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Conformal mappings and shape derivatives for the transmission

problem with a single measurement.
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Abstract

In the present work, we consider the inverse conductivity problem of recovering inclusion with one

measurement. First, we use conformal mapping techniques for determining the location of the anomaly

and estimating its size. We then get a good initial guess for quasi-Newton type method. The inverse

problem is treated from the shape optimization point of view. We give a rigorous proof for the existence

of the shape derivative of the state function and of shape functionals. We consider both Least Squares

fitting and Kohn and Vogelius functionals. For the numerical implementation, we use a parametrization

of shapes coupled with a boundary element method. Several numerical exemples indicate the superiority

of the Kohn and Vogelius functional over Least Squares fitting.

Keywords inverse conductivity problem, shape optimization, shape derivatives, conformal mappings, bound-
ary element methods.
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1 Introduction

We consider the inverse conductivity problem with one measurement of recovering, within a bounded domain
Ω ⊂ R

2 whose conductivity is σ1, an unknown inclusion ω in Ω of conductivity σ2 6= σ1 by measuring on ∂Ω,
the input voltage and the corresponding output current. In the sequel, we fix d0 > 0 and consider inclusions
ω such that ω ⊂⊂ Ωd0

= {x ∈ Ω, d(x, ∂Ω) > d0}. To set up the problem, we consider a conducting body
occupying Ω ⊂ R

2 with a conductivity

σ = σ1χΩ\ω + σ2χω, σ1, σ2 > 0 (1)

where ω is a simply connected subdomain of Ω. The notation χω (resp. χΩ\ω) denotes the characteristic
function of ω (resp. Ω \ ω). Then if the electrostatic potential u solves

−div (σ∇u) = 0 in Ω, (2)
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2one wishes to recover ω from the knowledge of the boundary voltage f and current measurements g whose
relationship is determined by the following equation







−div (σ∇u) = 0 in Ω,
u = f on ∂Ω,

σ1∂nu = g on ∂Ω.
(3)

Here ∂nu denotes the normal derivative of u. This inverse problem arises in practical situations, such as
medical imaging, exploration geophysics and non-destructive evaluation where measurements made on the
exterior of a body are used to deduce the properties of the hidden interior and inclusions. The fundamental
question of existence and uniqueness of a solution to the inverse problem is non trivial and no general answer
is known to our best knowledge. The difficulty lays in the single measurement condition. However, we
are not dealing with this question in this work but with the design of numerical techniques to effectively
reconstruct the interface ∂ω.

Our work is the natural continuation of the paper [4] where we introduced an algorithm based on the
use of conformal mapping to efficiently reconstruct circular inclusions in tomography. The leading idea is
to consider the conformal map itself as variable and the analytic expression of the Dirichlet to Neumann
map in the case of concentric disks. Such techniques were introduced by Kress and al in [1], [6] where they
considered the particular cases of the perfectly conducting or insulating inclusions. However, the extension of
the conformal mapping methods to the general transmission case requires to consider only circular inclusions.
This limitation is intrinsic to the use of conformal mapping of doubly connected domains. Therefore, the
natural question is : how useful are those conformal mapping methods when one deals with inclusions far from
being circular? Our aim in this paper is to give a simple answer: we can use this method for determining the
location and an estimated size of the inclusion. We will then get a good initial guess that will be incorporated
in a more complex algorithm. This algorithm can be summarized as follows: first, thanks to the conformal
mapping, we begin to find an admissible approximating disk; in a second time we choose a criterion and use
a quasi-Newton procedure to minimize this criterion. Let us emphasize that the unknown is a geometry and
therefore we are facing a shape optimization problem.

We consider different criteria such as the Least-Squares boundary fitting criterion and the Kohn-Vogelius
criterion and solve the corresponding minimization problems by an optimization method. We discretize the
continuous gradient of the objectives. From the numerical results obtained with quasi-Newton algorithms
such as BFGS, we will be able to determine which criterion is more suited for our problem.

The organization of the paper follows the objective. In a first section, we shortly present the conformal map-
ping techniques from a practical point of view. We also give some comments on the convergence conditions of
the algorithm and derive an a priori upper bound for the conformal radius. In the second section, we derive
the shape calculus for the solution of equation (2). Since we have to differentiate the energy functionals with
respect to the variations of the boundary, the knowledge of the shape derivative of the state equation with
respect to the boundary variations is required for an efficient implementation of an optimization method. We
will introduce the shaping functions and will compute their shape derivatives. In the last part of the paper,
we introduce a discretization of the problem based on the discretization of the continuous gradients. In order
to compute the gradients, we introduce some systems of integral equations and prove their well-posedness.
This will enable us to use a classical optimization method to improve the quality of the reconstruction. We
will illustrate our theoretical results with several numerical examples obtained with the criteria we previously
introduced.



32 Using conformal maps to find a good starting shape

2.1 Presentation of the algorithm of [4] and convergence results

To simplify many expressions in this section, we assume from now on that the known domain Ω is the unit
disk B(O, 1) and that the inclusion is a disk ω ⊂⊂ Ωd0

. There exists a radius ρ and a Möbius transform Ψ
mapping Ω into itself and ω into B(o, ρ).

In order to perform the transport, we need some notations: let Γ be a periodic parametrization of ∂Ω by the
arc length. From now on we consider Φ = Ψ−1, the conformal mapping transforming the concentric circles
onto ∂Ω and ∂ω. We normalize the mapping Φ by setting Φ(1) = Γ(0). If the circle ∂Ω is parameterized
by ∂Ω = {θ(t) = eit, t ∈ [0, 2π]}, then we can find a strictly monotonous and smooth bijection φ such that
Φ ◦ θ = Γ ◦ φ; φ is the main determination of the argument of Φ(eit). If u is an harmonic function in a
neighborhood of ∂Ω and if v = u ◦Φ then applying the chain rule and the Cauchy-Riemann relations we get

∂v

∂n
=
∂u

∂ν

dφ

dt
on ∂Ω. (4)

Since the state function u solves (3), we get

Dρ (f ◦ φ) =
dφ

dt
g ◦ φ on ∂Ω, (5)

where Dρ denotes the Dirichlet to Neumann operator and f and g depend on the arclength of ∂Ω. In the
specific case of two concentric disks of radii ρ and 1, Dρ is explicitly known.

