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Ranking and empirial minimization of
U-statistisStéphan ClémençonMODALX - Université Paris X Nanterre&Laboratoire de Probabilités et Modèles AléatoiresUMR CNRS 7599 - Universités Paris VI et Paris VIIGábor Lugosi �Departament d'Eonomia i EmpresaUniversitat Pompeu FabraNiolas VayatisLaboratoire de Probabilités et Modèles AléatoiresUMR CNRS 7599 - Universités Paris VI et Paris VIIMarh 5, 2006AbstratThe problem of ranking/ordering instanes, instead of simply las-sifying them, has reently gained muh attention in mahine learning.In this paper we formulate the ranking problem in a rigorous statistialframework. The goal is to learn a ranking rule for deiding, among twoinstanes, whih one is "better", with minimum ranking risk. Sine thenatural estimates of the risk are of the form of a U-statisti, results ofthe theory of U-proesses are required for investigating the onsistenyof empirial risk minimizers. We establish in partiular a tail inequalityfor degenerate U-proesses, and apply it for showing that fast rates ofonvergene may be ahieved under spei� noise assumptions, just likein lassi�ation. Convex risk minimization methods are also studied.�The seond author aknowledges support by the Spanish Ministry of Siene and Teh-nology and FEDER, grant BMF2003-03324 and by the PASCAL Network of Exellene underEC grant no. 506778.
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1 IntrodutionMotivated by various appliations inluding problems related to doument re-trieval or redit-risk sreening, the ranking problem has reeived inreasingattention both in the statistial and mahine learning literature. In the rank-ing problem one has to ompare two di�erent observations and deide whihone is "better". For example, in doument retrieval appliations, one maybe onerned with omparing douments by degree of relevane for a partiu-lar request, rather than simply lassifying them as relevant or not. Similarly,redit establishments ollet and manage large databases ontaining the soio-demographi and redit-history harateristis of their lients to build a rankingrule whih aims at indiating reliability.In this paper we de�ne a statistial framework for studying suh rankingproblems. The ranking problem de�ned here is losely related to Stute's ondi-tional U-statistis [36, 37℄. Indeed, Stute's results imply that ertain non-parametri estimates based on loal U-statistis gives universally onsistentranking rules. Our approah here is di�erent. Instead of loal averages, weonsider empirial minimizers of U-statistis, more in the spirit of empirialrisk minimization popular in statistial learning theory, see, e.g., Vapnik andChervonenkis [40℄, Bartlett and Mendelson [6℄, Bousquet, Bouheron, Lugosi[8℄, Kolthinskii [24℄, Massart [29℄ for surveys and reent development. The im-portant feature of the ranking problem is that natural estimates of the rankingrisk involve U-statistis. Therefore, the methodology is based on the theory of
U-proesses, and the key tools involve maximal and onentration inequalities,symmetrization triks, and a "ontration priniple" for U-proesses. For anexellent aount of the theory of U-statistis and U-proesses we refer to themonograph of de la Peña and Giné [12℄.Furthermore we provide a theoretial analysis of ertain nonparametri rank-ing methods that are based on an empirial minimization of onvex ost fun-tionals over onvex sets of soring funtions. The methods are inspired byboosting-, and support vetor mahine-type algorithms for lassi�ation. Themain results of the paper prove universal onsisteny of properly regularizedversions of these methods, establish a novel tail inequality for degenerate U-proesses and, based on the latter result, show that fast rates of onvergenemay be ahieved for empirial risk minimizers under suitable noise onditions.We point out that under ertain onditions, �nding a good ranking ruleamounts to onstruting a soring funtion s. An important speial ase isthe bipartite ranking problem in whih the available instanes in the data arelabelled by binary labels (good and bad). In this ase the ranking riterion islosely related to the so-alled au (area under the "ro" urve) riterion (seethe Appendix for more details).The rest of the paper is organized as follows. In Setion 2, the basi models2



and the two speial ases of the ranking problem we onsider are introdued.Setion 3 provides some basi uniform onvergene and onsisteny results forempirial risk minimizers. Setion 4 ontains the main statistial results ofthe paper, establishing performane bounds for empirial risk minimization forranking problems. In Setion 5, we desribe the noise assumptions whih guar-antee fast rates of onvergene in partiular ases. In Setion 6 a new expo-nential onentration inequality is established for U-proesses whih serves asa main tool in our analysis. In Setion 7 we disuss onvex risk minimizationfor ranking problems, laying down a theoretial framework for studying boost-ing and support vetor mahine-type ranking methods. In the Appendix wesummarize some basi properties of U-statistis and highlight some onnetionsof the ranking problem de�ned here to properties of the so-alled ro urve,appearing in related problems.2 The ranking problemLet (X, Y) be a pair of random variables taking values in X � R where X isa measurable spae. The random objet X models some observation and Y itsreal-valued label. Let (X 0, Y 0) denote a pair of random variables identiallydistributed with (X, Y), and independent of it. Denote
Z =

Y − Y 0
2

.In the ranking problem one observes X and X 0 but not their labels Y and Y 0. Wethink about X being "better" than X 0 if Y > Y 0, that is, if Z > 0. (The fator
1/2 in the de�nition of Z is not signi�ant, it is merely here as a onvenientnormalization.) The goal is to rank X and X 0 suh that the probability that thebetter ranked of them has a smaller label is as small as possible. Formally, aranking rule is a funtion r : X � X → {−1, 1}. If r(x, x 0) = 1 then the ruleranks x higher than x 0. The performane of a ranking rule is measured by theranking risk

L(r) = P{Z � r(X,X 0) < 0} ,that is, the probability that r ranks two randomly drawn instanes inorretly.Observe that in this formalization, the ranking problem is equivalent to a binarylassi�ation problem in whih the sign of the random variable Z is to be guessedbased upon the pair of observations (X,X 0). Now it is easy to determine theranking rule with minimal risk. Introdue the notation
ρ+(X,X 0) = P{Z > 0 | X,X 0}
ρ−(X,X 0) = P{Z < 0 | X,X 0} .Then we have the following simple fat:3



Proposition 1 De�ne
r�(x, x 0) = 2I[ρ+(x,x 0)�ρ−(x,x 0)] − 1and denote L� = L(r�) = E {min(ρ+(X,X 0), ρ−(X,X 0))}. Then for any rankingrule r,

L� � L(r) .proof. Let r be any ranking rule. Observe that, by onditioning �rst on (X,X 0),one may write
L(r) = E �I[r(X,X 0)=1]ρ−(X,X 0) + I[r(X,X 0)=−1]ρ+(X,X 0)� .It is now easy to hek that L(r) is minimal for r = r�.Thus, r� minimizes the ranking risk over all possible ranking rules. In thede�nition of r� ties are broken in favor of ρ+ but obviously if ρ+(x, x 0) =

