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Flocculation and percolation in reversible cluster-cluster aggregation

Sujin Babu, Manuel Rottereau, Taco Nicolai, Jean-Christophe Gimel,* and Dominique Durand
Polymeéres Colloides Interfaces, CNRS UMRG6120,
Université du Maine, F-72085 Le Mans cedex 9, France
(Dated: March 6, 2006)

Off-lattice dynamic Monte-Carlo simulations were done of reversible cluster-cluster aggregation
for spheres that form rigid bonds at contact. The equilibrium properties were found to be determined
by the life time of encounters between two particles (¢c). t. is a function not only of the probability
to form or break a bond, but also of the elementary step size of the Brownian motion of the particles.
In the flocculation regime the fractal dimension of the clusters is d y=2.0 and the size distribution has
a power law decay with exponent 7=1.5. At larger values of t. transient gels are formed. Close to
the percolation threshold the clusters have a fractal dimension d;=2.7 and the power law exponent
of the size distribution is 7=2.1. The transition between flocculation and percolation occurs at a
characteristic weight average aggregation number that decreases with increasing volume fraction.

PACS numbers: 05.10.Ln, 82.70.Dd, 82.70.Gg

I. INTRODUCTION

Random aggregation of small particles is a commonly
observed phenomenon and may lead to the formation of
gels [1-4]. The initial stage of the aggregation process in
dilute systems has been extensively studied using com-
puter simulations [5-9]. Kinetic equations with the ap-
propriate kernels have been used to model the growth
[8-10]. Much less attention has been given to the situa-
tion where the clusters can no longer be considered dilute
[11-14]. As the clusters grow their cumulated volume
fraction increases and at some point they will start to
interpenetrate. Eventually irreversible aggregation leads
to gelation at any concentration. If the aggregation pro-
cess is reversible a steady state will be reached at a more
or less advanced stage depending on the ratio of the ag-
gregation and fractionation rate [15-24]. Also in this case
the clusters may percolate the system, but now the gel is
only transient [18, 19, 25-27].

In recent work we have simulated irreversible diffusion
limited cluster-cluster aggregation (DLCA) from the ini-
tial state of monomers to the final state where all parti-
cles form a single percolating cluster [28, 29]. We have
shown that as long as the average distance between the
clusters is large (flocculation regime) they have a self-
similar structure characterized by a fractal dimension
dy=1.8. With increasing cluster size the average dis-
tance between the clusters decreases and at a charac-
teristic aggregation number (m = m,) and radius of gy-
ration (R, = R.) they fill up the whole space and start to
interpenetrate. The aggregation of clusters larger than
R, which leads to gelation, can be described by the per-
colation model [13, 14, 28, 30]. As a consequence the
structure of the clusters on length scales larger than R,
is characterized by d;=2.5. Also the size distribution
changes from relatively monodisperse for clusters formed
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in the flocculation regime, i.e. m < m,, to the power law
size distribution for clusters formed in the percolation
regime: N(m) oc m=22 for m > m...

This paper reports a study of the effect of bond break-
ing on the aggregation of spheres. A bond is formed at
collision with probability «, and the bond breaks at each
diffusion step with probability G. The two limiting cases
of diffusion (DLCA) and reaction limited (RLCA) cluster
aggregation are obtained by setting a=1 and a <« 1, re-
spectively. If a/( is small the equilibrium state contains
essentially monomers, while if it is large most particles
will be part of a single percolating cluster. The fact that
the particles stick only at contact implies that solely bi-
nary collisions occur and thus no loops can be formed.
Since the bonds are rigid loops cannot be formed at a
later stage either. As a consequence, the average number
of neighbours per particle cannot exceed two. This means
that reversibility does not lead to densification and phase
separation. The latter does occur if the interaction range
is finite or if the bonds are not rigid [22, 25, 31, 32]. The
present model of cluster-cluster aggregation is thus prob-
ably the simplest one that includes reversibility. We note
that for lattice simulations more than one contact can be
formed per collision so that densification and phase sep-
aration do occur [19, 33].