Lemma 2.1 The operator Dρ is diagonal on the Fourier basis:

Dρ

(

1√
π

[

cos kθ
sin kθ

])

= λk

(

1√
π

[

cos kθ
sin kθ

])

with λk(ρ) = σ1 k
1 − µρ2k

1 + µρ2k
. (6)

In these formulae, µ is the relative contrast of conductivities namely (σ1 − σ2)/(σ1 + σ2) ∈ (−1, 1).

The unknowns in (5) are ρ and φ. When ρ is a real number between 0 and 1, φ is a 2π-periodic function.
Equation (6) provides the radius ρ from the eigenvalues λk by

∀k 6= 0, ρ =

∣

∣

∣

∣

∣

σ1k − λk

µ (σ1k + λk)

∣

∣

∣

∣

∣

1

2k
(7)

Hence, once φ is fixed, the eigenvalues of Dρ are recovered from the projections of f ◦ φ and g ◦ φ on the
eigensubspaces of Dρ. This means that in practise the only unknown is φ. The equation (5) is nonlinear and
nonlocal. The computational and theoretical way to solve such an equation was introduced by Akduman
and Kress in [1]: it consists in writing this equation as a fixed point for a contractant nonlinear operator
K. In order to prove contraction, a linearization is performed and the measurements f and g have to be
properly chosen. These limitations explain the limitation of the results in [1], [6], [4]. We now introduce the
appropriate operator K for the transmission problem. The full analysis is carried out in [4].

To avoid division by 0, equation (5) is rewritten in a relaxed form

dφ

dt
=

(g ◦ φ)Dρ[f ◦ φ] + (G ◦ φ)D0[F ◦ φ]

(g2 +G2) ◦ φ . (8)



4The couple (F,G) satisfies the following compatibility with the measurements condition : there exists a
function G with mean value 0 in L2(∂Ω) such that g2 +G2 ≥ γ holds for some γ > 0 on ∂Ω. The function
F is then taken as the trace on ∂Ω of a solution to the Neumann problem −∆w = 0 in Ω with ∂nw = G on
∂Ω. However, they can be seen as simulated data for the reference problem without inclusion.

Let us introduce the operators V , U and K defined as

V : H1(0, 2π) → H1(0, 2π)
ψ 7→ ψ(t) + t.

U : H1(0, 2π) → L2(0, 2π)

ψ 7→ (g ◦ V ψ)Dρ[f ◦ V ψ] + (G ◦ V ψ)D0[F ◦ V ψ]

(g2 +G2) ◦ V ψ .
(9)

K : H1(0, 2π) → H1(0, 2π)

ψ 7→
∫ t

0

(

Uψ(x) − 1

2π

∫ 2π

0

Uψ(τ)dτ

)

dx.
(10)

We have :

Theorem 2.2 ([4]) Assume that Ω \ ω is close to an annulus bounded by concentric circles with an inner
radius ρ and that the pair of measures (f, g) are close to a sine function. If σ2 > σ1 and the condition

− µρ2(1 − ρ2)2

(1 − µρ2)(1 + µρ4)2
− 4µρ2

1 − µρ2

[

1

5
+

1

3

1 − ρ2

1 + µρ2

]

<
1 − ρ2

1 + µρ4
, (11)

holds then the inclusion ω can be reconstructed via iterative approximations ψn+1 = K(ψn). Moreover, if
(F,G) is a second measurement, then condition (11) can be removed.

Two assumptions limit the field of application of this method. Let us make some comments about these
restrictions.

The condition σ2 > σ1 - the conductivity in the inclusion should be bigger than the conductivity outside -
is intriguing. Technically, if σ2 < σ1, K has an eigenvalue strictly bigger than 1 and is not contracting. In
that case, we can consider the corresponding problem for v an harmonic conjugate function of the state u.
It solves classically















−div (σ̃∇v) = 0 in Ω,
v = g on ∂Ω,

σ̃1∂nv =
df

ds
on ∂Ω.

where σ̃ is the inverse of σ and s stands for the arc-length of ∂Ω. The conjugate harmonic function is defined
by (3) up to an additive constant. Obviously, the points of discontinuity of σ̃ are ω and one checks that
σ̃2 > σ̃1. If f and g are regular enough to apply the same strategy for the new set of data (g, f ′), we are led
to study the operator K̃ defined by

Ũ : H1(0, 2π) → L2(0, 2π)

ψ 7→ (f ′ ◦ V ψ)Dρ[g ◦ V ψ] + (G ◦ V ψ)D0[F ◦ V ψ]

(f ′2 +G2) ◦ V ψ .

K̃ : H1(0, 2π) → H1(0, 2π)

ψ 7→
∫ t

0

(

Ũψ(x) − 1

2π

∫ 2π

0

Ũψ(τ)dτ

)

dx.

(12)

It is an exercise to adapt the study of K performed in [4] to show that in this case, K̃ is also not contracting.
This means that the constraint σ2 > σ1 cannot be removed in this way.



5The other restriction is the size condition (11): the key quantity µρ2 -namely the product of the conductivity
contrast by the area of the conformal inclusion- should not be too big. Since µ is known by assumption, we
are led to the question of obtaining a priori bounds on the conformal radius ρ from effective data. They
correspond, in the context of conformal mapping, to the general results of a priori estimations of size.

2.2 Size estimations of the conformal radius

The size estimate is comparable with the boundary integral

δE =

∫

∂Ω

g(f − f0)dS

where f0 denotes the Dirichlet data for g, when we have no inclusion (see for example [11],[2]). If Λ−1
0 is

the Neumann-to-Dirichlet map associated with the Laplace operator on B(0, 1), then f0 = Λ−1
0 g. Here δE

represents the difference between the energy powers E and E0 when the inclusion is respectively present and
absent. Before giving an estimation of the size of the radius, some preliminaries are needed. We assume that
ω is a disk of center a ∈ B(0, 1 − d0) and of unknown radius. Concerning the boundary measurement, we
make the assumption that the Neumann data g is steep when it is small:

(A) There exists a number M > 0 such that when |g(x)| < M then its derivative satisfies

|g′(x)| > 12

d5
0

M.