ρ−(x, x 0), an arbitrary value an be hosen for r� without altering its risk.The purpose of this paper is to investigate the onstrution of ranking rulesof low risk based on training data. We assume that n independent, identiallydistributed opies of (X, Y), are available: Dn = (X1, Y1), . . . , (Xn, Yn). Givena ranking rule r, one may use the training data to estimate its risk L(r) =P{Z � r(X,X 0) < 0}. The perhaps most natural estimate is the U-statisti
Ln(r) =

1

n(n − 1)

∑

i6=j

I[Zi,j�r(Xi,Xj)<0].In this paper we onsider minimizers of the empirial estimate Ln(r) over alass R of ranking rules and study the performane of suh empirially seletedranking rules. Before disussing empirial risk minimization for ranking, a fewremarks are in order.Remark 1 Note that the atual values of the Yi's are never used in the rankingrules disussed in this paper. It is su�ient to know the values of the Zi,j, or,equivalently, the ordering of the Yi's.Remark 2 (a more general framework.) One may onsider a generaliza-tion of the setup desribed above. Instead of ranking just two observations X,X 0,one may be interested in ranking m independent observations X(1), . . . , X(m).In this ase the value of a ranking funtion r(X(1), . . . , X(m)) is a permutation
π of {1, . . . ,m} and the goal is that π should oinide with (or at least resembleto) the permutation π for whih Y(π(1)) � � � � � Y(π(m)). Given a loss funtion
ℓ that assigns a number in [0, 1] to a pair of permutations, the ranking risk isde�ned as

L(r) = Eℓ(r(X(1) , . . . , X(m)), π) .4



In this general ase, natural estimates of L(r) involve m-th order U-statistis.Many of the results of this paper may be extended, in a more or less straight-forward manner, to this general setup. In order to lighten the notation andsimplify the arguments, we restrit the disussion to the ase desribed above,that is, to the ase when m = 2 and the loss funtion is ℓ(π, π) = I[π 6=π].Remark 3 (ranking and soring.) In many interesting ases the rankingproblem may be redued to �nding an appropriate soring funtion. These arethe ases when the joint distribution of X and Y is suh that there exists afuntion s� : X → R suh that
r�(x, x 0) = 1 if and only if s�(x) � s�(x 0) .A funtion s� satisfying the assumption is alled an optimal soring funtion.Obviously, any stritly inreasing transformation of an optimal soring funtionis also an optimal soring funtion. Below we desribe some important speialases when the ranking problem may be redued to soring.Example 1 (the bipartite ranking problem.) In the bipartite rankingproblem the label Y is binary, it takes values in {−1, 1}. Writing η(x) = P{Y =

1|X = x}, it is easy to see that the Bayes ranking risk equals
L� = E min{η(X)(1− η(X 0)), η(X 0)(1− η(X))}

= E min{η(X), η(X 0)} − (Eη(X))2and also,
L� = Var�Y + 1

2

�
−
1

2
E |η(X) − η(X 0)| .In partiular,

L� � Var�Y + 1

2

� � 1/4where the equality L� = Var �Y+1
2

� holds when X and Y are independent and themaximum is attained when η � 1/2. Observe that the di�ulty of the bipartiteranking problem depends on the onentration properties of the distributionof η(X) = P(Y = 1 | X) through the quantity E(|η(X) − η(X0)|) whih is alassial measure of onentration, known as Gini's mean di�erene. For given
p = E(η(X)), Gini's mean di�erene ranges from a minimum value of zero, when
η(X) � p, to a maximum value of 1

2
p(1−p) in the ase when η(X) = (Y + 1) /2.It is lear from the form of the Bayes ranking rule that the optimal ranking rule isgiven by a soring funtion s� where s� is any stritly inreasing transformationof η. Then one may restrit the searh to ranking rules de�ned by soringfuntions s, that is, ranking rules of form r(x, x 0) = 2I[s(x)�s(x 0)] − 1. Writing

L(s)
def
= L(r), one has

L(s) − L� = E � |η(X 0) − η(X)| I[(s(X)−s(X 0))(η(X)−η(X 0))<0]

�
.5



We point out that the ranking risk in this ase is losely related to the auriterion whih is a standard performane measure in the bipartite setting (see[14℄ and Appendix 2). More preisely, we have:au(s) =P {s(X) � s(X0) | Y = 1, Y0 = −1} = 1−
1

2p(1− p)
L(s),where p = P (Y = 1), so that maximizing the au riterion boils down to mini-mizing the ranking error.Example 2 (a regression model). Assume now that Y is real-valued andthe joint distribution of X and Y is suh that Y = m(X) + ǫ where m(x) =E(Y|X = x) is the regression funtion, ǫ is independent of X and has a sym-metri distribution around zero. Then learly the optimal ranking rule r� maybe obtained by a soring funtion s� where s� may be taken as any stritlyinreasing transformation of m.3 Empirial risk minimizationBased on the empirial estimate Ln(r) of the risk L(r) of a ranking rule de�nedabove, one may onsider hoosing a ranking rule by minimizing the empirialrisk over a lass R of ranking rules r : X � X → {−1, 1}. De�ne the empirialrisk minimizer, over R, by

rn = argmin
r2R Ln(r) .(Ties are broken in an arbitrary way.) In a "�rst-order" approah, we may studythe performane L(rn) = P{Z �rn(X,X 0) < 0|Dn} of the empirial risk minimizerby the standard bound (see, e.g., [13℄)

L(rn) − inf
r2R L(r) � 2 supr2R |Ln(r) − L(r)| . (1)This inequality points out that bounding the performane of an empirial min-imizer of the ranking risk boils down to investigating the properties of U-proesses, that is, suprema of U-statistis indexed by a lass of ranking rules.For a detailed and modern aount of U-proess theory we refer to the bookof de la Peña and Giné [12℄. In a �rst-order approah we basially redue theproblem to the study of ordinary empirial proesses.By using the simple Lemma 14 given in the Appendix, we obtain the fol-lowing:Proposition 2 De�ne the Rademaher average

Rn = sup
r2R 1bn/2 ������bn/2∑

i=1

ǫiI[Zi,bn/2+ir(Xi,Xbn/2+i)<0]

