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Abstract

Current software and hardware systems, being parallel and reconfig-
urable, raise new safety and reliability problems, and the resolution of
these problems requires new methods. Numerous proposals attempt at re-
ducing the threat of bugs and preventing several kinds of attacks. In this
paper, we develop an extension of the calculus of Mobile Ambients, named
Controlled Ambients, that is suited for expressing such issues, specifically
Denial of Service attacks. We present a type system for Controlled Am-
bients, which makes static resource control possible in our setting.

Introduction

The latest generation of computer software and hardware makes use of nu-
merous new technologies in order to enhance flexibility or performances. Most
current systems may be dynamically reconfigured or extended, allow parallelism
or use it, and can communicate with other systems. This flexibility, however,
induces the multiplication of subsystems and protocols. In turn, this multipli-
cation greatly increases the possibility of bugs, the feasibility of attacks and the
sensitivity to possible breakdown of individual subsystems.

This paper presents a formalism for resource control in parallel, distributed,
mobile systems, called Controlled Ambients (CA for short). The calculus of CA
is based on Mobile Ambients [5], extends Safe Ambients [18], and is equipped
with a type system to express and verify resource control policies.

In the first section, we present our point of view on the problem of resource
control. We provide motivations for using ambient calculi to represent the no-
tion of resource in a distributed setting, and claim that a specific calculus should
be designed for the purpose of guaranteeing some control on the use of resources.
In Sec. 2, we introduce our calculus of Controlled Ambients and explain why
it matches our goals. We then develop in Sec. 3 a type system which uses the
specifics of this language to make resource control possible; we prove its correct-
ness (i.e. that it does indeed monitor the acquisition and release of resources),
and use it to treat several examples. We then discuss some refinements of our
type system, and, in the last section, we present possible extensions of this study
as well as related works.

∗Work supported by european project FET - Global Computing. This paper is an extended
version of [26] – full proofs of the results presented here can be found in [25].
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1 Resource Control

For the sake of the present study, we define a resource as an entity which may at
will be acquired, used, then released. We thus work with a rather broad notion
of resource, that encompasses ports, CPUs, computers or RAM, but not time,
or (presumably) money. A resource-controlled system is a system in which no
subsystem will ever require more resources than may be available.

In order to prevent problems such as Denial of Service attacks, we need a
formalism making resource control possible. This formalism should in particular
provide means to describe systems in terms of resource availability and resource
requirement, and should also support the description of concurrent and mobile
computations. Lastly, the model should provide some kind of entity that can
be regarded as a resource. We now present Ambient calculi, and explain why
they can be used for these purposes (see also Sec. 5 for a discussion of related
works).

Ambient Calculi. Ambient Calculi are based on the notion of locality: each
ambient is a site. In turn, any ambient may contain subambients, as well as
processes, controlling its behaviour through the use of capabilities. Capabilities
let the structure of ambients evolve: in m and out m let an ambient move (resp.
entering ambient m or leaving ambient m), while open m opens ambient m and
releases its contents in the current ambient. This is expressed by the following
reduction rules of the Mobile Ambients calculus [5], that describe the basic
evolution steps (captured by relation −→) of terms:

m[in n.P |Q] | n[R] −→ n[m[P |Q] | R] m entering ambient n

n[m[out n.P |Q] | R] −→ m[P |Q] | n[R] m exiting ambient n

open m.P | m[Q] −→ P |Q opening ambient m

In the terms above, n[P ] stands for process P running at site (or, equivalently,
ambient) n, while | denotes parallel composition of terms. Hence for instance
n[P ] | n′[P ′] represents two adjacent sites named n and n′, with their corre-
sponding contents P and P ′. A capability can be used to prefix a term (as for
instance in open m.P ), which results in a process liable to execute this capa-
bility when appropriate, as defined by the rules for −→. When a capability is
triggered, it is consumed by the corresponding reduction step. A more precise,
formal, definition of the syntax and semantics of Ambients will be provided
below, when we present our calculus of Controlled Ambients.

To draw some analogies with real systems, the in and out primitives can
represent the movement of data in a computer or in a network, while open
could be used for cleaning memory, for reading data or for loading programs
into memory. As for ambients, they could stand for computers, programs, data,
components. . .

These correspondences open the way for a natural model of resource control,
where each site may have a finite (or infinite) quantity of resources of a given
category. Resources will be used for data, programs, . . . In other words, each
ambient has a given capacity and each subambient uses a part of this capacity.
Basically, controlling resources means checking the number of direct subambi-
ents (according to the amount of resources these are using) which may be present
in one ambient at any time.
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Message emitted by client client at site from to call a cab
call from client

∆= call[out client.out from.in cab.in from.loading[out cab.in client]]

Instructions given by client client going from site from to site to

trip from to c
∆= trip[out client.out from.in to.unloading[in c]]

The client itself, willing to go from from to to

client from to
∆= (ν c)c[call from c | open loading.in cab.trip from to c

| open unloading.out cab.bye[out c.in cab.out to]]
The cab and the city
cab

∆= cab[rec X.open call.open trip.open bye.X]
city

∆= city[cab | cab | · · · | site1[client site1sitei | client site1 sitej | · · ·] | · · · | sitei[· · ·]]

Figure 1: Cab protocol - first attempt

Do note that we could have chosen different points of view and decided to
take into account all subambients at all depths, or possibly only “leaf” ambients.
We believe, however, that our approach is more general and flexible, which is
the reason why we chose it.