This assumption plays the same role than assumption (N1) of [11]. Our size estimation of the conformal
radius ρ is given by the following result.

Proposition 2.3 Assume that g satifies (A). There exists a constant C > 0, depending only on the con-
ductivities σ1, σ2, such that

ρ2 ≤ C

πM2

∣

∣

∣

∣

∫

∂Ω

(g − g0)f dx

∣

∣

∣

∣

. (13)

Proof: By the Möbius transform

Φ(z) =
z − a

1 − āz
,

we transport the problem on the configuration of an annulus of inner radius ρ. Since the trace of Φ on the
boundary ∂Ω writes:

eiφ(θ) = e−iθ

(

eiθ − a
)2

|eiθ − a|2
,

a straightforward computation leads to

φ′(t) =
1 − |a|2

1 + |a|2 − 2xa cos t− 2ya sin t
≥ 1 − |a|

1 + |a| ≥
d0

2

and |φ′′(t)| ≤ 2
|a|(1 + |a|)
(1 − |a|)3 ≤

2

d3
0

.

The transported boundary conditions are f̃ = f ◦ φ and g̃ = (g ◦ φ)φ′. Hence, we have on the one hand
∫

∂Ω

(f − f0)g =

∫

∂Ω

(f̃ − f̃0)g̃,



6on the other hand, |g̃(x)| < M ⇒ |g̃′| > M . Then, from Theorems 3.1 (size estimate) and 4.1 (lower bound
for the norm of the gradient) of [11], there exists a constant C > 0 depending only of the conductivities
σ1, σ2 such that

ρ2 ≤
C

πM2

∣

∣

∣

∣

∫

∂Ω

(f − f0)g

∣

∣

∣

∣

.

Our result should be useful in practice: indeed, we have a decision tool for the convergence of the fixed point
that needs only the boundary measurements and conductivity.

2.3 The numerical algorithm

The function ψ is approximated in Ed the subspace of trigonometric polynomials of order less than d. The
known and fixed data are the measurements f, g, the virtual measurements F, G and the conductivities.
We assume that both the contrast of conductivity and the spectra of D0 are computed once for all. Let us
first explain how to apply numerically the fixed point operator. Assume that the approximations ρn and ψn

are known after n iterations. Two main steps are to be performed.

1. Step 1: computation of the new fonction ψn+1.

(a) determine the eigenvalues of Dρn
,

(b) compute f ◦ φn, g ◦ φn, F ◦ φn and G ◦ φn, (this requires numerical interpolation)

(c) compute the Fourier coefficients of f ◦ φn and g ◦ φn,

(d) compute U pointwise according to (9),

(e) compute the Fourier coefficients of U and deduce ψn+1,

(f) set φn+1(t) = t+ ψn+1(t);

2. Step 2: computation of the new radius ρn+1.

(a) compute the Fourier coefficients αk of φ′n+1 g ◦ φn+1 and βk of f ◦ φn+1,

(b) determine k0 = min{k, |βk|2 + |β−k|2 6= 0},
(c) evaluate λ =

√

(|αk0
|2 + |α−k0

|2)/(|βk0
|2 + |β−k0

|2),
(d) determine ρn+1 from (7).

The main advantage of this algorithm is that no partial differential equation and no linear system has to be
solved. Hence, it is fast and cheap. Once convergence is achieved, one disposes of a numerical approximation
φ̃ of φ and of an approximation ρ̃ of the radius ρ. It remains to extend φ̃ into a conformal map in the disk.
Theoretically, this is performed as follows: if φ̃ writes

φ̃(t) ≈
N
∑

k=1

ak cos kt+ bk sin kt =
N
∑

k=1

ak − ibk
2

eikt +
N
∑

k=1

ak + ibk
2

e−ikt.

Then its extension is

Φ̃
(

reit
)

≈
N
∑

k=1

ak − ibk
2

rkeikt +
N
∑

k=1

ak + ibk
2

r−ke−ikt.



7The ill-posedness of the problem appears in the negative exponent of r. Hence, we use the regularized
conformal mapping Φr:

Φr

(

reit
)

≈
N
∑

k=1

ak − ibk
2

rkeikt +
N
∑

k=1

ak + ibk
2

rk

εk + r2k
e−ikt.

In the numerical results presented in Section 4, we arbitrarily fix the Tychonov parameters ǫk.

3 Shape calculus and transmission problem

3.1 Reformulation as shape optimization problems

In parameter identification, one usualy tries to fit the data with the predicted output generated by the model
from a given value of the parameter. Hence, we define the Neumann Least Squares fitting cost function as

JLS(ω) =
1

2

∫

∂Ω

|σ1∂nud − g|2. (14)

where g is the boundary measurement and where the state function ud solves














∆ud = 0 in Ω \ ω and in ω,
[ud] = 0 on ∂ω,

[σ∂nud] = 0 on ∂ω,
ud = f on ∂Ω.

(15)

The problem of determining the inclusion ω is now to minimize this shape function. A similar functional is
also considered in [12] for interior fitting. Since we consider L2 norm we assume that the boundary ∂Ω is
of class C2 and that the Dirichlet data f is H3/2 to insure that JLS is well defined. To avoid this artificial
difficulty, one usually prefers to fit Dirichlet data rather than Neumann data. In that case, we have

JDLS(ω) =
1

2

∫

∂Ω

|un − f |2,

where un solves














∆un = 0 in Ω \ ω and in ω,
[un] = 0 on ∂ω,

[σ∂nun] = 0 on ∂ω,
∂nun = g on ∂Ω.

(16)

To insure uniqueness, we impose the normalization condition
∫

∂Ω

un =

∫

∂Ω

f. (17)

While Least Squares fitting criteria as JLS are widely used in the literature of inverse problems, a Kohn-
Vogelius criterion has to our best knowledge been used only for the simpler case of perfectly conducting
inclusions (see [13] and [5]). In general, those functionals are expected to lead to more robust optimization
procedures. In the context of the transmission problem, we define the Kohn-Vogelius cost function as

JKV (ω) =

∫

Ω

σ|∇(ud − un)|2. (18)

It measures the gap of energy between the solutions of the Dirichlet and Neumann problem corresponding to
the data. This function is positive and vanishes only if ud = un which is the case when the parameter ω fits



8the inclusion. We first give a boundary expression of JKV . By integration by parts and the jump conditions
on ∂ω, we have:

JKV (ω) =

∫

Ω\ω

σ1|∇(ud − un)|2 +

∫

ω

σ2|∇(ud − un)|2,

=

∫

∂Ω

(σ1∂nud − g)(f − un) +

∫

∂ω

[σ∂n(ud − un)] (ud − un),

=

∫

∂Ω

(σ1∂nud − g)(f − un).