������6



where ǫ1, ..., ǫn are i.i.d. Rademaher random variables (i.e., random sym-metri sign variables). Then for any onvex nondereasing funtion ψ,Eψ�L(rn) − inf
r2RL(r)� � Eψ(4Rn ) .proof. The inequality follows immediately from (1), Lemma 14 (see the Ap-pendix), and a standard symmetrization inequality, see, e.g., Giné and Zinn[17℄.One may easily use this result to derive probabilisti performane boundsfor the empirial risk minimizer. For example, by taking ψ(x) = eλx for some

λ > 0, and using the bounded di�erenes inequality (see MDiarmid [31℄), wehave E exp �λ(L(rn) − inf
r2R L(r))�� E exp(4λRn)� exp�4λERn +

4λ2

(n − 1)

�
.By using Markov's inequality and hoosing λ to minimize the bound, we readilyobtain:Corollary 3 Let δ > 0. With probability at least 1− δ,

L(rn) − inf
r2RL(r) � 4ERn + 4

r ln(1/δ)

n − 1
.The expeted value of the Rademaher average Rn may now be bounded bystandard methods, see, e.g., Lugosi [27℄, Bouheron, Bousquet, and Lugosi [8℄.For example, if the lass R of indiator funtions has �nite v dimension V ,then ERn � crV

nfor a universal onstant c.This result is similar to the one proved in the bipartite ranking ase byAgarwal, Graepel, Herbrih, Har-Peled, and Roth [2℄ with the restrition thattheir bound holds onditionally on a label sequene. The analysis of [2℄ relieson a partiular omplexity measure alled rank-shatter oe�ient but the oreof the argument is the same.The proposition above is onvenient, simple, and, in a ertain sense, not im-provable. However, it is well known from the theory of statistial learning andempirial risk minimization for lassi�ation that the bound (1) is often quite7



loose. In lassi�ation problems the looseness of suh a "�rst-order" approahis due to the fat that the variane of the estimators of the risk is ignored andbounded uniformly by a onstant. Therefore, the main interest in onsidering
U-statistis preisely onsists in the fat that they have minimal variane amongall unbiased estimators. However, the redued-variane property of U-statistisplays no role in the above analysis of the ranking problem. Observe that allupper bounds obtained in this setion remain true for an empirial risk mini-mizer that, instead of using estimates based on U-statistis, estimates the riskof a ranking rule by splitting the data set into two halves and estimates L(r) by

1bn/2 bn/2∑

i=1

I[Zi,bn/2+i�r(Xi,Xbn/2+i)<0] .Hene, in the previous study one loses the advantage of using U-statistis. InSetion 4 it is shown that under ertain, not unommon, irumstanes sig-ni�antly smaller risk bounds are ahievable. There it will have an essentialimportane to use sharp exponential bounds for U-proesses, involving theirredued variane.4 Fast ratesThe main results of this paper show that the bounds obtained in the previoussetion may be signi�antly improved under ertain onditions. It is well known(see, e.g., �5.2 in the survey [8℄ and the referenes therein) that tighter boundsfor the exess risk in the ontext of binary lassi�ation may be obtained if onean ontrol the variane of the exess risk by its expeted value. In lassi�ationthis an be guaranteed under ertain "low-noise" onditions (see Tsybakov [39℄,Massart and Nédéle [30℄, Kolthinskii [24℄).Next we examine possibilities of obtaining suh improved performane boundsfor empirial ranking risk minimization. The main message is that in the rank-ing problem one also may obtain signi�antly improved bounds under someonditions that are analogous to the low-noise onditions in the lassi�ationproblem, though quite di�erent in nature.Here we will greatly bene�t from using U-statistis (as opposed to splittingthe sample) as the small variane of the U-statistis used to estimate the rankingrisk gives rise to sharper bounds. The starting point of our analysis is theHoe�ding deomposition of U-statistis (see Appendix 1).Set �rst
qr((x, y), (x

0, y 0)) = I[(y−y 0)�r(x,x 0)<0] − I[(y−y 0)�r�(x,x 0)<0]and onsider the following estimate of the exess risk Λ(r) = L(r) − L� =8



Eqr ((X, Y), (X 0, Y 0)):
Λn(r) =

1

n(n − 1)

∑

i6=j

qr((Xi, Yi), (Xj, Yj)),whih is a U-statisti of degree 2 with symmetri kernel qr. Clearly, the mini-mizer rn of the empirial ranking risk Ln(r) overR also minimizes the empirialexess risk Λn(r). To study this minimizer, onsider the Hoe�ding deomposi-tion of Λn(r):
Λn(r) −Λ(r) = 2Tn(r) +Wn(r) ,where

Tn(r) =
1

n

n∑

i=1

hr(Xi, Yi)is a sum of i.i.d. random variables with
hr(x, y) = Eqr ((x, y), (X 0, Y 0)) −Λ(r)and

Wn(r) =
1

n(n − 1)

∑

i6=j

bhr((Xi, Yi), (Xj, Yj))is a degenerate U-statisti with symmetri kernelbhr((x, y), (x
0, y 0)) = qr((x, y), (x

0, y 0)) −Λ(r) − hr(x, y) − hr(x
0, y 0) .In the analysis we show that the ontribution of the degenerate part Wn(r)of the U-statisti is negligible ompared to that of Tn(r). This means thatminimization of Λn is approximately equivalent to minimizing Tn(r). But sine

Tn(r) is an average of i.i.d. random variables, this an be studied by knowntehniques worked out for empirial risk minimization.The main tool for handling the degenerate part is a new general momentinequality for U-proesses that may be interesting on its own right. This in-equality is presented in Setion 6. We mention here that for v lasses one mayuse an inequality of Arones and Giné [4℄.It is well known from the theory of empirial risk minimization (see Tsybakov[39℄, Bartlett and Mendelson [6℄, Kolthinskii [24℄, Massart [29℄), that, in orderto improve the rates of onvergene (suh as the bound O(
p
V/n) obtained forv lasses in Setion 3), it is neessary to impose some onditions on the jointdistribution of (X, Y). In our ase the key assumption takes the following form:Assumption 4 There exist onstants c > 0 and α 2 [0, 1] suh that for all

r 2 R, Var(hr(X, Y)) � cΛ(r)α .9



The improved rates of onvergene will depend on the value of α. We willsee in some examples that this assumption is satis�ed for a surprisingly largefamily of distributions, guaranteeing improved rates of onvergene. For α = 0the assumption is always satis�ed and the orresponding performane bounddoes not yield any improvement over those of Setion 3. However, we will seethat in many natural examples Assumption 4 is satis�ed with values of α loseto one, providing signi�ant improvements in the rates of onvergene.Now we are prepared to state and prove the main result of the paper. Inorder to state the result, we need to introdue some quantities related to thelass R. Let ǫ1, . . . , ǫn be i.i.d. Rademaher random variables independent ofthe (Xi, Yi). Let
Zǫ = sup

r2R ������∑i,j ǫiǫj
bhr((Xi, Yi), (Xj, Yj))

