d < L >s)
+α2

2 Uα(Xν
s − Ys)

(
(ν − Z)

′
d < M >s (ν − Z) + d < L >s

)
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We remark that the process Rν satisfies the following equation :

dRνs = RνsdM̃
ν
s +RνsdA

ν
s

where Aν is a process with finite variation and : M̃ν = −α.((ν−Z)
′
.M −L) is a local

martingale thanks to the fact that : ν ∈ A.
We deduce then that Rν has the following expression :

Rνt = Rν0 .E(M̃ν)exp(Aνt ).

As a consequence, a necessary condition for the process R to be a supermartingale for all
ν is :

∀ s RνsdA
ν
s ≤ 0 P− almost surely (C1)

To prove that (C1) is sufficient with the assumptions, we can see that there exists a
sequence of stopping times (τn)n such that the process : Rνt∧τn

= Rν0 .E(M̃ν
t∧τn

)exp(Aνt∧τn
)

is a supermartingale for each n.
(this results from the fact that, for all ν, M̃ν is a local martingale and that : eA

ν

is a
decreasing process). As a consequence for each A ∈ Fs, we have :

E(Rνt∧τn
1A) ≤ E(Rνs∧τn

.1A)

Thanks to the assumption of uniform integrability given in the definition of admissibility
and the boundedness of the process Y (provided we have a generator satisfying the good
assumptions), we claim that : (Rνs∧τn

) is uniformly integrable and passing to the limit
when n goes to ∞, it implies :

∀A ∈ Fs, E(Rνt 1A) ≤ E(Rνs .1A)

Finally, since the process Rν is non positive and thanks to the preceding computations,
we obtain that the condition (C1) is equivalent to :{

−α.βs

2 d < L >s +α2

2 d < L >s= 0 ⇒ β = α

−α.(F (s, Zs) + ν
′

sm
′

smsλs) + α2

2 (νs − Zs)
′
m
′

sms(νs − Zs) ≥ 0

where we replace d< M > by its following expression : d < M >s= m
′
mdCs.

So we obtain as expression for F :

F (s, Zs) = ess inf
ν∈C

(
α

2
(νs − Zs)

′
m
′

sms(νs − Zs) + ν
′

sm
′

smsλs)

or equivalently after simple computations we obtain the expression given by (15).

3.3 Power and logarithmic utilities

Similarly as Imkeller and Hu in their article [6], we introduce two other utility functions
and we study for each the corresponding utility maximization problem : in our special case
of a general (and, in particular, non Brownian) continuous filtration, we will use the same
dynamical method as in the exponential case by introducing a family of random processes
and give an expression of both the value function and the optimal strategy.
The main difference with the exponential case is that for those type of utility functions
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we have to impose furthermore that the wealth process is non negative.
Denoting by U the utility function, the problem we are interested in is to compute V(xt)
defined as in [8] :

V (xt) = esssup
ρ

E(Uγ(X
ρ
T )|Ft)

where xt is a fixed Ft-measurable random variable such that for all strategies ρ : Xρ
t = xt.

In the two cases we will study here, we define another notion of strategy by introduc-
ing a d-dimensionnal process ρ which denotes the part of the wealth invested in stock i.
This will imply we will obtain a very specific expression for the wealth process.
Keeping here the same conventions for the price process S as in Section 3.1, we define Xρ

by setting :

Xρ
t = x+

∫ t

0

Xρ
s ρ

′

s.
dSs
Ss

= x+
∫ t

0

Xρ
s ρ

′

s.dMs +
∫ t

0

Xρ
s .ρ

′

s.d < M >s λs

The link between the process π defined in the exponential case and ρ is given by : π = X.ρ
( where X is the wealth process).
A strategy ρ is said to be admissible when it satisfies : the martingale ρ

′
.M is a BMO

martingale. This implies that the exponential of this martingale (usually denoted by :
E(ρ

′
.M)) is uniformly integrable, and also, that it is a true martingale. In particular, we

have : E
∫ T
0
|m.ρs|2dCs <∞ .

Finally, the wealth process has the following expression:

Xρ
t = x.exp

(∫ t
0
ρ
′

s.dMs − 1
2

∫ t
0
ρ
′

sd < M >s ρs +
∫ t
0
ρ
′

s.d < M >s λs

)
= x.E(ρ

′
.M)exp(

∫ t
0
ρ
′

s.d < M >s λs)

In the sequel, we will study the two following utility functions :
1-The first one is the power utility :
For all real γ ∈]0, 1[, we will consider : Uγ(x) = 1

γ .x
γ .

We will fix γ and set : Uγ = U1.
2-The second one is the logarithmic utility whose definition is : U2(x) = ln(x).
We state hereafter the main results we are able to obtain :

Theorem 3 Keeping the introduced notation, and denoting respectively by V1 (resp. V2)
the value function of the utility maximization problem related to U1 (resp U2) we obtain
the following results. On the one hand, by setting V1 under the form :

V 1(xt) = xγt .exp(Yt)

we have that Y is defined as the unique solution (Y, Z) of a BSDE of the following form :

Yt = 0−
∫ T
t
f1(s, Zs)dCs +

∫ T
t

1
2d < L >s −

∫ T
t
Z
′

sdMs −
∫ T
t
dLs

L is a R-valued martingale strongly orthogonal to M, and f1 is given by :
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f1(s, Zs) = essinf
ρ

γ.(1− γ)
2

(
|m.(ρs − (

Zs + λs
1− γ

))|2
)

−γ.(1− γ)
2

|m.(Zs + λs
1− γ

)|2 − 1
2
|m.Zs|2

(17)