To define and compute the continuous gradients of these functionals, we use the classical shape calculus
developed by Murat-Simon and others. We refer to the book [8] for all the general explanations on how to
differentiate with respect to the shape.

3.2 Derivatives of the state functions

Let us first fix the notations. We set n∂ω the unit normal vector to ∂ω pointing into Ω\ω; hence ∂nu
− means

the limit of the normal derivative seen from the inside of ω. Let V denote a smooth vector field with compact
support in Ωd0

and we set Vn = 〈V, n∂ω〉 its normal component. In the sequel, the tangential gradient is
denoted by ∇τ and the tangential divergence by divτ . We set Φt(x) = x+ tV (x), this transformation is as
smooth as V and for small t is invertible. We also set

A(t, x) = DΦ−1
t (x)tDΦ−1

t (x) detDΦt(x).

We recall some classical facts in shape optimization: A(t, x) is symmetric positive and for t < t0 one has
ytA(t, x)y ≥ ‖y‖2/2, moreover A is a smooth application (it depends only on V ) with A(0, x) = I and

A =
d

dt
A(t, x)|t=0 = div (V ) I −

(

DV t +DV
)

.

Theorem 3.1 The state ud has a material derivative u̇d ∈ H1
0 (Ω) that solves

∀v ∈ H1
0 (Ω), 〈σ∇u̇d,∇v〉 = −〈σA∇ud,∇v〉. (19)

The state ud is shape differentiable and its shape derivative u′ satisfies























∆u′d = 0 in Ω \ ω and in ω,

[u′d] =
σ1 − σ2

σ1
∂nu

−
d Vn on ∂ω,

[σ∂nu
′
d] = (σ1 − σ2)divτ (Vn∇τud) on ∂ω,
u′d = 0 on ∂Ω.

(20)

Before proving this result, we have to make some comments. If we assume that the state ud is shape
differentiable, we formally obtain (20) by differentiation of the jump conditions. The most notable point
is the jump condition for the derivative u′d : it does not vanish. This means that the derivative u′d is
not continuous across the interface ∂ω. As a consequence, u′d cannot belong to H1(Ω), it belongs only to
H1(Ω \ ω) ∪H1(ω). A more precise analysis is required. In [9], formula (20) was first derived. We find it
useful to explain how both existence of the derivative and (20) can be obtained by the classical methods of
shape optimization. Hence we give a complete proof of Theorem 3.1 and show that the material derivative
belongs to H1

0 (Ω).



9Proof: We decompose the proof in the four classical parts: first transport the problem on a fixed domain,
then prove weak convergence to the material derivative, then strong convergence and return to the shape
derivative.

First step. In order to work with homogeneous Dirichlet conditions, we introduce f̆ an H1(Ω) extension
of f with support in Ωd0

. Let ud(t) denote the solution of (15) with inclusion ω(t) = Φt(ω) and w(t) =

ud(t) − f̆ ∈ H1
0 (Ω). Then, the transported w̃(x) = w(t,Φt(x)) solves the variational equation:

∀v ∈ H1
0 (Ω),

∫

Ω

σA(t, x)∇w̃(x)∇v(x) = −
∫

Ω

σ∇f̆∇v.

Second step. Substracting the variational equation solved by w0 = ud − f̆ , we obtain:

∀v ∈ H1
0 (Ω), 〈σA(t)

∇w̃ −∇w0

t
,∇v〉 = 〈σ

I −A(t)

t
∇w0,∇v〉. (21)

Plugging w̃ − w0 as test function, we get by the properties of A

1

2
min(σ1, σ2) ‖∇w̃ −∇w0

t
‖L2(Ω) ≤ ‖A(t, x) − I

t
‖∞‖∇w0‖L2(Ω).

Therefore (w̃ − w0)/t is bounded in H1
0 (Ω). Hence the sequence is weakly convergent in H1

0 and its weak
limit is the material derivative u̇d of u.

Third step. We show the strong convergence of (w̃−w0)/t. Passing to the limit t→ 0 in (21), we check that
u̇d solves

〈σ∇u̇d,∇v〉 = −〈σA∇w0,∇v〉.
This was stated as (19) in Theorem 3.1 where w0 was changed in ud thanks to the support of A. This
information enables us to show the strong convergence in H1

0 (Ω); indeed setting v = (w̃ − w0)/t in (21), we
get

〈σA(t)∇v,∇v〉 = 〈σ I −A(t)

t
∇w0,∇v〉 = E1,t + E2,t (22)

where

E1,t = 〈σ(A(t) − I)∇v,∇v〉, and E2,t = 〈σ(
I −A(t)

t
)∇w̃,∇v〉.

The weak convergence of (w̃ − w0)/t leads after straightforward calculations to

E1,t → 0 and E2,t → −〈σA∇w0,∇u̇d〉 when t→ 0.

By (19), we conclude that E2,t → 〈σ∇u̇d,∇u̇d〉. This shows that ∇v converges strongly to ∇u̇d in L2(Ω).
From Poincaré’s inequality, we deduce the strong convergence of v to u̇d in H1

0 (Ω).

Fourth Step. We deduce the equations satisfied by the shape derivative u′d = u̇d − h.∇ud.

Set b = (h.∇u)∇v + (h.∇v)∇u− (∇u.∇v)h. We will use the classical identity

−∇u.A∇v = div (b) − (h.∇u)∆v − (h.∇v)∆u. (23)

From the identity satisfied by u̇d, we have
∫

Ω

σ∇u̇d.∇v =

∫

Ω

σdiv (b) −
∫

Ω

σ(h.∇ud)∆v −
∫

Ω

σ(h.∇v)∆ud, (24)

from the divergence theorem and after an integration by parts, we get
∫

Ω

σ∇u̇d.∇v = −
∫

∂ω

[σ(h.∇v)∂nud] +

∫

∂ω

[σ(∇ud.∇v)hn] +

∫

Ω

σ∇(h.∇ud)∇v.