������ ,
Uǫ = sup

r2R sup
α:kαk2�1

∑

i,j

ǫiαj
bhr((Xi, Yi), (Xj, Yj)) ,

M = sup
r2R,k=1,...,n

����� n∑

i=1

ǫi
bhr((Xi, Yi), (Xk, Yk))

����� .Introdue the "loss funtion"
ℓ(r, (x, y)) = 2EI[(y−Y)�r(x,X)<0] − L(r)and de�ne
νn(r) =

1

n

n∑

i=1

ℓ(r, (Xi, Yi)) − L(r) .(Observe that νn(r) has zero mean.) Also, de�ne the pseudo-distane
d(r, r 0) =

�E �E [I[r(X,X 0) 6=r 0(X,X 0)]|X]
�2�1/2

.Let φ : [0,∞) → [0,∞) be a nondereasing funtion suh that φ(x)/x is nonin-reasing and φ(1) � 1 suh that for all r 2 R,p
nE sup

r 02R,d(r,r 0)�σ

|νn(r) − νn(r 0)| � φ(σ) .Theorem 5 Consider a minimizer rn of the empirial ranking risk Ln(r)over a lass R of ranking rules and assume Assumption 4. Then thereexists a universal onstant C suh that, with probability at least 1− δ, the
10



ranking risk of rn satis�es
L(rn) − L� � 2

� inf
r2R L(r) − L��

+C

 EZǫ

n2
+
EUǫ

plog(1/δ)
n2

+
EM log(1/δ)

n2
+

log(1/δ)
n

+ ρ2 log(1/δ)�where ρ > 0 is the unique solution of the equationp
nρ2 = φ(ρα) .The theorem provides a performane bound in terms of expeted values ofertain Rademaher haoses indexed by R and loal properties of an ordinaryempirial proess. These quantities have been thoroughly studied and wellunderstood, and may be easily bounded in many interesting ases. Below wewill work out an example when R is a v lass of indiator funtions.proof.We onsider the Hoe�ding deomposition of theU-statistiΛn(r) that isminimized over r 2 R. The idea of the proof is to show that the degenerate part

Wn(r) is of a smaller order and beomes negligible ompared to the part Tn(r).Therefore, rn is an approximate minimizer of Tn(r) whih an be handled byreent results on empirial risk minimization when the empirial risk is de�nedas a simple sample average.Let A be the event on whihsup
r2R |Wn(r)| � κwhere

κ = C

 EZǫ

n2
+
EUǫ

plog(1/δ)
n2

+
EM log(1/δ)

n2
+

log(1/δ)
n

!for an appropriate onstant C. Then by Theorem 11, P[A] � 1 − δ/2. By theHoe�ding deomposition of the U-statistis Λn(r) it is lear that, on A, rn is a
ρ-minimizer of

2

n

n∑

i=1

ℓ(r, (Xi, Yi))over r 2 R in the sense that the value of this latter quantity at its minimum isat most κ smaller than at rn.De�ne �rn as rn on A and an arbitrary minimizer of (2/n)
∑n

i=1 ℓ(r, (Xi, Yi))on Ac. Then learly, with probability at least 1− δ/2, L(rn) = L(�rn) and �rn isa κ-minimizer of (2/n)
∑n

i=1 ℓ(r, (Xi, Yi)). But then we may use Theorem 8.3of Massart [29℄ to bound the performane of �rn whih implies the theorem.11



Observe that the only ondition for the distribution is that the variane of
hr an be bounded in terms of Λ(r). In Setion 5 we present examples in whihAssumption 4 is satis�ed with α > 0. We will see below that the value of αin this assumption determines the magnitude of the last term whih, in turn,dominates the right-hand side (apart from the approximation error term).The fator of 2 in front of the approximation error term infr2R L(r)−L� hasno speial meaning. It an be replaed by any onstant stritly greater thanone at the prie of inreasing the value of the onstant C. Notie that in thebound for L(rn)−L� derived from Corollary 3, the approximation error appearswith a fator of 1. Thus, the improvement of Theorem 5 is only meaningful ifinfr2R L(r) − L� does not dominate the other terms in the bound. Ideally, thelass R should be hosen suh that the approximation error and the other termsin the bound are balaned. If this was the ase, the theorem would guaranteefaster rates of onvergene. Based on the bounds presented here, one may designpenalized empirial minimizers of the ranking risk that selet the lass R froma olletion of lasses ahieving this objetive. We do not give the details here,we just mention that the tehniques presented in Massart [29℄ and Kolthinskii[24℄ may be used in a relatively straightforward manner to derive suh "oraleinequalities" for penalized empirial risk minimization in the present framework.In order to illustrate Theorem 5, we onsider the ase when R is a v lass,that is, it has a �nite v dimension V .Corollary 6 Consider the minimizer rn of the empirial ranking risk Ln(r)over a lass R of ranking rules of �nite v dimension V and assume As-sumption 4. Then there exists a universal onstant C suh that, with prob-ability at least 1− δ, the ranking risk of rn satis�es

L(rn) − L� � 2� inf
r2R L(r) − L�� + C

�
V log(n/δ)

n

�1/(2−α)proof. In order to apply Theorem 5, we need suitable upper bounds for EZǫ ,EUǫ , EM, and ρ. To bound EZǫ , observe that Zǫ is a Rademaher haosindexed by R for whih Propositions 2.2 and 2.6 of Arones and Giné [3℄ maybe applied. In partiular, by using Haussler's [19℄ metri entropy bound for vlasses, it is easy to see that there exists a onstant C suh thatEZǫ � CnV .Similarly, EǫM is just an expeted Rademaher average that may be boundedby CpVn (see, e.g., [8℄).
12



Also, by the Cauhy-Shwarz inequality,EU2
ǫ � E sup

r2Rvuuut∑

j

 
∑

i

ǫi
bhr((Xi, Yi), (Xj, Yj))

!2

= E sup
r2R 





∑

j

∑

i

bhr((Xi, Yi), (Xj, Yj))
2

+
∑

j

∑

i,k

ǫiǫk
bhr((Xi, Yi), (Xj, Yj))bhr((Xj, Yj), (Xk, Yk))




� n2 + E sup
r2R ∑

j

∑

i,k

ǫiǫk
bhr((Xi, Yi), (Xj, Yj))bhr((Xj, Yj), (Xk, Yk)) .Observe that the seond term on the right-hand side is a Rademaher haos oforder 2 that an be handled similarly to EZǫ . By repeating the same argument,one obtains EU2