The paper is organized as follows. We will first ex-
plain the off-lattice simulation method used for this study
and discuss the distinction between encounters and colli-
sions. This distinction was discussed earlier by Odriozola
et al. [10, 34] in the context of irreversible RLCA and re-
versible DLCA. During one encounter the particles may
have many correlated collisions before they move apart.
In order to model the early stage of irreversible RLCA or
reversible aggregation it is necessary to account for the
number of collisions per encounter. It will be shown that
the important parameter in the simulations is not the life
time of a single bond, but the life time of an encounter
(te). te is a function both of «/F and the number of col-
lisions per encounter. The latter increases when the step
size of the Brownian motion (s) is decreased. However,



the simulations are independent of s if a/( is chosen in
such a way that t. is constant.

Next we will discuss the results obtained in the floccu-
lation regime in terms of mean field theory using kinetic
equations containing both an aggregation and a fragmen-
tation kernel. These results will be compared with earlier
simulations of reversible DLCA reported by Odriozola et
al. [34]. Finally, we will show that if the fragmenta-
tion rate is decreased transient gels are formed and that
the sol-gel transition can be described by the percolation
model.

II. SIMULATION METHOD

A cluster is chosen randomly and is moved with step
size s in a random direction. The movement of a clus-
ter occurs with a probability inversely proportional to
its diameter. This means that the clusters diffuse with a
diffusion coefficient that is inversely proportional to their
diameter. We thus simulate Brownian motion. We have
shown in Ref. [28] that this method gives the correct time
dependence of the average molar mass for the case of ir-
reversible DLCA. If the displacement of a cluster leads to
overlap between two spheres or the wall it is truncated at
contact. The displacement procedure is repeated a num-
ber of times equal to the total number of clusters in the
box. Then bonds are formed with probability o between
spheres in contact and bonds are broken with probability
B. In the present simulation the attempt rate to break
and form bonds is the same as the attempt rate for each
cluster to move one step. Notice that large clusters need
on average many attempts before they move. We have
tested the effect of varying the attempt rate to break and
form bonds. No significant effect is observed if the rate
is increased, but, of course, it increases the CPU time. If
the attempt rate to break and form bonds is slower that
of the movement an effect is observed that is similar to
that observed if both « and [ are reduced by the same
factor, see below and Fig. 3.

This cluster formation procedure defines the clusters
that are moved in the subsequent displacement proce-
dure. After these two procedures the simulation time
(tsim) is incremented by 1 and the whole process is re-
peated until equilibrium is reached. Contrary to Odrio-
zola et al [34]. we do not move the clusters automatically
apart when the bond is broken. If the clusters have not
moved apart in the following movement procedure the
bonds will be formed again with probability « in the
next cluster formation procedure.

The starting configuration consists of N randomly po-
sitioned spheres with unit diameter in a box with size
L at volume fraction ¢. The physical time (¢) unit is
defined as the time needed for an individual sphere to
diffuse a distance equal to its diameter: ¢t = s2-tg;,,. For
example the time unit would be 0.4s for spheres with a
diameter of 1pum in water at 20°C. The displacement of
the clusters is diffusional and independent of s for dis-

tances larger than 3s. As mentioned above, bonds are
attempted to be broken and formed at each simulation
step. As a consequence the attempt rate in terms of the
physical time decreases with increasing step size and is
equal to s72.

The effect of finite box size was studied and is negligible
as long as the largest cluster in the box is smaller than
L. The results shown in this paper are not influenced by
finite size effects.