10Finally it comes to
∫

Ω

σ∇(u̇d − h∇ud).∇v dx = −
∫

∂ω

[σ(h.∇v)∂nud] +

∫

∂ω

[σ(∇ud.∇v)hn]

= (σ1 − σ2)

∫

∂ω

hn(∇τud).(∇τv) = (σ2 − σ1)

∫

∂ω

divτ (hn∇τuD) v.

Hence, the shape derivative u′d = u̇d − h.∇u is solution of
∫

Ω

σ∇u′d.∇v = (σ2 − σ1)

∫

∂ω

divτ (hn∇τud) v

and Green’s formula enables us to get

−
∫

Ω

σ∆u′dv −
∫

∂ω

v [σ∂nu
′
d] = (σ2 − σ1)

∫

∂ω

divτ (hn∇τud) v.

This shows that u′d satisfies ∆u′d = 0 on Ω\ω ∪ ω with the condition

[σ∂nu
′
d] = (σ1 − σ2)divτ (hn∇τud) .

It remains to compute the jumps of u′d. Since u̇d ∈ H1
0 (Ω), we have

[u′d] = −hn [∂nud], (25)

and from the condition [σ∂nud] = 0 we get

[u′d] = hn(1 − σ2

σ1
)∂nu

−
d = hn(

σ1

σ2
− 1)∂u+

d .

This ends the proof of the shape differentiability of ud.

In a similar way, we differentiate with respect to the shape the solution un of the Neumann problem and
obtain























∆u′n = 0 in Ω \ ω and in ω,

[u′n] =
σ1 − σ2

σ1
∂nu

−
n Vn on ∂ω,

[σ∂nu
′
n] = (σ1 − σ2)divτ (Vn∇τun) on ∂ω,

∂nu
′
n = 0 on ∂Ω.

(26)

It satisfies the new normalization condition.
∫

∂Ω

u′n = 0.

3.3 Derivatives of the shape functionals

Lemma 3.2 (The Least Squares cost function) One has:

DJLS(ω).V = −(σ1 − σ2)

∫

∂ω

(

σ1

σ2
∂nw

+∂nu
+
d + 〈∇τud,∇τw〉

)

Vn. (27)

where the adjoint function w solves the equation
{

−div (σw) = 0 in Ω,
w = σ1∂nud − g on ∂Ω,

(28)



11Proof: One applies the derivation rule (see Proposition 5.4.18 in [8]) and from (20) to get

DJLS(ω).V = σ1

∫

∂Ω

(σ1∂nud − g) ∂nu
′
d.

Then, writing Gauss formula in both Ω \ ω and ω, we get:
∫

∂Ω

∂nu
′
dw =

∫

∂ω

(∂nu
′
d)

+w − ∂nw
+(u′d)

+, (29)

∫

∂ω

(∂nu
′
d)

−w =

∫

∂ω

(u′d)
−∂nw

−. (30)

Plugging the jump conditions for both u′d and w into (29), we obtain

∫

∂Ω

∂nu
′
dw =

∫

∂ω

(

σ2

σ1
(∂nu

′
d)

− +
σ2 − σ1

σ1
divτ (Vn∇τud)

)

w

− σ2

σ1
∂nw

−

(

(u′d)
− +

σ2 − σ1

σ1
∂nu

−
d Vn

)

.

After an integration by part on ∂ω to get rid of the tangential divergence, we use (30) to obtain the claimed
result.

For JDLS , we prove in the same way

DJDLS(ω).V =
σ1 − σ2

σ1

∫

∂ω

(

σ1

σ2
∂nw

+∂nu
+
d + 〈∇τud,∇τw〉

)

Vn,

where the adjoint function w solves the equation
{

−div (σw) = 0 in Ω,
∂nw = ud − f on ∂Ω,

The compatibility condition is satisfied thanks to the normalization (17). The adjoint has to be normalized
for example as in (17).

Lemma 3.3 (The Kohn-Vogelius cost function) One has

DJKV (ω).V = (σ2 − σ1)

∫

∂ω

[

σ1

σ2

(

∂nu
+
d

2 − ∂nu
+
n

2
)

+ |∇τud|2 − |∇τun|2
]

Vn. (31)

Proof: Since the state functions are differentiable, JKV has also a shape derivative that is obtained by
the chain rule. We get:

DJKV (ω).V =σ1

∫

∂(Ω\ω)

|∇(ud − un)|2〈V, nΩ\ω〉 + σ1

∫

Ω\ω

2〈∇(ud − un),∇(u′d − u′n)〉

+ σ2

∫

∂ω

|∇(ud − un)|2Vn + σ2

∫

ω

2〈∇(ud − un),∇(u′d − u′n)〉

Concerning the boundary terms, Vn = 0 on ∂Ω by construction, hence the integral on ∂Ω disappears.
To express the term on ∂ω, we decompose the gradient of the state functions into normal and tangential
components and use the jump relations to get

∫

∂ω

[

σ2|∇(u−d − u−n )|2 − σ1|∇(u+
d − u+

n )|2
]

Vn

= (σ1 − σ2)

∫

∂ω

[

σ1

σ2
(∂n(u+

d − u+
n ))2 − |∇τ (ud − un)|2

]

Vn.

(32)



12Concerning the volume term, we use the Gauss formula. Taking into account (15) and (16), we obtain:

∫

Ω\ω

〈∇(ud − un),∇(u′d − u′n)〉 = −
∫

∂ω

∂n(u+
d − u+

n )
(

u′d
+ − u′n

+
)

−
∫

∂Ω

∂n(ud − un)u′n,

∫

ω

〈∇(ud − un),∇(u′d − u′n)〉 =

∫

∂ω

∂n(u−d − u−n )
(

(u′d)
− − (u′n)−

)

.

Using again the jump condition for both the state functions and their derivatives, we are led to

I =σ1

∫

Ω\ω

〈∇(ud − un),∇(u′d − u′n)〉 + σ2

∫

ω

〈∇(ud − un),∇(u′d − u′n)〉

= −σ1

σ2
(σ1 − σ2)

∫

∂ω

(

∂n(u+
d − u+

n )
)2
Vn − σ1

∫

∂Ω

∂n(ud − un)u′n.