ǫ � n2 + CVn2Thus, E(Uǫ ) �qE(U2
ǫ ) � CnV1/2 .This shows that the value of κ de�ned in the proof of Theorem 5 is of the orderof n−1 (V + log(1/δ)). The main term in the bound of Theorem 5 is ρ2. Bymimiking the argument of Massart [29, pp. 297�298℄, we get

C

�
V logn
n

�1/(2−α)as desired.5 Examples5.1 The bipartite ranking problemNext we derive a simple su�ient ondition for ahieving fast rates of onver-gene for the bipartite ranking problem. Reall that here it su�es to onsiderranking rules of the form r(x, x 0) = 2I[s(x)�s(x 0)]−1 where s is a soring funtion.With some abuse of notation we write hs for hr.Noise assumption. There exist onstants c > 0 and α 2 [0, 1] suh that forall x 2 X , EX 0 (|η(x) − η(X0)|−α
) � c . (2)13



Proposition 7 Under (2), we have, for all s 2 FVar(hs(X, Y)) � cΛ(s)α .proof. Var(hs(X, Y))� EX

h�EX 0 (I[(s(X)−s(X0))(η(X)−η(X 0))<0])
�2i� EX

�EX 0 �I[(s(X)−s(X 0))(η(X)−η(X 0))<0] |η(X) − η(X 0)|α�� �EX 0 (|η(X) − η(X 0)|−α
)
�i(by the Cauhy-Shwarz inequality)� c

�EXEX 0 �I[(s(X)−s(X 0))(η(X)−η(X 0))<0] |η(X) − η(X 0)|��α(by Jensen's inequality and the noise assumption)
= cΛ(s)α .Condition (2) is satis�ed under quite general irumstanes. If α = 0 thenlearly the ondition poses no restrition, but also no improvement is ahievedin the rates of onvergene. On the other hand, at the other extreme, when

α = 1, the ondition is quite restritive as it exludes η to be di�erentiable, forexample, if X has a uniform distribution over [0, 1]. However, interestingly, forany α < 1, it poses quite mild restritions as it is highlighted in the followingexample:Corollary 8 Consider the bipartite ranking problem and assume that η(x) =P{Y = 1|X = x} is suh that the random variable η(X) has an absolutely on-tinuous distribution on [0, 1] with a density bounded by B. Then for any
ǫ > 0, 8x 2 X , EX 0 (|η(x) − η(X0)|−1+ǫ

) � 2B

ǫand therefore, by Propositions 4 and 7, there is a onstant C suh that forevery δ, ǫ 2 (0, 1), the exess ranking risk of the empirial minimizer rnsatis�es, with probability at least 1− δ,
L(rn) − L� � 2� inf

r2RL(r) − L��+ CBǫ−1

�
V log(n/δ)

n

�1/(1+ǫ)

.proof. The orollary follows simply by heking that (2) is satis�ed for any14



α = 1− ǫ < 1. Denoting the density of η(X) by f, we haveEX 0 (|η(x) − η(X 0)|−α
) =

∫1

0

1

|η(x) − u|α
f(u)du� B

∫1

0

1

|η(x) − u|α
du

= B
η(x)1−α + (1 − η(x))1−α

1− α
� 2B

1− α
.The ondition (2) of the orollary requires that the distribution of η(X) issu�iently spread out, for example it annot have atoms or in�nite peaks in itsdensity. Under suh a ondition a rate of onvergene of the order of n−1+ǫ isahievable for any ǫ > 0.Remark 4 Note that we ruially used the redued variane of the U-statisti

L(rn) to derive fast rates from the rather weak ondition (2). Applying a similarreasoning for the variane of qs((X, Y), (X 0, Y 0)) (whih would be the ase if oneonsidered a risk estimate based on independent pairs by splitting the trainingdata into two halves, see Setion 3), would have led to the ondition:
|η(x) − η(x0)| � c, (3)for some onstant c, and x 6= x0. This ondition is satis�ed only when η(X) hasa disrete distribution.5.2 Noiseless regression modelNext we onsider the noise-free regression model in whih Y = m(X) for some(unknown) funtion m : X → R. Here obviously L� = 0 and the Bayes rank-ing rule is given by the soring funtion s� = m (or any stritly inreasingtransformation of it). Clearly, in this ase

qr(x, x
0) = I[(m(x)−m(x 0))�r(x,x 0)<0]and therefore Var(hr(X, Y)) � Eq2

r (X,X 0) = L(r) ,and therefore the ondition of Proposition 4 is satis�ed with c = 1 and α = 1.Thus, the risk of the empirial risk minimizer rn satis�es, with probability atleast 1− δ,
L(rn) � 2 inf

r2R L(r) + C
V log(n/δ)

nprovided R has �nite v dimension V .15



5.3 Regression model with noiseNow we turn to the general regression model with heterosedasti errorsin whih Y = m(X) + σ(X)ǫ for some (unknown) funtions m : X → R and
σ : X → R, where ǫ is a standard gaussian random variable, independent of X.We set

∆(X,X 0) =
m(X) −m(X 0)p
σ2(X) + σ2(X 0) .We have again s� = m (or any stritly inreasing transformation of it) andthe optimal risk is

L� = EΦ (− |∆(X,X 0)|)where Φ is the distribution funtion of the standard gaussian random variable.The maximal value of L� is attained when the regression funtion m(x) is on-stant. Furthermore, we have
L(s) − L� = E � |2Φ (∆(X,X 0)) − 1| � I[(m(x)−m(x 0))�(s(x)−s(x 0))<0]

�
.Noise assumption. There exist onstants c > 0 and α 2 [0, 1] suh that forall x 2 X , EX 0 (|∆(x, X 0)|−α) � c . (4)Proposition 9 Under (4), we have, for all s 2 FVar(hs(X, Y)) � (2Φ(c) − 1)Λ(s)α .proof. By symmetry, we have

|2Φ (∆(X,X 0)) − 1| = 2Φ (|∆(X,X 0)|) − 1 .Then, using the onavity of the distribution funtion Φ on R+ , we have,by Jensen's inequality,8x 2 X , EX 0Φ(|∆(x, X 0)|−α) � Φ(EX 0 |∆(x, X 0)|−α) � Φ(c) ,where we have used (4) together with the fat that Φ is inreasing. Now theresult follows following the argument given in the proof of Proposition 7.The preeding noise ondition is ful�lled in many ases, as illustrated by theexample below.Corollary 10 Suppose thatm(X) has a bounded density and the onditionalvariane σ(x) is bounded over X . Then the noise ondition (4) is satis�edfor any α < 1.Remark 5 The argument above still holds if we drop the gaussian noise as-sumption. Indeed we only need the random variable ǫ to have a symmetridensity dereasing over R+ . 16