III. ENCOUNTER VERSUS COLLISION

Two initially decorrelated spheres that collide will have
on average N, collisions before they move apart and
their positions become decorrelated again. The number
of collisions per encounter is, of course, independent of
« and 8, but does depend on s. We have done simula-
tions following the diffusion of two spheres that collide
at t = 0. They show that N, increases linearly with
57t Ny = 2.36/s+ 1, see Fig.1. Here, we also count as
a collision the event when two unbound spheres at con-
tact move into each others direction and therefore remain
at contact after the displacement procedure. This event
will account on average for halve of the collisions. Each
collision leads to a delay of the diffusion process propor-
tional to a/8 corresponding to the average time during
which the particles are bound per collision. We will call
the average time that the particles are bound during an
encounter the life time of an encounter, which is a linear
function of o/ and s, see appendix 1:

te=(236+3s) - a/f-s (1)

The distinction between collisions and encounters is
important, because the properties of the system are not
determined by the life time of a single bond, but by
the total time that two spheres are bound during an
encounter. We have verified that the same simulation
results are obtained for different values of s and «/f if
te remains the same. However, s needs in any case to
be much smaller than the average distance between the
surfaces of the spheres in order to assure Brownian mo-
tion between encounters as was discussed elsewhere for
the case of irreversible aggregation [35].

In RLCA, encounters between larger clusters occur,
which may have a larger number of correlated collisions
before they move apart. In this case the bonds are per-
manent and the clusters retain their integrity during dif-
fusion. In reversible aggregation, however, the clusters
are transient and it is in our opinion more useful to con-
sider encounters between larger clusters as a collection
of a number of individual sticky spheres. At any time
an encounter may involve many clusters, contrary to the
assumption of Odriozola et al. [34] who just considered
encounters between only two stable clusters. At each
simulation step any of the bonds in the cluster has prob-
ability 0 to break. As a consequence, the average life
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FIG. 1: Dependence of the number of correlated collisions on
the step size. The straight line represents a linear least square
fit 1 Noos = 1+ 2.36/s.

time (¢;) of a cluster with aggregation number m be-
fore any of its bonds breaks, decreases rapidly with in-
creasing m and is proportional to s2, see appendix 2.
Large clusters can only diffuse a mean square distance of
< 1?2 >= §2/(B-m'*t1/41), before one of the bonds breaks.
For a given t., 8 « s (see Eq.1) so that < 72 >oc s. It
follows that when a cluster fragments each of the parts
will itself fragment before the parts have diffused apart
by a significant distance is s is small.

IV. FLOCCULATION

The number averaged (m,) and the weight averaged
(my) aggregation number of the clusters are defined as:

_ SmNm)

"= TS N ) ?
m2' m

S Sm? N "

S m - N(m)

Fig.2 shows the time dependence of m,, and m,, for
different values of t. at ¢ = 0.5% using o = 1, i.e. re-
versible DLCA. The initial growth of m,, and m,, follows
that of irreversible DLCA (t, = oo ) as long as rela-
tively few bonds are broken. At later times the growth of
my slows down rapidly, while m,, continues to increase,
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FIG. 2: Time dependence of the weight averaged (a) and
the number averaged (b) aggregation number for ¢ = 0.5%
at different values of t. indicated in the figure. The closed
symbols represent the result of irreversible DLCA.

which means that the polydispersity increases. Finally
also the growth of m,, slows down until equilibrium val-
ues are obtained for ¢ > t.. Similar behaviour is seen at
all volume fractions.

The effect of varying a for the same t. is shown in
Fig.3. Decreasing « slows the aggregation down, but
does not modify the equilibrium structure. We have ver-
ified for different values of ¢ and t. that the equilibrium
structure is independent of « at fixed t.. There is thus
no distinction between reversible DLCA and RLCA at
equilibrium. Therefore we have generally used oo = 1 for
which equilibrium is reached quickest.