The term on ∂Ω involves u′n defined by (26); to transform it into an integral on ∂ω, we use the Gauss formula.
We get in a first time

∫

∂Ω

∂nudu
′
n =

∫

∂ω

u′n
+∂nu

+
d − ud∂nu

′
n

+ and

∫

∂ω

(∂nu
′
n)−ud =

∫

∂ω

∂nu
−
d (u′n)−.

Then incorporating the jump relation, we get:

∫

∂Ω

∂nudu
′
n =

∫

∂ω

(u′n)+∂nu
+
d − ud∂n(u′n)+,

=

∫

∂ω

σ2

σ1
∂nu

−
d

(

(u′n)− +
σ1 − σ2

σ2
∂nu

−
n Vn

)

− ud∂n(u′n)+,

=

∫

∂ω

(

σ2

σ1
(∂nu

′
n)− − ∂n(u′n)+

)

ud +
σ1 − σ2

σ1
∂nu

+
n ∂nu

−
d Vn,

=
σ1 − σ2

σ1

∫

∂ω

−divτ (Vn∇τun)ud +
σ1

σ2
∂nu

+
n ∂nu

+
d Vn.

Similar computations lead to

∫

∂Ω

∂nunu
′
n =

σ1 − σ2

σ1

∫

∂ω

−divτ (Vn∇τun)un +
σ1

σ2

(

∂nu
+
n

)2
Vn.

We have obtained the new expression

σ1

σ1 − σ2

∫

∂Ω

∂n(ud − un)u′n =

∫

∂ω

σ1

σ2
∂nu

+
n

(

∂nu
+
d − ∂nu

+
n

)

Vn − divτ (Vn∇τun) (ud − un),

and after an integration by part on ∂ω which has no boundary, we obtain

I = −(σ1 − σ2)

∫

∂ω

(

σ1

σ2
∂nu

+
d ∂n(u+

d − u+
n ) + 〈∇τun,∇τ (ud − un)〉

)

Vn. (33)

Adding (32) and (33), we obtain the claimed expression.

An important property of the Kohn-Vogelius cost function is that its gradient does not involve the derivative
of the state function. This is a typical behavior of shape functionals of energy type: the same simplification
also appears for the Dirichlet energy and for the compliance in linear elasticity. For numerical computations,
it means that no adjoint state is needed for evaluating gradients.



13Remark. Euler equations for both JLS and JKV are too complicated in the transmission case to give useful
information. In particular, one cannot deduce easily that the criteria vanish at any critical shape. Such
a property is closely connected to the well-posedness of the criteria and to the identifiability question that
are to our best knowledge still open. Nevertheless, let us mention the work [5] where Eppler and Harbrecht
deduce, in the perfectly conducting case, the Euler equation associated to JKV implies that JKV (ω∗) = 0
for any local minimizer ω∗ via a unique continuation argument .

4 Numerical experiments

4.1 Computing the state function

In this paragraph, we describe how the state functions (ud,un and w) are computed. We use the boundary
element method since only boundary values of the state function (and of their derivatives) are needed to
evaluate the shaping functions and their derivatives.

We introduce Γ(x, y) the fundamental solution of the Laplacian given in dimension two by:

Γ(x, y) =
1

2π
ln(|x− y|).

Taking into account the orientation of the normal to ∂ω, the boundary representation formula for any u
harmonic in Ω \ ω writes ∀x ∈ ∂Ω ∪ ∂ω :

1

2
u(x) =

∫

∂Ω

∂nΓ(x, y)u(y) −
∫

∂ω

∂nΓ(x, y)u(y) −
∫

∂Ω

Γ(x, y)∂nu(y) +

∫

∂ω

Γ(x, y)∂nu(y). (34)

We also have for any u harmonic in ω :

∀x ∈ ∂ω
1

2
u(x) =

∫

∂ω

∂nΓ(x, y)u(y) −
∫

∂ω

Γ(x, y)∂nu(y). (35)

Let us explain how to compute ud. The unknowns are (ud)|∂ω, (∂nud)|∂Ω and (∂nud)
+
|∂ω. First, using the

jump condition and (35), we notice that

∀x ∈ ∂ω,

∫

∂ω

Γ(x, y)∂nu
+ =

σ2

σ1

[

−1

2
u(x) +

∫

∂ω

∂nΓ(x, y)u(y))

]

. (36)

Injecting this relation into (34), we obtain for x ∈ ∂ω:

[

σ1 + σ2

2σ1
u(x) +

σ1 − σ2

σ1

∫

∂ω

∂nΓ(x, y)u(y))

]

+

∫

∂Ω

Γ(x, y)∂nu(y) =

∫

∂Ω

∂nΓ(x, y)f(y). (37)

Now, from Green’s formula in ω and d(∂ω, ∂Ω) > d0, we notice for x ∈ ∂Ω

σ1

σ2

∫

∂ω

Γ(x, y)∂nu(y)
+ =

∫

∂ω

∂nΓ(x, y)u(y),

that gives in (34),

σ2 − σ1

σ1

∫

∂ω

∂nΓ(x, y)u(y) −
∫

∂Ω

Γ(x, y)∂nu(y) =
1

2
f(x) −

∫

∂Ω

∂nΓ(x, y)f(y). (38)



14To write the corresponding integral equations, we use the material developed by the theory of ”single and
double layer potentials”. At this end, we introduce the following single and the double layer operators with
the boundaries ∂Ω and ∂ω:

S∂Ω∂ωu(x) :=

∫

∂Ω

Γ(x, y)u(y) dsy, x ∈ ∂ω;

S∂ω∂Ωu(x) :=

∫

∂ω

Γ(x, y)u(y) dsy, x ∈ ∂Ω;

K∂Ω∂ωu(x) :=

∫

∂Ω

∂nΓ(x, y)u(y) dsy, x ∈ ∂ω;

K∂ω∂Ωu(x) :=

∫

∂ω

∂nΓ(x, y)u(y) dsy, x ∈ ∂Ω.