An example. We shall use as our main running example a cab protocol: the
system consists of one city, n sites, and several cabs and clients. Cabs may be
either “anywhere in the city” or in a precise site. Each client may be either in
a given site or in a cab. Any client may call a cab, asking for a trip from a site
to another site.

In this scenario, several non-trivial properties concerning the interaction
among participants and the managment of resources may be expressed. Typi-
cally, we impose that if a cab is available, one (and only one) cab must come fetch
the client and bring her to her destination. Moreover, if we consider the unique
passenger seat of a cab as a resource, the system will be resource-controlled if
each cab contains at most one client at any time.

Fig. 1 presents the cab protocol as written in the calculus of Mobile Ambi-
ents1. The city itself is an ambient, which may contain sites and cabs. Each
site s is in turn an ambient, which may contain clients, and ambient movements
are used to simulate the movements in the protocol (client entering a cab, cab
moving from site to site,. . . ). In order for this protocol to work, there must be
at least one cab and each “client from to” declaration must be coherent, i.e.
from must be the name of the site which hosts the client and to must be the
name of some site.

In order to call a cab, the client sends a call ambient. This ambient then
enters a cab, where it gets opened. Opening ambient call unleashes process

in from.loading[out cab.in client] .
Therefore, after opening, the cab goes in from, to meet its client, and releases
ambient loading. Once loading has been released, it enters client. As soon
as the client opens loading, she knows that the cab is present, and therefore
that she may enter it. Consequently, the client enters the cab and releases

1As a matter of fact, we are not exactly using the original MA calculus, since we work with
a recursion operator (rec) instead of replication, which suits better our purposes.
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ambient trip, which the cab, in turn, receives and opens. Once again, a process
is unleashed: out from.in to.unloading[in c]. This process moves the cab to
its destination and releases another synchronization ambient, unloading, to tell
the client she may get out. When the client receives this ambient, she opens it,
leaves, and sends the last synchronization ambient bye to the cab, to tell it it
may leave.

Limitations. By examining the code of Fig. 1, one may see that several as-
pects of this implementation may lead to unwanted behaviors. The most visible
flaw is the sending of ambient bye: if, for any reason, there are several cabs in
the site, nothing guarantees that bye will reach the right cab. And if it does
not, it may completely break the system by making one cab wait forever for its
client to exit, although it already has left, while making the other cab leave its
destination site with its unwilling client. In turn, the client may then get out
of the cab about anywhere.

Although this problem is partly due to the way this implementation has been
designed, its roots are deeply nested within the calculus of Mobile Ambients
itself. One may notice that any malicious ambient may, at any time, enter the
cab: in the calculus of Mobile Ambients, there is no such thing as a filtering of
entries/exits. This lack of filtering and accounting is a security threat as well
as an obstacle for resource control: for security, since it prevents modeling a
system which could check and refuse entry to unwanted mobile code, and for
control, since one cannot maintain any information about who is using which
resources in a given ambient.

Towards a better control. Difficulties with security and control are due, for
the greatest part, to the nature of capabilities in, out and open. Actually, the
way these capabilities are used seems too simplistic: in any real system, arrival
or departure of data cannot happen without the consent of the acting subsystem,
much less go unnoticed, not to mention the opening of a program. In practice, if
a program wishes to receive network information, it must first “listen” on some
communication port. If a binary file is to be loaded and executed, it must have
some executable structure and some given entry point.

A calculus derived from Mobile Ambients is presented in [18]; in this calculus
of Safe Ambients, three cocapabilities are introduced, which we will note SAin,
SAout and SAopen. When executed in m, capability SAin m allows an ambient
to enter m (by execution of capability in m). Similarly, SAout m allows an
ambient to leave m using out m, while SAopen m allows m’s parent to open
m using open m. These cocapabilities make synchronizations more explicit and
considerably decrease the risk of security breaches. Getting back to the example
above, a rewritten cab may thus easily refuse entry right to parasites as long as
it is not in any site, or while it contains a client. Moreover, a form of resource
control is indeed possible, since an ambient having no more available resource
may refuse entrance of new subambients.

However, in this model, ambients are not always warned when they receive
or lose subambients by some kind of side effect: in Safe Ambients, when the
process h[m[n[out m] | SAout m]] evolves to h[m[0] | n[0]], h receives n from m
but is not made aware of this. Moreover, while SAin m serves as a warning for
m that it will receive a new subambient, m does not know which one. Since
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a subambient representing static data and another one modeling some internal
message will not occupy the same amount of resources, this model is probably
not sufficient for our purposes.

[13] offers an alternative to these cocapabilities, in order to further enhance
systems’ robustness: in this formalism, in m does not allow entering m but
rather m to enter. This approach solves one of our problems: identifying in-
coming data. Controlled Ambients, that shall be presented in the next section,
may be considered as a development of [13] towards even more robustness as
well as resource control. Let us also mention [19], where a different mechanism
for the SAout cocapability w.r.t. [18] is introduced. Our proposal subsumes the
solutions of [19] and [18].

Embedding resource control. In Sec. 3, we equip our langage with a type
system for resource control. Basically, the type of an ambient carries two infor-
mations:

– its capacity - how many resources the ambient offers to its subambients;
– its weight - how many resources it requires from its parent ambients.