The size distribution and the structure of the clusters
were determined at equilibrium for a range of t.. Fig.4
shows that m has a power law dependence on R, which
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FIG. 4: Dependence of the aggregation number on the radius
of gyration for ¢ = 0.5% and 1%. The straight line represents
a linear least square fit and has a slope of 2.0.

means that the clusters have a self similar structure with
dy = 2.0. The same value was found by Odriozola et al.
from simulations of reversible DLCA. A fractal dimension
of 2 is expected if each configuration has equal probabil-
ity [36-38], which is the case for reversible aggregation
where the clusters restructure rapidly compared to their
diffusion rate. Fig.5 shows that the size distributions at
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FIG. 5: Cluster size distribution for ¢ = 0.5% at different
values of ¢, indicated in the figure. The solid lines represent
the fits to Eq.4.

different values of ., can be well described by a power
law decay with an exponential cut-off at a characteristic
aggregation number m* o< Mmy,:

N(m)=r-m™" -exp(—m/m") (4)

where N(m) is the fraction of clusters with aggrega-
tion number m and 7 = 1.5. & is related to m* by the
condition of mass conservation > m - N(m) = 1, which
gives K = (m*2=7) .T(2 — 7))~! for m* > 1. Utilizing
Eq. 4 in Eqgs 2 and 3 it follows that:

My My > 1 (5)

27 - K2

1
my, = 2— my, > 1 (6)

K
If aggregation and fragmentation of the clusters does
not depend on the position of the clusters, the time de-
pendence of N(m) can be written as [15]
dN(m)

) _ LS K ONGNG) - F6.0)N )

i+Jj=m

= _[K(m, j)N(m)N(j) = F(m, j)N(j +m)]

(7)

where K (4, j) is the mean rate with which a cluster with
size i binds to a cluster with size 7, and F'(4, ) is the mean
rate with which a cluster breaks up into two clusters with



size 1 and j. In equilibrium the number of clusters of a
given size stays constant and the condition of detailed
balance gives:

K(i,j) - N(i) - N(j) = F(i,j) - N(m) (8)

If the collisions between the particles are uncorrelated
the collision rate can be described by the Brownian kernel
[39]:

K(i,j) = 47 - (Reol,i + Reol,j) - (Di + Dj)  (9)

where R, o il/dsis the collision radius and D;
i~/4s is the diffusion coefficient of clusters with size 1.
At each collision the clusters form a bond with average
life time: s? - /3, see appendix 1.

For m,, < 1 the average molar aggregation num-
ber is determined essentially by the monomer-dimer
equilibrium. The concentration of encounters between
two spheres, C., is a function of the rate of forma-
tion and the rate of break-up of an encounter: C, =
C-K(1,1)/F(1,1), considering that the number concen-
tration of spheres (C' = 6¢/m) is much larger than C..
K (1,1) is the collision rate of uncorrelated spheres, which
is 47 /3 in our simulations, because the spheres have ra-
dius 0.5 and diffusion coefficient 1/6. F'(1,1) is the rate
at which the two monomers become decorrelated, which
is equal to the inverse of the life time of an encounter
(t.). The fraction of dimers (N(2)) is proportional to
the number of encounters: N(2) « ¢ - t.. It follows that:

(mw — 1)

5 my — 1<K 1 (10)

m, — 1= X @ - te
The dependence of m,, —1 and m,, — 1 on ¢ -t. is shown
in Fig.6 for 0.5% and 1% and is well described by Eq.10
for m,, — 1 < 1 using a proportionality factor of 2.2.

Remarkably, m, has the same dependence on ¢ - t,
also for large values, while m,, has a steeper dependence.
The same dependence of m,, on ¢-t. is only obtained for
my > 1if k in Eq. 6 is equal to 0.23(¢ - t.)~!, which
means:

My =226 -t. and m, =3.0(¢-t.)> my>1 (11)

The dashed line in Fig.6 shows that the simulation re-
sults for m,, approach the power law dependence asymp-
totically. Unfortunately, we are at the present stage not
able to use box sizes with L > 200 that are necessary to
simulate equilibrium states with even larger m,,.