The optimal strategy ρ∗1 is defined by : ρ∗1 = argmin
ρ
|m.(ρs − (

Zs + λs
1− γ

))|2

On the other hand, if the expression of V2 is given by : V 2(xt) = ln(xt) + Yt.

then Y is again defined as the solution of the following BSDE (with the terminal
condition : YT ≡ 0):

Yt = 0−
∫ T

t

f2(s, Zs)dCs −
∫ T

t

Z
′

sdMs −
∫ T

t

dLs

, and f2 is given by :

f2(s, z) = essinf
ρ

1
2
|m.(ρs − λs)|2 −

1
2
|m.λs|2

(18)

The optimal strategy ρ∗2 is defined by : ρ∗2 = argmin
ρ
|m.(ρs − λs)|2

Proof of the theorem :
Analogously to the exponential case, we can show that the two generators (f1 and f2)
satisfy whether the estimates given by (H1) or (H

′

1) :
On the one hand, the generator f1 satisfies :

−γ.(1− γ)
2

|m.(z + λs
1− γ

)|2 − 1
2
|m.z|2 ≤ f1(s, z) ≤ −1

2
|m.z|2

The majoration is obtained by taking the value when : ρ ≡ 0. To obtain the lower bound,
we use the fact that the quantity for which we take the essential infimum is positive. It
results from easy computations that : f1(s, z) ≥ −γ̄.|m.z|2 − ᾱs, ᾱ ∈ L1(dCs).
So, it implies that the generator f1 satisfies the assumption (H2) (and, a fortiori H1)
On the other hand, we claim that : − |m.λ|

2

2 ≤ f2(s) ≤ 0

The lower bound is integrable w.r.t dCs thanks to the assumption (H3) on λ, so f2

satisfies (H1).

1.Power utility :

As before, we search to construct a process Rρ which is to define such that for all ρ it
is a supermartingale. According to the form of X, we set :
Rρ = γ.U(Xρ).exp(Y ) = (Xρ)γ .eY .
As in the first part of this section, we apply Itô’s formula to the process Rρ using the fact

23



that it is a product of two semimartingales, it gives us :

dRρs = d(U(Xρ
s ))e

Ys + U(Xρ
s )de

Ys + d < U(Xρ), eY >s

Moreover we have that, on the one hand :

d(U(Xρ
s )) = (Xρ)γ−1.Xρ

s (ρ
′

sdMs + ρ
′

sd < M >s .λs)
+(γ − 1)(Xρ

s )
γ−2(Xρ

s )
2. 12ρ

′

sd < M >s ρs

= (Xρ
s )
γ
(
ρ
′

sdMs − ρ
′

sd < M >s .λs + 1
2 (γ − 1)ρ

′

sd < M >s ρs

)
and on the other hand :

d(eYs) = eYsdYs + 1
2e
Ysd < Y >s

= eYs(f1(s, Zs)dCs)− 1
2d < L >s + 1

2 (d < L >s +Z
′

sd < M >s Zs)
+eYs(Z

′

sdMs + dLs)

The quadratic variation process d < U(Xρ), eY >s is obtained by taking the quadratic
variation of the martingale part of each semimartingale, this gives us :
d < U(Xρ), eY >s= U(Xρ

s ).e
Ysγ.ρsd < M >s Zs.

Collecting all those results and replacing (Xρ)γ by γ.U(Xρ) and d< M > by m
′
mdCs,

we obtain the following equation for the process Rρ :

dRρs = Rρs(γ.ρ
′

sdMs + ZsdMs)
+Rρs

(
γ.(mρs)

′
(m.λs)dCs + 1

2γ.(γ − 1)(m.ρs)
′
(m.ρs)dCs + γ.(m.ρs)

′
(m.Zs)dCs

+ 1
2 (m.Zs)

′
.(m.Zs)dCs + f1(s, Zs)

)
dCs

This equation can be rewritten under the form :

dRρs = RρsdM̃
ρ
s +RρsdA

ρ
s (∗∗)

, where M̃ρ is a uniformly integrable martingale : dM̃ρ = E(γ.ρ + Z)
′
.dM , and Aρ is a

process with finite variation .
This condition of uniform integrability is satisfied provided : ρ is admissible (in the sense
defined at the beginning of this section) , and provided that Z

′
.M is a BMO martingale,

this will be an immediate consequence of the expression of the generator f1 of the BSDE.
Remembering that the quadratic variation process d< M >s can be written under the
form : m

′
.mdCs (m is a process taking its values in Rd×d ), the expression of dAρ is the

following :

dAρs =
(
γ.(m.ρs)

′
(m.(λs + Zs) +

γ.(γ − 1)
2

|m.ρs|2 +
1
2
|m.Zs|2 + f1(s, Zs)

)
dCs

Thanks to the expression of the process Rρ given by (**), we can claim that the super-
martingale property is equivalent to : ∀ ρ dAρs ≤ 0.
After simple computations, we obtain as expression for f1 the formula given by (17).
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2.Logarithmic utility :

Using the same notations as in the case of the power utility (in particular for the
definition of a strategy ρ and for the corresponding process Xρ ), we obtain the following
expression for the process U(Xρ) = ln(Xρ) :

U(Xρ
s ) = ln(x) +

∫ t

0

ρsdMs −
∫ t

0

1
2
.ρ
′

sd < M >s ρs +
∫ t

0

ρsd < M >s .λs

As usual, we search to construct a family of processes Rρ verifying the supermartin-
gale property, and, in this special case, we define the process by the following expression
: Rρs = ln(Xρ

s ) + Ys.
where Y satisfies a BSDE completely similar as in the case of power utility.
In this case, following the same method, we obtain as expression for the generator f2 of
the BSDE satisfied by the process Y the one given by (18).
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