The type system allows one to statically divide the available resources between
parallel processes, and check that resources will be controlled along movements
and openings of ambients.

2 The Language of Controlled Ambients

2.1 Syntax and Semantics

In CA, each movement is subject to a 3-way synchronization between the mov-
ing ambient, the ambient welcoming a new subambient and the ambient letting
a subambient go. As for the opening of an ambient, it is triggered by a syn-
chronization between the opener and the ambient being opened. These forms
of synchronization are somewhat reminiscent of early versions of Seal [28]. In-
teraction is handled using cocapabilities: in↑, out↑, in↓, out↓ and open.

in↑ m the up coentry, welcomes m coming from a subambient;

in↓ m the down coentry, welcomes m coming from the parent ambient;

out↑ m the up coexit, allows m to leave the current ambient by exiting it;

out↓ m the down coexit, allows m to leave by entering a subambient;

open {m,h} the coopening, allows the parent ambient h to open the current
ambient m.

Do note that the direction tags ↑ and ↓ are not strictly necessary for resource
control. We added them since we found they ease the task of specification in
mobile ambients. We will return on the use of these annotations in Sec. 2.3.

The syntax of Controlled Ambients is presented in Fig. 2. We suppose we
have two infinite sets of term variables, ranged over with capital letters (X, Y ),
and of names, ranged over with small letters (m,n, h, x, . . .). Name binders
(input and restriction) are decorated with some type information, that shall be
made explicit in the next section. While several proposals for Mobile Ambient
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P ::= 0 null process
| M.P capability
| m[P ] ambient
| P1 | P2 parallel composition
| (ν n : A)P restriction
| rec X.P recursion
| X process variable
| (n : A)P abstraction
| 〈m〉 message emission

M ::= in m enter m
| out m leave m
| open m open m
| in↑ m m may enter upwards
| in↓ m m may enter downwards
| out↑ m m may leave upwards
| out↓ m m may leave downwards
| open {m,h} h may open m

Figure 2: Controlled Ambients – Syntax

P ≡ P |0 P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R

(ν n : A)0 ≡ 0 (ν n : A)(ν m : B) P ≡ (ν m : B)(ν n : A) P

(ν n : A) (P |Q) ≡ ((ν n : A) P ) |Q if n /∈ fn(Q)

(ν n : A) m[P ] ≡ m[(ν n : A) P ] if n 6= m

Figure 3: Controlled Ambients – Structural Congruence

calculi use replication, infinite behaviour is represented using recursion in CA.
This is mostly due to the fact that recursion allows for an easier specification
of loops, especially in the context of resource consumption. Note also that,
compared to the original calculus of Mobile Ambients, we restrict ourselves to
communication of ambient names only, and we do not handle communicated
capabilities.

The null process 0 does nothing. Process M.P is ready to execute M , then
to proceed with P . P |Q is the parallel composition of P and Q. m[P ] is the
definition of an ambient with name m and contents P . The process (ν n : A)P
creates a new, private name n, then behaves as P . The recursive construct
rec X.P behaves like P in which occurences of X have been replaced by rec X.P .
Process (n : A)Q is ready to accept a message, then to proceed with Q with
the actual message replacing the formal parameter n. 〈m〉 is the asynchronous
emission of a message m. In most cases, we omit the terminal 0 process. We
say that a process is prefixed if it is of the form M.P , rec X.P or (x : A)P .

The operational semantics of CA is defined in two steps. Structural con-
gruence, written ≡, is defined as the least congruence relation that contains
α-equivalence (capture-free renaming of bound names) and satisfying the laws
of Fig. 3. Two processes are deemed equal by ≡ when they only differ by some
elementary syntactical manipulations. Reduction (−→) is defined by the rules
of Fig. 4. The first three rules specify movement and opening in CA as described
informally above: note the three-way synchronisation for the movement rules,
and the role of the direction tags in cocapabilities. The other reduction rules are
standard: they describe communication in Ambients, recursion unfolding, and
express the fact that reduction can occur anywhere in non-prefixed contexts,
and that −→ is defined modulo ≡. We let −→∗ stand for the reflexive transitive
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closure of −→.

m[in n.P | Q] | n[in↓ m.R | S] | out↓ m.T −→ n[m[P | Q] | R | S] | T

n[m[out n.P | Q] | out↑ m.R | S] | in↑ m.T −→ m[P | Q] | n[R | S] | T

h[open m.P | Q | m[open {m,h}.R | S]] −→ h[P | Q | R | S]

〈n〉 | (x : A)P −→ P{x← n}

rec X.P −→ P{X ← rec X.P}

P −→ Q

(ν n : A) P −→ (ν n : A) Q

P −→ Q

R |P −→ R |Q
P −→ Q

n[P ] −→ n[Q]

P ≡ Q Q −→ R R ≡ S

P −→ S

Figure 4: Controlled Ambients – Reduction

2.2 Examples of CA Programming

We now provide a few examples to illustrate the use of Controlled Ambients.
We omit in the examples given below type annotations in restrictions; these will
be made explicit in the next section.

Renaming. Since movements in Controlled Ambients require full knowledge
about the name of moving ambients (also in cocapabilites, which is not the case
in Safe Ambients), renaming turns out to be often useful in order to comply
with some protocols. One may write the renaming of ambient a to b as follows:

a be b.P
∆= b[out a.in↓ a.open a] | out↑ b.in b.open {a, b}.P .