For m,, >> 1 the cluster size distribution in equilib-
rium is given by Eq.4 if K(¢,7) and F(¢,j) are homoge-
neous (K (ai,aj) = a*-K(i,7) and F(ai,aj) = a’ - F(i,j))
and if the fragmentation kernel may be written as [40]:

F(Zaj):’%K(Zvj)(zil+jil)T (12)

The implication is that 7 = A — 6. For the Brownian
collision kernel A = 0 so that § = —7.

The clusters have a self similar structure and contain
no loops. This would suggest that the number of bonds
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FIG. 6: Dependence of the weight (open symbols) and the
number averaged (closed symbols) aggregation number as a
function of ¢-t. for ¢ = 0.5% and 1%. The solid line represents
my = 2.2¢ - t. and the dashed line m,, = 3.0(¢ - te)Q.

(e;5) that connect a cluster with size ¢ to a cluster with
size j = m — i is proportional to m - i~! for m > 1 and
choosing ¢ < j. Odriozola et al. [34] found using com-
puter simulations : e; ; = 0.439m-(i =1 +j571)-(i-5) 70136,
The term (i-5) %136 is not expected for self similar clus-
ters without loops if each bond has the same probability
to break. If each bond breaking leads to decorrelation of
the fragments then the fragmentation kernel would be:
Fli,j) o B/(s% - ) -i L.

However, the fragments become decorrelated only if
they diffuse apart without colliding again. In our sim-
ulations monomers move at each step, but the prob-
ability of relative movement for two larger clusters is
equal to (D; + D;). Even if the fragments move apart
they have a high probability to collide again. If we as-
sume that the number of correlated collisions between the
two fragments is equal to that found for two monomers
(Neoi(%,5) = Neoi(1,1)), then the average total bond life
time between the fragments is proportional to t./(D; +
Dj). One may thus attempt to account for the corre-
lation between collisions by writing the fragmentation
kernel as:

(Di +Dj)

te 1

F(i, j) o (13)

The homogeneity exponent of this kernel is § = —(1 +
d;l) = —1.5, which is consistent with the simulation



results.

Odriozola et al. [34] have deduced the number of
correlated collisions explicitly as a function of ¢ and j
from computer simulations of RLCA. They obtained:
Neoi(i,§) = Neoi(1,1)-(i-5)%3%, but it is unclear why this
result obtained on irreversibly bonded clusters is relevant
for transient clusters with a very short life time com-
pared to their diffusion rate. Nevertheless, they found
that the fragmentation kernel obtained in this way could
well describe the evolution of m,, in reversible DLCA. We
note that the homogeneity exponent of their fragmenta-
tion kernel is very close to that of Eq.13: § = —1.49.
However, neither the fragmentation kernel proposed by
Odriozola nor Eq.13 is consistent with the condition of
detailed balance (Eq.8) if the Brownian kernel is used to
describe the collision rate. One may even wonder whether
using a mean field theory (Eq.7) is justified for the case
of reversible aggregation where collisions are highly cor-
related. In addition, as we have discussed above, the
fragments can only move a very small distance before
they break again.

V. PERCOLATION

Flocculation describes the aggregation process of
highly diluted systems when the clusters are on average
far apart although the collisions may still be highly corre-
lated, as we have seen in the previous section. However,
for any given volume fraction the average distance be-
tween the clusters decreases with increasing t., because
the size of the clusters increases and their density de-
creases. The cumulated volume fraction of the clusters
can be calculated as:

m=1

In the flocculation regime Eq.14 becomes:
o0 1—7—
Vewm X @ - /-@/ m?  -exp(—m/m*)dm (15)
1