We also denote

SΩu(x) :=

∫

∂Ω

Γ(x, y)u(y) dsy, x ∈ ∂Ω; and KΩu(x) :=

∫

∂Ω

∂nΓ(x, y)u(y) dsy, x ∈ ∂Ω.

Sωu(x) :=

∫

∂ω

Γ(x, y)u(y) dsy, x ∈ ∂ω; and Kωu(x) :=

∫

∂Ω

∂nΓ(x, y)u(y) dsy, x ∈ ∂ω.

Let A be the matricial operator defined by

A =









1

2
I + µKω

σ1

σ2 + σ1
S∂Ω∂ω

σ1 − σ2

σ1
K∂ω∂Ω SΩ









(39)

on H1/2(∂ω) ×H−1/2(∂Ω). Then, the equations (37 − 38) can be written under the following form :

A









(ud)|∂ω

(∂nud)|∂Ω









=















σ1

σ2 + σ1
K∂Ω∂ωf

(

−1

2
I +KΩ

)

f















. (40)

The quantity (∂nud)
+ is then found after solving (36):

Sω(∂nud)
+
|∂ω =

σ2

σ1

[

−1

2
I +Kω

]

ud(x)|∂ω. (41)

We now state a well-posedness result for these equations.

Theorem 4.1 The linear system of integral equation (40) has a unique solution.

Proof: We begin to show that the adjoint operator A∗ is injective. Since the boundaries are bounded,
the adjoint operator writes

A∗ =









1

2
I + µK∗

ω

σ1 − σ2

σ1
K∗

∂Ω∂ω

σ1

σ2 + σ1
S∂ω∂Ω SΩ









. (42)

Let (u, v) ∈ H1/2(∂ω) × H1/2(∂Ω) be a solution to the homogenous equation A∗(u, v) = 0 and define a
potential W by

W (x) =
σ1

σ2 + σ1

∫

∂ω

Γ(x, y)u(y)ds(y) +

∫

∂Ω

Γ(x, y)v(y)ds(y), x ∈ R
d. (43)



15Let us show that W = 0. It is obvious that the function W satisfies ∆W = 0 on R
d \ (∂ω ∪ ∂Ω). From the

equation corresponding to the second line of A∗, we see that W |∂Ω = 0. Let us study the jump conditions
on ∂ω. By the properties of the single layer potential, [W ] = 0 on ∂ω. Now, let us prove that [σ∂nW ] = 0
on ∂ω. We have

σ1∂nW+ = σ1

(

σ1

σ1 + σ2

(

1

2
+ K∗

ω

)

u+K∗
∂Ω∂ωv

)

and

σ2∂nW− = σ2

(

σ1

σ1 + σ2

(

−1

2
+K∗

ω

)

u+K∗
∂Ω∂ωv

)

.

Hence,

σ1∂nW+ − σ2∂nW− = σ1

(

(
1

2
I + µK∗

ω)u+
σ1 − σ2

σ1
K∗

∂Ω∂ωv

)

.

This corresponds to the first line of A∗(u, v) = 0. Hence, W is solution of a Poisson equation (2) with
homogeneous Dirichlet boundary conditions. By uniqueness of the solution of the homogenous Dirichlet
problem, we get W = 0 in Ω.

We are ready to show that W = 0 in Ω implies u = v = 0. It is straightforward to see that u = 0. Indeed,
since W = 0 in Ω, we have [∂nW ] = 0 on ∂ω and this gives [∂nW ] = σ1u/(σ1 + σ2) on ∂ω. Hence, we have
u = 0. From the second line of A∗(u, v) = 0, we see that SΩv = 0 on ∂Ω. Since the single layer potential
operator SΩ : Hs−1(∂Ω) 7→ Hs(∂Ω), ∀s is an isomorphism, we then get v = 0. The injectivity of A∗ is
proved. Since 2A = I + C where C is a compact operator, the Fredholm alternative enables us to conclude
the invertibility of A.

Concerning un, the unknowns are (un)∂Ω, (un)∂ω and (∂nun)+∂ω. Similar computations lead to:









1

2
I + µKω − σ1

σ2 + σ1
K∂Ω∂ω

σ2 − σ1

σ1
K∂ω∂Ω −1

2
I +KΩ

















(un)|∂ω

(un)|∂Ω









=









− σ1

σ2 + σ1
S∂Ω∂ωg

SΩg









. (44)

Then, (∂nun)+|∂ω is given by

S∂ω∂ω(∂nun)+|∂ω =
σ2

σ1

[

−
1

2
I +Kω

]

un(x)|∂ω. (45)

Concerning the existence and uniqueness of the solution of (44), we have the following result

Proposition 4.2 If we impose the normalization

∫

∂Ω

un ds =

∫

∂Ω

f,

then there exists one unique pair ((un)|∂ω, (un)|∂Ω) solution of (44).

Proof: Set

B =









1

2
I + µKω − σ1

σ2 + σ1
K∂Ω∂ω

σ2 − σ1

σ1
K∂ω∂Ω −1

2
I +KΩ









(46)



16the operator defined on H1/2(∂ω) ×H
1/2
♦ (∂Ω) where

H
1/2
♦ (∂Ω) =

{

φ ∈ H
1

2 (∂Ω) :

∫

∂Ω

φdS = 0

}

.

The adjoint B∗ can be written under the form

B∗ =









1

2
I + µK∗

ω

σ2 − σ1

σ1
K∗

∂Ω∂ω

− σ1

σ2 + σ1
K∗

∂ω∂Ω −1

2
I +K∗

Ω.









(47)

In a first step, we begin to show that B∗ is injective. As we did before, we define the adequate potential:
for x ∈ R

d

Z(x) = − σ1

σ1 + σ2

∫

∂ω

Γ(x, y)u(y) ds(y) +

∫

∂Ω

Γ(x, y)v(y) ds(y), .

We can see that Z is a harmonic function R
d\(∂ω ∪ ∂Ω), satisfying ∂nZ = 0. Furthermore, [Z] = 0 and a

straightforward calculation shows that [σ∂nZ] = 0 on ∂ω. Hence, Z is a constant function in Ω. Writing
[∂nZ] = 0 on ∂ω, we get easily u = 0 and then (− I

2 +K∗
Ω)v = 0. Since the operator λI −K∗

Ω is one to one

on H
1/2
♦ (∂Ω), we deduce that v = 0. We conclude the proof thanks to the Fredholm alternative.