We then have in↑ b.out↓ a | a[a be b.P ] −→∗ b[P ]. This important example is
also characteristic of Controlled Ambients, since in↑ b.out↓ a illustrates a partic-
ular programming discipline: a’s parent ambient must accept the replacement
of a by b. This means that, at any time, the father ambient knows its own
contents, that is both the number of subambients and their names.

Safe Ambients Cocapabilities. As mentioned above, Safe Ambients [18]
introduce another kind of cocapabilities, similar to ours, though weaker. We
concentrate here on the SAin cocapability (the case of SAout being symmetri-
cal). Its semantics is defined by

a[in b.P | Q] | b[SAin b.R | S] −→ b[R | S | a[P | Q]] .
By carrying on the idea behind renaming, we can approximate the specifics of
this cocapability in CA. In other words, a[in b.P | Q] | b[SAin b.R | S] may be
written

(ν m,n)
(
a
[
out↑ m.in b.(P | n[out a.open {n, b}] | out↑ n) | Q
| m[out a.in b.open {m, b}.in↓ a]

]
| b[in↓ m.open m.in↑ n.open n.R | S] | in↑ m.out↓ m.out↓ a

)
.
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As specified, this expression reduces to b[R | S | a[P | Q]]. We use here two
auxiliary ambients m and n to simulate the SAin cocapability. At start, ambient
b does not know name a, so the role of m is to bring this knowledge into b, in
order for it to be able to execute the CA cocapability in↓ a (which is carried
in m). Ambient n is used as a synchronisation device, in order to block the
execution of R as long as a is not inside b. As was the case for renaming, the
father must accept the transaction with in↑ m.out↓ m.out↓ a. This entails in
particular that the father ambient must be aware of the presence of a.

Firewall. We revisit the firewall example of [5], and consider a system f ,
protected by a firewall. Only agents knowing the password g are allowed in f .
This may be modeled as:

Agent P Q
∆= agent[in g.in↓ entered.open entered.P | Q]

System
∆= (ν f)f

[
rec X.

(
g[out f.in↓ agent.in f.open {g, f}]

| out↑ g.in↓ g.open g.(entered[in agent.open {entered, agent}]
| out↑ entered.X)

)]
| rec Y .in↑ g.out↓ agent.out↓ g.Y

This specification behaves as follows: System receives agent and then re-
covers its original structure thanks to rec . The structure of g guarantees that,
at any time, g may only contain one agent. On the other hand, System may
contain any number of agents. This system implements two authentifications:
in the first place, the Agent must be named agent - it will not enter f by acci-
dent. In the second place, it must know the password. Note that this is not the
Firewall described in the original paper on Mobile Ambients [5], which relied on
the secrecy of three keys. This version uses only one key and takes advantage
of the synchronization mechanism to execute correctly.

Cab. Fig. 5 presents a CA version of the cab protocol from Sec. 1. We do
not give definitions for the city or for the sites, which only need to contain all
movement authorizations, in addition to clients and cabs. Using cocapabilities,
synchronizations in CA are both easier than in Mobile Ambients and atomic.
Additionally, the system is not subject to the interferences we have presented:
only clients may enter the cab, not just any “parasite” ambient which happens
to contain capability in cab. Similarly, sites only welcome clients, cabs and calls.

Note that in this version, all clients must be named client in order to enter
a cab. One could use renaming or the approximation of SAin to relax this
constraint (see above).

Additionally, Controlled Ambients permit the control of resources such as
available space in cabs. As opposed to the Mobile Ambients version, we can
easily check that the cab may contain at most only one passenger and possibly an
auxiliary ambient call, trip, arrived or end. These properties will be expressed
formally using our type system in Sec. 3.

2.3 Benefits

We believe that the formalism of Controlled Ambients is more reasonable than
Mobile Ambients or Safe Ambients. More reasonable insofar as the implemen-
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call from
∆= call[out client.out from.

in cab.open {call, cab}.in from.in↓ client]
trip from to

∆= trip[out client.open {trip, cab}.out from.
in to.arrived[open {arrived, cab}.end[open {end, cab}.out to]]]

client from to
∆= client[call from | out↑ call.in cab.trip from to

| out↑ trip.out cab]
cab

∆= cab[rec X.in↓ call.open call.in↑ trip.open trip.open arrived.
out↑ client.open end.X]

Figure 5: Cab protocol – CA-style (see Fig. 1)

tation of movements in ambient calculi suggests this kind of three-way syn-
chronization. To illustrate our claim, let us consider the following transition in
Mobile Ambients:

h[m[in n] | n[0]] −→ h[n[m[0]]] .

As shown in [10, 22], a practical implementation of this rule requires that
h must be aware of the presence of n, no matter how n may have entered h.
More generally, the execution of this movement will involve a synchronization
between n (who is actually present), m (who looks for n) and h (who knows
about the presence of m and n). Similarly, the opening of ambient m by ambient
h requires some complex synchronization between m and h in order to recover
all processes and subambients of m within h and update presence registers of h.
A prototype implementation has been developped [11] in order to experiment
with CA-like synchronisation.