where we have used Eq.4. It follows that Ve, o< ¢-/my
for m,, > 1 because m,, o« m*. At any volume fraction
a transition from flocculation to percolation occurs when
the clusters start to overlap, i.e. when V,,,, is of order
unity. As a consequence of this transition the structure
and the size distribution of clusters change for clusters
with m larger than a characteristic value m, o ¢ 2.
The change in the fractal structure between floccu-
lated clusters and percolated clusters is seen in Fig.7. In
order to demonstrate the universality of the cross-over
at m. we have plotted m/R? as a function of m/m..
This representation also allows for an accurate determi-
nation of the fractal dimensions in the limiting regimes
of flocculation (m < m.) and percolation (m > m,)
(m/R?* = (m/m.)*=2/%). In the flocculation regime
dy = 2.0, while in the percolation regime dy = 2.7, which
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FIG. 7: Dependence of m/R} as a function of m/m for dif-
ferent volume fractions indicated in the figure. The solid line
has a slope of 0.37.
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FIG. 8: Dependence of m. on the volume fraction. The solid
line has a slope —2.

is slightly above the value found for random percolation
[30, 41] on lattices and irreversible aggregation (dy = 2.5)
[13, 14, 28]. The dependence of m. on the volume frac-
tion is compatible with m. < ¢~2, see Fig.8.

The number of percolating clusters with size m de-
creases with m following a power law as in the floccula-
tion regime, but the exponent 7 increases from the floccu-



N(m)/N(1)

FIG. 9: Cluster size distributions at different values of t.
indicated in the figure for ¢ = 49%. The solid lines has a
slope of —2.1.

lation value 1.5 for m < m. to a larger value for m > m..
In addition, the cut-off function at m = m* is no longer a
simple exponential. For percolating clusters 7 and dy are
related by the so-called hyper scaling law: dy = d/(7—1),
with d the spatial dimension. Simulations of site perco-
lation on a cubic lattice gave 7 = 2.2 consistent with
the hyper scaling law [30, 41]. The percolation regime
is best observed for simulations at high volume fractions
where m, is small. Fig.9 shows cluster size distributions
at different t. for ¢ = 0.49 where m. = 3.3. For com-
parison a line representing 7 = 2.1 is shown, which is the
value predicted by the hyper scaling law using dy = 2.7.
The power law decrease of N(m) is observed only in a
relatively narrow region, because finite size effects limit
the exploration of very large clusters. At intermediate
concentrations a cross-over between 7 = 1.5 and 7 = 2.1
occurs at m ~ me.

Assuming that 7 = 2.1 we can obtain the cut-off func-
tion of the size distribution by plotting m?! - N(m)/N
as a function of m/m, for m > m., where m, ~ m* is
the z-average aggregation number. Fig.10 shows the cut-
off functions of size distributions close to the percolation
threshold for a few high volume fractions. For static per-
colation on a cubic lattice a Gaussian cut-off function was
found [30, 41]. In the present case the cut-off function
has again the form of a Gaussian, but not with the same
numerical constants. In addition, the shape of the cut-
off function depends slightly on the volume fraction. It
thus appears that the structure and the size distribution
of percolating clusters obtained from reversible off-lattice
simulations is slightly different from those obtained from
random percolation on a cubic lattice. The fractal di-
mension of percolating clusters obtained for on- and off-
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FIG. 10: Cut-off functions of size distributions close to the
gel point at different volume fractions indicated in the figure.
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FIG. 11: Dependence of the weight average aggregation num-
ber on ¢ - t. for different volume fractions indicated in the
figure.

lattice simulations of irreversible DLCA is the same as
found for random percolation. Unfortunately, these sim-
ulation results were not sufficiently precise to distinguish
between 7 = 2.2 and 7 = 2.1.