4.2 The optimization procedure and numerical results

For the discretization of ∂ω, we restrict ourselves to the case where ∂ω is star-shaped with respect to some
point. This is admissible since the convergence of the iterative reconstruction by conformal mapping is
only achieved for inclusion close to disks close to concentric disks. The advantage of star-shaped inclusions
with respect to the origin for numerical reconstruction is the possibility to use a polar representation of
the boundary ∂ω. This allows to obtain an expression of the shape derivatives in terms of the boundary
representation.

Another possibility to discretize the evolution of the shape is to use the level set method as in [10]. However,
the main advantage of the level set approach is its flexibility to the topology of the objective. We have
assumed from the beginning of the paper that the inclusion ω is simply connected in order to have a simple
conformal model. This assumption as well as the restriction to bi-dimensional cases are required only for the
computation of an adequate starting shape. The shape calculus presented in Section 3 is also valid without
these restrictions.

We consider an inclusion with boundary ∂ω that can be parametrized as:

∂ω =

{

r(t)

(

cos t
sin t

)

, t ∈ (0, 2π)

}

where r(t) is a C2 function, 2π - periodic and without double point. For the numerical resolution, we
approximate it by its truncated Fourier series

rn(t) =

(

a0 +
n
∑

k=1

ak cos kt+ bk sin kt

)

.

The unknowns defining the geometry are the Fourier coefficients (ai, bi). The discrete optimization prob-
lem is written with these coefficients as variables. Hence, the deformation field V is chosen as V (t) =
hn(t)(cos t, sin(t)) with :

hn(t) =

(

a(V )0 +
n
∑

k=1

a(V )k cos kt+ b(V )k sin kt

)

.



17Its normal component is computed easily and one gets

Vn(t) =
h(t)r(t)

√

r(t)2 + r′(t)2)
.

Using lemmata (3.3) and (3.2), we obtain :

DJKV (ω).h = (σ2 − σ1)

∫ 2π

0

[σ1

σ2

(

(∂nu
+
d )2 − (∂nu

+
n )2
)

+ |∇τud|2 − |∇τun|2
]

hr; (48)

DJLS(ω).h = (σ2 − σ1)

∫ 2π

0

(

σ1

σ2
∂nw

+∂nu
+
d + 〈∇τud,∇τw〉

)

hr. (49)

These formulae provides the discretized gradient DJKV and DJLS in all directions. The analysis of the
Newton method for the perfectly conducting inclusion case is performed in [5]. The need of regularization
suggests to use Levenberg-Maquardt or other quasi-Newton algorithms. Hence, we use the BFGS algorithm
to solve the optimization problem. This quasi-Newton method is well adapted to such a problem.

The integral equations (40- 45) are solved by the collocation method; let us emphasize that the boundaries
are approximated by broken lines with more vertices than the number of Fourier modes. The ∇τud and
∇τun quantities can be computed by differentiating the piecewise linear representation of (ud)|∂ω and (un)|∂ω

respectively. To make sense, the discretization of the unknown functions u and ∂nu should be at least P1.
In the following numerical experiments, we used a ratio of six. This is an efficient regularization method for
this problem.

First domain. We consider the domain defined by:

∂ω =

{(

0.1 + 0.5 cos(t) + 0.1 cos(4t)
0.5 sin(t) + 0.1 cos(4t))

)

, t ∈ [0, 2π]

}

We use simulated data corresponding to the Dirichlet data f(t) = sin t. For the test with noisy data, we
perturbed the Neumann data by gaussian noise with fixed amplitude. In these tests, the conductivities are
chosen as σ1 = 1 and σ2 = 3.

First, we present in Figure 1 the reconstruction obtained with the three methods we presented in the work:
the conformal mapping method with numerical extension of the result of the fixed point algorithm, then
the minimization of the Least Squares fitting and Kohn-Vogelius criteria. In both optimization methods,
we used as starting point the circle obtained by the conformal mapping method and 13 Fourier modes. In
Figure 1, we present this approximating disk. It will not appear in the next results even if it is used as
starting point for the minimization. This explains that in the convergence histories we present the starting
has already an error of order 10−3 and that only a few iterations are needed.

In Figure 2, we compare the merits of JLS and JKV for exact data with 25 modes this time. We present the
logarithmic error with respect to the number of iterations. Both methods seem to be of equivalent quality.

As soon as data are noised, the Kohn-Vogelius criterion becomes more robust than the Least Squares fitting.
This is illustrated in Figure 3. Another practical reason to prefer the Kohn-Vogelius criterion is the running
time required to end the iterations. Our experience leads to at least a 2 ratio in favor of JKV with the same
codes for solving the states. The explanation lays in the line search for BFGS where Wolfe’s rule is satisfied
more easily for JKV .

Second domain. Now, we consider the reference kite shaped domain defined by:

∂ω =

{(

0.1 + 0.3 cos(t) + 0.2 cos(2t)
0.4 sin(t)

)

, t ∈ [0, 2π]

}
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Figure 1: Conformal mapping extension versus shape gradients.
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Figure 2: Comparison of the criteria with 25 modes .
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Figure 3: Comparison of the criteria with noised data (1%) and 25 modes

We use simulated data corresponding to the Dirichlet data f(t) = cos t. For the test with noisy data, we
still perturb the Neumann data by gaussian noise with fixed amplitude. We keep the same conductivities.
In Figure 4, we present the results obtained by the different methods with 25 Fourier modes. The obtained
reconstruction is not as satisfactory as in Figure 2. The difficulty comes from the pronounced concavity
of the kite shape. In Figure 5, we present the noisy case. Both methods start from the same point. The
Kohn-Vogelius criterion leads to more robust reconstruction as emphasized in the convergence history.
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Figure 4: Conformal mapping extension versus shape gradients.

0 2 4 6 8 10 12 14 16 18 20
−5

−4.5

−4

LS
KV

(a) Convergence history

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Approx.KV
Exact

(b) JKV

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Approx.LS
Exact

(c) JLS

Figure 5: Comparison of the criteria with noised data (3%) and 25 modes
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