Controlled Ambients are also more realistic as modeling tools. When a sys-
tem receives informations, it must be by some action of his: the operating system
“listens” on a device, the configuration server waits for a request by “listening”
on some given TCP/IP port. . . Unfortunately, this listening behaviour is not
rendered at all by Mobile Ambients and only in half of the cases by Safe Ambi-
ents. Similarly, a system is liable to request several kinds of informations and to
sort them according to their origin: the OS is able to differentiate data read on
a disk from data read on the network or on the keyboard, while software may
listen on several communication ports, for example. We can easily model such
phenomena in CA, and if necessary take into account situations where some part
of the system (like the network connexion itself) accepts data without listening
explicitely for it, using renaming and infinite loops of cocapacities.

3 Typing Controlled Ambients

This section is devoted to the presentation of a type system for resource control
in Controlled Ambients. We first describe the system and its properties, and
then show the kind of information it is liable to check on some examples.
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A ::= CAam(s, e)[T ] s ∈ N, e ∈ N ambient types
U ::= CApr(t)[T ] t ∈ N process types
T ::= Ssh message types

| t, A t ∈ N

Figure 6: Types

3.1 The Type System

Type Judgments. The grammar for types is given in Fig. 6, and includes
entries for the types of ambients, processes and messages (N stands for N∪{∞}).

Typing environments, ranged over with Γ, are lists of associations of the form
x : A (for ambient names) or X : U (for process variables). We write Γ(x) = A
(resp. Γ(X) = U) to represent the fact that environment Γ associates A (resp.
U) to x (resp. X). Γ, x : A stands for the extension of Γ with the association
x : A, possibly hiding some previous binding for x (and similarly for Γ, X : U).

The typing judgment for ambient names is of the form

Γ ` n : CAam(s, e)[T ] ,

and expresses the fact that under assumptions Γ, n is the name of an ambient
of capacity s, weight e, and within which messages carrying information of type
T may be exchanged. The capacity s represents the amount of space (or of re-
sources) available for subambients within n, while e is the number of resources
this ambient is occupying in its surrounding ambient. Note that while an ambi-
ent may have an infinite capacity (s =∞), it cannot manipulate infinitely many
resources (e < ∞). Moreover, if we decide to impose e ≥ s in ambient types,
we may develop an analysis close to what is done in [7], where the weight of
an ambient takes into account the weight of all its subambients, at any depth.
The type T for messages captures the kind of names being exchanged within n,
similarly to Cardelli and Gordon’s topics of conversation [6], augmented with
an information t which represents a higher bound on the effect of exchanging
messages within n (we shall come back to this below).

The typing judgment for processes is written

Γ ` P : CApr(t)[T ] ,

meaning that according to Γ, P is a process that may use up to t resources, and
take part in conversations (that is, emit and receive messages) having type T .

Typing Rules. The rules defining the typing judgments are given on Fig. 7.
We now comment on them. While typing (subjective) movements has no effect
from the point of view of resources (rules T-in and T-out), the rules T-coin
and T-coout, for the co-capabilities (where δ ranges over a direction tag, which
can be ↑ or ↓), express the meaning of t in CApr(t)[T ], according to the weight
e of the moving ambient. Note that the number t of resources allocated to the
process must remain positive after decreasing (rule T-coout). This is made
possible by the subtyping property of the system (Lemma 1), together with
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T-name
Γ(n) = A

Γ ` n : A
T-var

Γ(X) = CApr(t)[T ]

Γ ` X : CApr(t′)[T ]
t′ ≥ t

T-rec
Γ, X : CApr(t)[T ] ` P : CApr(t)[T ]

Γ ` rec X.P : CApr(t′)[T ]
t′ ≥ t

T-in
Γ ` P : CApr(t)[T ]

Γ ` in m.P : CApr(t)[T ]
T-out

Γ ` P : CApr(t)[T ]

Γ ` out m.P : CApr(t)[T ]

T-coin
Γ ` P : CApr(t)[T ] Γ ` m : CAam(s, e)[T ′]

Γ ` inδ m.P : CApr(t + e)[T ]

T-coout
Γ ` P : CApr(t)[T ] Γ ` m : CAam(s, e)[T ′]

Γ ` outδ m.P : CApr(t− e)[T ]
t ≥ e

T-open
Γ ` m : CAam(s, e)[T ] Γ ` P : CApr(t)[T ]

Γ ` open m.P : CApr(t− e + s)[T ]
t− e + s ≥ 0

T-coopen
Γ ` m : CAam(s, e)[T ] Γ ` R : CApr(t)[T ]

Γ ` open {m, h}.R : CApr(t)[T ]

T-nil Γ ` 0 : U T-amb

Γ ` m : CAam(s, e)[T ]
Γ ` P : CApr(a)[T ]

Γ ` m[P ] : CApr(t)[T ′]

{
a ≤ s
e ≤ t

T-res
Γ, n : A ` P : U

Γ ` (ν n : A)P : U
T-par

Γ ` P : CApr(t)[T ] Γ ` Q : CApr(t′)[T ]

Γ ` P |Q : CApr(t + t′)[T ]

T-snd
Γ ` m : A

Γ ` 〈m〉 : CApr(t′)[t, A]
t′ ≥ t T-rcv

Γ, x : A ` P : CApr(t)[t, A]

Γ ` (x : A)P : CApr(t′)[t, A]

Figure 7: Typing rules

rules T-nil, T-amb, . . . , which allow one to allocate any number of resources
to an inert process (inert from the point of view of the current ambient). This
mechanism can be used for example to derive a typing for a process of the form
out↑ n.0. Note also that the side condition a ≤ s in rule T-amb expresses
conformity with the capacity of the ambient.