6 A moment inequality for U-proessesIn this setion we establish a general exponential inequality for U-proesses.This result is based on moment inequalities obtained for empirial proessesand Rademaher haoses in Bousquet, Bouheron, Lugosi, and Massart [9℄ andgeneralizes an inequality due to Arones and Giné [4℄. We also refer to theorresponding results obtained for U-statistis by Adamzak [1℄, Giné, Latala,and Zinn [16℄, and Houdré and Reynaud-Bouret [22℄.Theorem 11 Let X,X1, ..., Xn be i.i.d. random variables and let F be alass of kernels. Consider a degenerate U-proess Z of order 2 indexed byF,
Z = sup

f2F ������∑i,j f(Xi, Xj)

������where Ef(X, x) = 0, 8x, f. Assume also f(x, x) = 0, 8x and supf2F kfk∞ =

F. Let ǫ1, ..., ǫn be i.i.d. Rademaher random variables and introdue therandom variables
Zǫ = sup

f2F ������∑i,j ǫiǫjf(Xi, Xj)

������ ,
Uǫ = sup

f2F sup
α:kαk2�1

∑

i,j

ǫiαjf(Xi, Xj) ,

M = sup
f2F,k=1...n

����� n∑

i=1

ǫif(Xi, Xk)

����� .Then there exists a universal onstant C > 0 suh that for all n and q � 2,
(EZq )

1/q � C�EZǫ + q1/2EUǫ + q(EM + Fn) + q3/2Fn1/2 + q2F
�
.Also, there exists a universal onstant C suh that for all n and t > 0,P{Z > CEZǫ+t} � exp −

1

C
min � tEUǫ

�2

,
tEM + Fn

,

�
t

F
p
n

�2/3

,

r
t

F

!!
.Remark 6 A generously overestimated value of the onstants may be easilydedued from the proof. We are onvined that these are far from being thebest possible but do not have a good guess of what the best onstants mightbe.proof. The proof of Theorem 11 is based on symmetrization, deoupling, andonentration inequalities for empirial proesses and Rademaher haos.17



Sine the f are degenerate kernels, one may relate the moments of Z to thoseof Zǫ by the randomization inequalityEZq � 4qEZq
ǫ ,valid for q � 1, see Chapter 3 of [12℄. Thus, it su�es to derive momentinequalities for the symmetrized U-proess Zǫ. We do this by onditioning.Denote by Eǫ the expetation taken with respet to the variables ǫi (i.e., on-ditional expetation given X1, . . . , Xn). Then we write EZq

ǫ = EE ǫZ
q
ǫ and studythe quantity EǫZ

q
ǫ , with the Xi �xed. But then Zǫ is a so-alled Rademaherhaos whose tail behavior has been studied, see Talagrand [38℄, Ledoux [26℄,Bouheron, Bousquet, Lugosi, and Massart [9℄. In partiular, for any q � 2,�EǫZ

q
ǫ

�1/q � EǫZǫ +
�Eǫ

�
Zǫ − EǫZǫ

�q
+

�1/q (sine Z � 0)� EǫZǫ + 3
p
q EǫUǫ + 4qBwith Uǫ de�ned above and

B = sup
f2F sup

α,α 0:kαk2,kα 0k2�1

������∑i,j αiα
0
jf(Xi, Xj)

������where the seond inequality follows by Theorem 14 of [9℄. Using the inequality
(a+ b + c)q � 3q−1(aq + bq + cq) valid for q � 2, a, b, c > 0, we haveEǫZ

q
ǫ � 3q−1

��EǫZǫ

�q
+ 3qqq/2

�EǫUǫ

�q
+ 4qqqBq

�
.It remains to derive suitable upper bounds for the expetation of the three termson the right-hand side.First term: E�EǫZǫ

�qIn order to handle the moments of EǫZǫ, �rst we note that by a deouplinginequality in de la Peña and Giné [12, page 101℄,EǫZǫ � 8EǫZ
0
ǫwhere

Z 0ǫ = sup
f2F ������∑i,j ǫiǫ

0
jf(Xi, Xj)

������Here ǫ 01, . . . , ǫ 0n are i.i.d. Rademaher variables, independent of the Xi and the
ǫi. Nothe that Eǫ now denotes expetation taken with respet to both the ǫiand the ǫ 0i.Thus, we have E�EǫZǫ

�q � 8qE�EǫZ
0
ǫ

�q18



In order to bound the moments of the random variable A = EǫZ
0
ǫ, we applyCorollary 3 of [9℄. In order to apply this orollary, de�ne, for k = 1, . . . , n, therandom variables

Ak = Eǫ sup
f2F ������∑i,j6=k

ǫiǫ
0
jf(Xi, Xj)

������It is easy to see that Ak � A.On the other hand, de�ning
Rk = sup

f2F ����� n∑

i=1

ǫif(Xi, Xk)

����� ,we learly have
A−Ak � 2EǫRk .Also, denoting by f� the (random) funtion ahieving the maximum in thede�nition of Z, we have

n∑

k=1

(A− Ak) � Eǫ

0� n∑

k=1

ǫk

n∑

j=1

ǫ 0jf�(Xk, X
0
j) +

n∑

k=1

ǫ 0k n∑

i=1

ǫif
�(Xi, X

0
k)

1A
= 2A ,Therefore,

n∑

k=1

(A −Ak)2 � 4AEǫMwhere M = maxk Rk. Then by Corollary 3 of [9℄, we obtainE�EǫZ
0
ǫ

�q
= EAq � 2q−1

�
2q
�EZ 0ǫ�q + 5qqqE (EǫM)

q
�
.By un-deoupling (see de la Peña and Giné [12, page 101℄), we have EZ 0ǫ �

4EZǫ .To bound E (EǫM)
q, observe that EǫM is a onditional Rademaher aver-age, for whih Theorem 13 of of [9℄ may be applied. Aording to this,E (EǫM)

q � 2q−1
�
2q (EM)

q
+ 5qqqFq

�Colleting terms, we haveE�EǫZǫ

�q � 128q (EZǫ )
q

+ 320qqq (EM)
q

+ 800qFqq2q .Seond term: EX

�EǫUǫ

�q 19



The moments of EǫUǫ an be estimated by the same inequality as the one weused for EǫM sine EǫUǫ is also a onditional Rademaher average. Observingthat sup
f,i

sup
α:kαk2�1

∑

j6=i

αjf(Xi, Xj) � Fpnby the Cauhy-Shwarz inequality, we have, by Theorem 13 from [9℄,E�EǫUǫ