For irreversible aggregation the transition from floccu-
lation to percolation causes an acceleration of the growth
rate [14, 28]. Fig.11 shows that also for reversible aggre-
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FIG. 12: Representation of the data shown in Fig.11 for ¢ >
2% and m,, > 10 in terms of the reduced parameters m., /M.
and t./t}. The solid line has a slope of 2.

gation the transition causes an increase of the dependence
of m,, on t. for m,, > m.. At each volume fraction m,,
diverges at a critical value of t, = ¢t} where the system
percolates, while m,, remains finite. If the flocculation-
percolation transition is universal then m,, /m. should be
a universal function of ¢./t} for m,, > 1, as was reported
earlier for lattice and off-lattice simulations of irreversible
aggregation [14, 28]. Fig.12 shows that a universal tran-
sition is also found for reversible aggregation.

The dependence of t} on ¢ is shown in Fig.13. In the
flocculation regime, i.e m,,/m. o (t./t:)?, which implies
that t. o< ¢~ 2, because m, x ¢ and m. < ¢~ 2. A
line with slope -2 is drawn for comparison in Fig.13. Of
course, this behaviour is only expected if the concentra-
tion is low enough so that the initial growth occurs in the
flocculation regime.

In this work reversible aggregation of spheres was stud-
ied for the case that the bonds are rigid and formed only
at contact. As mentioned in the introduction this im-
plies that only binary collisions are possible and no den-
sification can occur. We verified that in all cases each
sphere was bound to on average 2 - (1 — 1/m,,) neigh-
bors. Therefore phase separation does not occur at any
bond-breaking probability. Elsewhere we will show that
if bond formation may occur not only at contact, but also
if the particles are within a finite attraction range then
a square well potential is mimicked and phase separation
is observed if the attraction is sufficiently strong.

10° |

102 L

10!

100 o)

10-1 L L
102 10! 10°

FIG. 13: Dependence of the critical life time on the volume
fraction. The solid line has a slope of —2.

VI. CONCLUSION

The equilibrium properties of clusters formed by re-
versible aggregation are determined by the average life
time of an encounter between two particles (t.). The
latter is not only a function of the bond formation («)
and break-up (8) probabilities, but also of the elemen-
tary step size (s) of the Brownian motion of the parti-
cles. At the same value of t, the equilibrium state is the
same both in the diffusion controlled limit (aw = 1) and
in the reaction controlled limit (o < 1). If the clusters
are on average far apart, i.e. in the flocculation regime,
then dy = 2.0 while the size distribution has a power
law decay with exponent —1.5 and an exponential cut-
off. A transition to the percolation regime occurs with
increasing t. when the clusters start to overlap. At each
volume fraction a transient gel is formed above a critical
life time ¢}. % decreases with increasing volume fraction
and is proportional to ¢ 2 for small ¢. Close to the per-
colation threshold the clusters have a fractal dimension
dy = 2.7 while the size distribution has power law de-
cay with exponent 7 = 2.1 and a Gaussian cut-off. The
transition between flocculation and percolation occurs at
a characteristic weight average aggregation number that
decreases with increasing volume fraction: m. o< ¢~2.

VII. APPENDIX 1

The probability that two monomers that collide form
a bond is a. After the bond is formed it is broken with
probability 8 at each simulation step.

The probability that the bond lifetime is 0,1,2 or i



simulation stepsis: Pp =1—«a, P =a-08, P, = a-
B-(1=pB)or P, =a-B-(1—p8)"" respectively. The
average bond life time per collision in simulation steps is
> ;4 P;, which gives:

(67

a-f- i-(1-p)"t=—=
; -8~ =3
The average physical life time (¢.) is thus:

te:Ncol '52'

IR

VIII. APPENDIX 2

The probability that at least one of the bonds of a
cluster of size m breaks in a single simulation step is:

1-(1- g

The probability that at least one bond breaks after 4
simulation steps is:
P) = [~ (1= )" (1= ) m Y

The average number of simulation steps during which
they remain intact is:

e} - o (1_5)71@—1
Tioro - U2

The average life time of a cluster (¢;) is thus:

(1—pm!
O

tl282~

Large clusters with m > 1 can only be formed for m-g8 <«
1 which gives:

The average distance a cluster diffuses during that time
is:

2 l
T = —
< > /s
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