When opening an ambient, we release the resources it had acquired (e), but
at the same time we have to provide at least as many resources as its original
capacity (s). The open capability plays no role from the point of view of resource
control, as illustrated by rule T-coopen (note, still, that message types in the
opening ambient and in the type of R are unified using this rule). We shall
present in Sec. 4 a richer system where a more precise typing of opening (and
co-opening) permits a better control.

We now explain the typing rules for communication. Since reception of a
message can trigger a process which will necessitate a certain amount of re-
sources, we attach to the type of an ambient the maximum amount of resources
needed by a receiving process running within it: this is information t in an
ambient’s topic of conversation. Put differently, messages are decorated with
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an integer representing at least as many resources as needed by the processes
they are liable to trigger: we are thus somehow measuring an effect in this case.
Note that our approach is based on the idea that one emission typically corre-
sponds to several receptions. The dual point of view could have been adopted,
by putting in correspondence one reception and several concurrent emissions.
Our experience in writing examples suggests that the first choice is more useful.

Finally, rule T-rec expresses the fact that a recursively defined process
should run “in constant space”: as required by the premise, each time a recursive
call is triggered (by X), the number t of allocated resources is the same as the
number of resources allocated to the whole recursive process P .

3.2 Static Resource Control

We now present the main properties of the type system. Proofs are not given,
but can be found in [25].We start by some technical properties of typing deriva-
tions.

Lemma 1 (Subtyping) Let P be a process and Γ an environment such that
Γ ` P : CApr(t)[T ] for some t. Then for any t′ ≥ t, Γ ` P : CApr(t′)[T ].

Corollary 2 (Minimal typing) If a process P is typeable in Γ with a conver-
sation topic type T , then there is a minimal t ∈ N such that Γ ` P : CApr(t)[T ].

Note that the minimal parameter t can be different for each possible value
T (see for example rule T-snd).

Let us now examine resource control. In order to be able to state the prop-
erties we are interested in, we extend the notion of weight, which has been used
for ambients, to processes, by introducing the notion of resource usage, together
with a natural terminology:

Definition 3 (Resource policy and resource usage) We call resource pol-
icy a typing context. Given a resource policy Γ, we define the resource usage of
a process P according to Γ, written Res Γ(P ), as follows:

• if Γ(a) = CAam(s, e)[T ], then Res Γ(a[P ]) = e;

• Res Γ(P1 |P2) = Res Γ(P1) + Res Γ(P2);

• Res Γ((ν n : A)P ) = Res Γ,n:A(P ).

• in all other cases, Res Γ(P ) = 0;

Note in particular that according to this definition, prefixed terms (capabili-
ties, reception, recursion) do not contribute to a process’ current resource usage
(accordingly, their resource usage is equal to 0).

We now define formally what it means for a process to respect a given re-
source policy.

Definition 4 (Resource policy compliance) Given a resource policy Γ, we
define the judgment Γ |= P (pronounced “P complies with Γ”), as follows:

• Γ |= n[P ] iff Γ |= P and Res Γ(P ) ≤ s, where capacity s is given by
Γ(n) = CAam(s, e)[T ];

12



• Γ |= P1|P2 iff Γ |= P1 and Γ |= P2;

• Γ |= (ν n : A) P iff Γ, n : A |= P ;

• in all other cases, Γ |= P .

Intuitively, the judgment Γ |= P means that any ambient occurring in P
contains no more subambients (in relation to the corresponding weights) than
what its capacity allows. The typing rules we have introduced ensure that a
typeable term complies with a resource policy:

Lemma 5 (Typeable terms comply with resource policies) For any pro-
cess P , resource policy Γ and process type U , if Γ ` P : U , then Γ |= P .

The following theorem states that typability is preserved by the operational
semantics of Controlled Ambients:

Theorem 6 (Subject Reduction) For any processes P,Q, resource policy Γ
and type U , if Γ ` P : U and P −→ Q, then Γ ` Q : U .

As a direct consequence, we obtain our main result:

Theorem 7 (Resource control) Consider a resource policy Γ and a process
P such that Γ ` P : U for some U . Then for any Q such that P −→∗ Q, it
holds that Γ |= Q.

3.3 Examples

We now revisit some examples of Sec. 2.2, and explain how they can be typed. In
each case, we exhibit a resource policy (i.e., a typing context Γ) that captures a
property we wish to guarantee, and describe the weight and capacity associated
to every ambient in order to do so.

Renaming. The expression of renaming given in Sec. 2.2 is typeable as soon
as there exists a typing environment Γ and a conversation type T such that

Γ(a) = CAam(s, e)[T ] , Γ(b) = CAam(s, e)[T ] with s ≥ e ,
and Γ ` P : CApr(s)[T ] .

We can actually slightly relax the conditions on types. One can show that
the least set of conditions to type the renaming is

tP ≤ sa, eb ≤ sa, sa ≤ sb, and ea ≤ sb ,

where Γ(a) = CAam(sa, ea)[T ], Γ(b) = CAam(sb, eb)[T ] and we have Γ ` P :
CApr(tP )[T ].