�q � 2q−1
�
2q
�EUǫ

�q
+ 5qqqFqnq/2

�
.Third term: EXB

qFinally, by the Cauhy-Shwarz inequality, we have B � nF soEXB
q � nqFq .Now it remains to simply put the piees together to obtainEZq � 12q

�
128q

�EZǫ

�q
+ 12qqq/2

�EUǫ

�q
+ 320qqq

�EM�q
+ 4qFqnqqq

+30qFqnq/2q3q/2 + 800qFqq2q
�
,proving the announed moment inequality.In order to derive the exponential inequality, use Markov's inequality P{Z >

t} � t−qEZq and hoose
q = Cmin � tEUǫ

�2

,
tEM,

t

Fn
,

�
t

F
p
n

�2/3

,

r
t

F

!for an appropriate onstant C.7 Convex risk minimizationSeveral suessful algorithms for lassi�ation, inluding various versions ofboosting and support vetor mahines are based on replaing the loss fun-tion by a onvex funtion and minimizing the orresponding empirial onvexrisk funtionals over a ertain lass of funtions (typially over a ball in an ap-propriately hosen Hilbert or Banah spae of funtions). This approah hasimportant omputational advantages, as the minimization of the empirial on-vex funtional is often omputationally feasible by gradient desent algorithms.Reently signi�ant theoretial advane has been made in understanding thestatistial behavior of suh methods, see, e.g., Bartlett, Jordan, and MAuli�e[5℄, Blanhard, Lugosi and Vayatis [7℄, Breiman [10℄, Jiang [23℄, Lugosi andVayatis [28℄, Zhang [41℄. 20



The purpose of this setion is to extend the priniple of onvex risk minimiza-tion to the ranking problem studied in this paper. Our analysis also providesa theoretial framework for the analysis of some suessful ranking algorithmssuh as the RankBoost algorithm of Freund, Iyer, Shapire, and Singer [14℄.In what follows we adapt the arguments of Lugosi and Vayatis [28℄ (where asimple binary lassi�ation problem was onsidered) to the ranking problem.The basi idea is to onsider ranking rules indued by real-valued funtions,that is, ranking rules of the form
r(x, x 0) =

{
1 if f(x, x 0) > 0
−1 otherwisewhere f : X � X → R is some measurable real-valued funtion. With a slightabuse of notation, we will denote by L(f) = P{sgn(Z) � f(X,X 0) < 0} = L(r) therisk of the ranking rule indued by f. (Here sgn(x) = 1 if x > 0, sgn(x) = −1if x < 0, and sgn(x) = 0 if x = 0.) Let φ : R → [0,∞) be a onvex ostfuntion satisfyingφ(0) = 1 and φ(x) � I[x�0]. Typial hoies of φ inlude theexponential ost funtion φ(x) = ex, the "logit" funtion φ(x) = log2(1 + ex),or the "hinge loss" φ(x) = (1 + x)+. De�ne the ost funtional assoiated tothe ost funtion φ by

A(f) = Eφ(− sgn(Z) � f(X,X 0)) .Obviously, L(f) � A(f). We denote by A� = inffA(f) the "optimal" value ofthe ost funtional where the in�mum is taken over all measurable funtions
f : X � X → R.The most natural estimate of the ost funtional A(f), based on the trainingdata Dn, is the empirial ost funtional de�ned by the U-statisti

An(f) =
1

n(n − 1)

∑

i6=j

φ(− sgn(Zi,j) � f(Xi, Xj)) .The ranking rules based on onvex risk minimization we onsider in this se-tion minimize, over a set F of real-valued funtions f : X�X → R, the empirialost funtional An, that is, we hoose fn = argminf2F An(f) and assign theorresponding ranking rule
rn(x, x 0) =

{
1 if fn(x, x 0) > 0
−1 otherwise.(Here we assume impliitly that the minimum exists. More preisely, one mayde�ne fn as any funtion f 2 F satisfying An(fn) � inff2F An(f) + 1/n.)By minimizing onvex risk funtionals, one hopes to make the exess onvexrisk A(fn) − A� small. This is meaningful for ranking if one an relate theexess onvex risk to the exess ranking risk L(fn) − L�. This may be done21



quite generally by realling a result of Bartlett, Jordan, and MAuli�e [5℄. Tothis end, introdue the funtions
H(ρ) = inf

α2R(ρφ(−α) + (1 − ρ)φ(α))and
H−(ρ) = inf

α:α(2ρ−1)�0
(ρφ(−α) + (1− ρ)φ(α)) .De�ning ψ over R by

ψ(x) = H−

�
1+ x

2

�
−H−

�
1− x

2

�
,Theorem 3 of [5℄ implies that for all funtions f : X �X → R,

L(f) − L� � ψ−1 (A(f) − A�)where ψ−1 denotes the inverse of ψ. Bartlett, Jordan, and MAuli�e showthat, whenever φ is onvex, limx→0ψ
−1(x) = 0, so onvergene of the exessonvex risk to zero implies that the exess ranking risk also onverges to zero.Moreover, in most interesting ases ψ−1(x) may be bounded, for x > 0, bya onstant multiple of px (suh as in the ase of exponential or logit ostfuntions) or even by x (e.g., if φ(x) = (1+ x)+ is the so-alled hinge loss).Thus, to analyze the exess ranking risk L(f) − L� for onvex risk mini-mization, it su�es to bound the exess onvex risk. This may be done bydeomposing it into "estimation" and "approximation" errors as follows:

A(fn) −A�(f) � �A(fn) − inf
f2FA(f)

�
+

� inf
f2FA(f) −A�� .Clearly, just like in Setion 3, we may (loosely) bound the exess onvex riskover the lass F as

A(fn) − inf
f2FA(f) � 2 sup

f2F |An(f) −A(f)| .To bound the right-hand side, assume, for simpliity, that the lass F of fun-tions is uniformly bounded, say supf2F,x2X |f(x)| � B. Then one again, we mayappeal to Lemma 14 (see the Appendix) and the bounded di�erenes inequalitywhih imply that for any λ > 0,E exp �λ sup
f2F |An(f) −A(f)|

�� E exp0�λ sup
f2F0� 1bn/2 bn/2∑

i=1

φ
�
− sgn(Zi,bn/2+i) � f(Xi, Xbn/2+i)

�
−A(f)

1A1A� exp0�λE sup
f2F 0� 1bn/2 bn/2∑

i=1

φ
�
− sgn(Zi,bn/2+i) � f(Xi, Xbn/2+i)