Firewall. Similarly, the firewall in Controlled Ambients, as defined in subsec-
tion 2.2, can be typed in a context Γ such that:

Γ(agent) = CAam(aP + aQ, 1)[T ], Γ(entered) = CAam(0, 0)[T ],
Γ(f) = CAam(∞, 0)[T ], and Γ(g) = CAam(1, 0)[T ] .
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In particular, the typing of the recursive process rec X. . . . in System entails
a constraint of the form CApr(t)[T ] = CApr(t + 1)[T ]. This is possible if and
only if t = ∞, and as a consequence the capacity of f should also be ∞, so
that the firewall is supposed to have infinite size. This is no surprise, since it
may actually receive any number of external ambients. However, these ambients
are contained in the firewall. Hence, one may still integrate this firewall as a
component in a system with limited resources.

Cab. Let us consider an environment Γ such that:
Γ(client) = CAam(0, 1)[T ]
Γ(call) = CAam(1, 0)[T ]
Γ(trip) = CAam(0, 0)[T ]
Γ(arrived) = CAam(0, 0)[T ]


Γ(end) = CAam(0, 0)[T ]
Γ(cab) = CAam(1, 0)[T ]
Γ(sitei) = CAam(∞, 0)[T ]
Γ(city) = CAam(0, 0)[T ]

Note in particular that this resource policy specifies that among the ambients
that may enter the cab, only those named client are actually “controlled”: this
corresponds to the property we focus on when analyzing the cab. With these
assumptions, the complete cab system is typeable. This means that resources
are statically controlled in cabs: at any step of its execution, the cab may contain
at most one client.

Moreover, we may adopt a different resource policy, defined as follows:
Γ(client) = CAam(0, 0)[T ]
Γ(call) = CAam(0, 1)[T ]
Γ(trip) = CAam(1, 1)[T ]
Γ(arrived) = CAam(1, 1)[T ]


Γ(end) = CAam(0, 1)[T ]
Γ(cab) = CAam(1, 0)[T ]
Γ(sitei) = CAam(∞, 0)[T ]
Γ(city) = CAam(0, 0)[T ]

The system is also typeable with this choice for Γ, which allows us to control
the number of “auxiliary” ambients: at any time, at most one of those may be
present in cab.

4 More Accurate Analyses of Opening

In this section, we present several refinements of type system of Section 3, that
we call systems R, Z and RZ. While the basic system we have presented so far
allows one to type many interesting processes, some relatively simple examples
show its limitations. For instance, let us define

P1
∆= a[open {a, b}.rec X.(X | b[0])] | open a ,

and suppose that the weight of b is not 0. The construction rec X.(X | b[0]) then
requires infinite resources. Although the execution would not use any resource
inside a, our type system cannot capture this property: the typing will require
a to have an infinite capacity.

Similarly, let us define

P2
∆= h[rec X.(m[in↓ n.out↑ n.open {m,h}] | out↓ n.in↑ n.open m.X)

| n[rec Y .in m.out m.Y ]] ,

and suppose that the weight of n is not 0. By following the evolution of this
term, one may easily notice that a finite capacity for h should be sufficient.
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However, when deriving a typing for P2, we conclude that the capacity of h
must be infinite.

In both cases, the typing system is not refined enough to express a resource
control property. More specifically, the opening primitive is associated to a
resource control that is too strict. For the discussion that follows, we shall use
the following notations for the rule R-open:

h[open m.P | Q | m[open {m,h}.R | S]] −→ h[P | Q | R | S]
In order to try and refine the typing of opening, one may want to make the
control on P , Q, R or S more precise. For technical reasons, we have chosen to
concentrate on R and S.

System R In System R, we introduce a third parameter in ambient types,
named r. In CAam(s, e, r)[T ], r ∈ N is an upper bound for the number of
resources allocated to R in the opening ambient. Typing rules for open and
open become:

Γ ` m : CAam(s, e, r)[T ] Γ ` P : CApr(t)[T ]
Γ ` open m.P : CApr(t− e + s + r)[T ]

CA− open
t− e + s + r ≥ 0

Γ ` m : CAam(s, e, r)[T ] Γ ` R : CApr(t)[T ]
Γ ` open {m,h}.R : CApr(t′)[T ]

CA− coopen
t ≤ r

Using these alternative rules, term P1 may be satisfactorily typed (i.e. with
a finite capacity for a), taking r = ∞. Additionally, all results of Section 3.2
still remain valid. However, System R does not help with term P2.

System Z System Z, on the other hand, improves the control on S. This is
particularly important, for processes such as

M1. · · · .Mn.open {m,h}.R :
although M1. · · · .Mn might acquire as many as, say, s resources, it might also
release some or all of them before the actual opening. By taking these releases
into account, we may get a better approximation of resource consumption. To
do so, we can introduce a parameter z which is compelled to satisfy z ≤ s. In
System Z, ambient types become CAam(s, e, z)[T ] with z ∈ N and z ≤ s, and
the typing rules are:

Γ ` m : CAam(s, e, z)[T ] Γ ` P : CApr(t)[T ]
Γ ` open m.P : CApr(t− e + z)[T ]

CA− open
t− e + z ≥ 0

Γ ` m : CAam(s, e, z)[T ] Γ ` R : CApr(t)[T ]
Γ ` open {m,h}.R : CApr(t + s− z)[T ]

CA− coopen

Results from Section 3.2 also remain valid on System Z. System Z permits a
good analysis of term P2, but cannot handle term P1 any better than the basic
system.

System RZ System R and System Z may be naturally merged into System
RZ, which yields a more accurate analysis of resources, with ambient types of
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the form CAam(s, e, r, z)[T ], r ∈ N, z ∈ N and z ≤ s and the following rules:

Γ ` m : CAam(s, e, r, z)[T ] Γ ` P : CApr(t)[T ]
Γ ` open m.P : CApr(t− e + z + r)[T ]

CA− open
t− e + z + r ≥ 0

Γ ` m : CAam(s, e, r, z)[T ] Γ ` R : CApr(t)[T ]
Γ ` open {m,h}.R : CApr(t′)[T ]

CA− coopen
t ≤ r, t′ ≥ s− z

As expected, System RZ correctly handles both terms P1 and P2, and results
from Section 3.2 also remain valid. Hence, System RZ is a more refined although
more complicated type system.

5 Conclusion

The language of Controlled Ambients has been introduced to analyze resource
control in a distributed and mobile setting through an accurate programming
of movements and synchronisations. We have enhanced our formalism with
a type system for the static control of resources, and extensions of the basic
type system have also been presented. Further, examples show that indications
on the maximal amount of resources needed by a process match rather closely
the actual amount of resources which may be reached in the worst case, which
suggests that the solution we propose could serve as the basis for a study of
resource control properties on a larger scale.

Among extensions of the present work, we are currently enriching the lan-
guage and type system to include communication of capabilities, as in the orig-
inal Mobile Ambients calculus [5]. We are also studying type inference for our
system, which would enhance (untyped) Controlled Ambients with a procedure
for the automatic guess of resource needs. It seems that by requiring the recur-
sion variables to be explicitely typed, type inference is decidable, and a rather
natural algorithm can compute a minimal type for a given process, if it exists.
In particular, the “message” component of terms leads to a classical unification
problem. The question becomes more problematic if no information is given
for recursion variables: one can compute a set of inequalities (resembling those
given for the example of renaming in Sec. 3), but solving it in the general case
would require more work.

As reported in [24], our approach can be adapted to other formalisms for
mobile and distributed computation that provide a primitive notion of location,
such as Seals [28], Boxed Ambients [2, 3], Nomadic π [27] and Kells [23]. In π-
calculus-like languages, a natural notion of resource is given by channels, which
represents a slightly different point of view w.r.t. the present work. Introducing
resource control in calculi like the π-calculus or the distributed π-calculus [21]
represents a challenging direction for future work.

We could also consider combining our type system for resource control with
other typing disciplines, adapted from the Single Threadness types of [18], or
the Mandatory Access Control of [2]. It seems that Controlled Ambients could
also be used to approximate some of the analyses done in [9, 14], where, in a
context where security levels are associated with processes, types are used to
check that no agent can access an information having a security level higher
than its own. For instance, in the simple case where we have two security levels,
we could attach weight 0 to agents of high level, and 1 to low-level agents, and
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store high-level information in ambients of size 0: in such a framework, our type
system can guarantee that only high-level processes can access high-level data.
Of course this is a very rough approximation. We are currently working on a
generalisation of our type system that would enhance its flexibility, making it
possible to handle more complex kind of resources and related properties (such
as security levels, non-releasable resources, and a form of movement typing along
the lines of [4]).

We have not addressed the issue of behavioural equivalences for CA. A pos-
sible outcome of such a study could be to validate a more elaborate treatment
of resources involving operations like garbage collection, which would allow one
to make available uselessly occupied resources. An example is the perfect fire-
wall equation of [12]: when c /∈ fn(P ), process (ν c) c[P ] may manipulate some
resources while being actually equivalent to 0.

Other Related Works. Other projects aim at controlling resources in possi-
bly mobile systems without resorting to mobile process algebras. [17] presents a
modified ML language with sized types in which bounds may be given to stack
consumption. Like in our framework, resources are releasable entities; however,
this approach seems more specialized than ours, and moreover concentrates on a
sequential model. Similarly, [8] introduces a variant of the Typed Assembly Lan-
guage “augmenting TAL’s very low-level safety certification with running-time
guarantees”, while Quantum [20] may be used to describe distributed systems
from the point of view of their resource consumption. In contrast to our work,
both these approaches consider non-releasable resources. Another program-
ming language, Plan [15], has been designed specifically for active networks,
and also handles some form of resource bounds. Although Plan accounts for
both releasable (space, bandwidth) and non-releasable (time) resources, it han-
dles neither recursion nor concurrency on one node. A related line of research
is followed in [16, 1], where means to guarantee bounds on the time or space
consumption required for the execution of (sequential) functions are proposed.

These works all focus on resource control; however, none of these approaches
can be directly compared to ours. It might be interesting to study if and how
our methods could be integrated to these works, in order to combine several
forms of resource control.

Another form of accounting on mobile ambients is introduced in [7]. In a
calculus with a slightly different form of recursion than in CA (and without co-
capabilities), the authors introduce a type system to count the number of active
outputs and ambients (at any depth) in a process. This analysis, however, is
not aimed at modelling resources: it tries and isolate a finite-control fragment of
mobile ambients on which model checking w.r.t. the Ambient Logic is decidable
through state-space exploration.
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