�
− A(f)

1A+
λ2B2

2n

1A .22



Now it su�es to derive an upper bound for the expeted supremum appearingin the exponent. This may be done by standard symmetrization and ontrationinequalities. In fat, by mimiking Kolthinskii and Panhenko [25℄ (see alsothe proof of Lemma 2 in Lugosi and Vayatis [28℄), we obtainE sup
f2F 0� 1bn/2 bn/2∑

i=1

φ
�
− sgn(Zi,bn/2+i) � f(Xi, Xbn/2+i)

�
−A(f)

1A� 4Bφ 0(B)E sup
f2F 0� 1bn/2 bn/2∑

i=1

σi � f(Xi, Xbn/2+i)

1Awhere σ1, . . . , σbn/2 i.i.d. Rademaher random variables independent of Dn,that is, symmetri sign variables with P{σi = 1} = P{σi = −1} = 1/2.We summarize our �ndings:Proposition 12 Let fn be the ranking rule minimizing the empirial onvexrisk funtional An(f) over a lass of funtions f uniformly bounded by −Band B. Then, with probability at least 1− δ,
A(fn) − inf

f2FA(f) � 8Bφ 0(B)Rn(F) +

r
2B2 log(1/δ)

nwhere Rn denotes the Rademaher average
Rn(F) = E sup

f2F 0� 1bn/2 bn/2∑

i=1

σi � f(Xi, Xbn/2+i)

1A .Many interesting bounds are available for the Rademaher average of variouslasses of funtions. For example, in analogy of boosting-type lassi�ationproblems, one may onsider a lass FB of funtions de�ned byFB =





f(x, x 0) =

N∑

j=1

wjgj(x, x
0) : N 2 N, , N∑

j=1

|wj| = B, gj 2 R


where R is a lass of ranking rules as de�ned in Setion 3. In this ase it is easyto see that
Rn(FB) � BRn(R) � onst.BVp

nwhere V is the v dimension of the "base" lass R.Summarizing, we have shown that a ranking rule based on the empirialminimization An(f) over a lass of ranking funtions FB of the form de�nedabove, the exess ranking risk satis�es, with probability at least 1− δ,
L(fn) − L� � ψ−1

 
8Bφ 0(B)c

BVp
n

+

r
2B2 log(1/δ)

n
+

� inf
f2FB

A(f) − A��! .23



This inequality may be used to derive the universal onsisteny of suh rankingrules. For example, the following orollary is immediate.Corollary 13 Let R be a lass of ranking rules of �nite v dimension Vsuh that the assoiated lass of funtions FB is rih in the sense thatlim
B→∞

inf
f2FB

A(f) = A�for all distributions of (X, Y). Then if fn is de�ned as the empirial min-imizer of An(f) over FBn
where the sequene Bn satis�es Bn → ∞ and

B2
nφ

0(Bn)/
p
n → 0, thenlim

n→∞
L(fn) = L� almost surely.Classes R satisfying the onditions of the orollary exist, we refer the readerto Lugosi and Vayatis [28℄ for several examples.Proposition 12 an also be used for establishing performane bounds forkernel methods suh as support vetor mahines. A prototypial kernel-basedranking method may be de�ned as follows. To lighten notation, we write W =X �X .Let k : W �W → R be a symmetri positive de�nite funtion, that is,
n∑

i,j=1

αiαjk(wi, wj) � 0 ,for all hoies of n, α1, . . . , αn 2 R and w1, . . . , wn 2 W .A kernel-type ranking algorithm may be de�ned as one that performs min-imization of the empirial onvex risk An(f) (typially based on the hinge loss
φ(x) = (1+x)+) over the lass FB of funtions de�ned by a ball of the assoiatedreproduing kernel Hilbert spae of the form (where w = (x, x 0))FB =





f(w) =

N∑

j=1

cjk(wj, w) : N 2 N, N∑

i,j=1

cicjk(wi, wj) � B2, w1, . . . , wN 2 W



.In this ase we have

Rn(FB) � 2B

n
Evuutbn/2∑

i=1

k((Xi, Xbn/2+i), (Xi, Xbn/2+i)) ,see, for example, Bouheron, Bousquet, and Lugosi [8℄. One again, universalonsisteny of suh kernel-based ranking rules may be derived in a straightfor-ward way if the approximation error inff2FB
A(f)−A� an be guaranteed to goto zero as B → ∞. For the approximation properties of suh kernel lasses werefer the reader to Cuker and Smale [11℄, Sovel and Steinwart [32℄, Smale andZhou [34℄, Steinwart [35℄, et. 24



Appendix 1: Basi fats about U-statistisHere we reall some basi fats about U-statistis. Consider the i.i.d. randomvariables X,X1, ..., Xn and denote by
Un =

1

n(n − 1)

∑

i6=j

q(Xi, Xj)a U-statisti of order 2 where the kernel q is a symmetri real-valued funtion.
U-statistis have been studied in depth and their behavior is well understood.One of the lassial inequalities onerning U-statistis is due to Hoe�ding [21℄whih implies that, for all t > 0,P{|Un − EUn | > t} � 2e−2b(n/2)t2 � 2e−(n−1)t2

.Hoe�ding also shows that, if σ2 = Var(q(X1, X2)), thenP{|Un − EUn | > t} � 2 exp�−
b(n/2)t2
2σ2 + 2t/3

�
. (5)It is important notiing here that the latter inequality may be improvedby replaing σ2 by a smaller term. This is based on the so-alled Hoe�ding'sdeomposition as desribed below.The U-statisti Un is said degenerate if its kernel q satis�es8x, E (q(x, X)) = 0 .There are two basi representations of U-statistis whih we reall next (seeSer�ing [33℄ for more details).Average of 'sums-of-i.i.d.' bloksThis representation is the key for obtaining '�rst-order' results for non-degenerate U-statistis. The U-statisti Un an be expressed as

Un =
1

n!

∑

π

1bn/2 bn/2∑

i=1

q
�
Xπ(i), Xπ(bn/2+i)

�where the sum is taken over all permutationsπ of {1, . . . , n}. The idea underlyingthis representation is to redue the analysis to the ase of sums of i.i.d. randomvariables. The next simple lemma is based on this representation.Lemma 14 Let qτ : X � X → R be real-valued funtions indexed by τ 2 Twhere T is some set. If X1, . . . , Xn are i.i.d. then for any onvex nonde-25



reasing funtion ψ,Eψ0�sup
τ2T

1

n(n − 1)

∑

i6=j

qτ(Xi, Xj)

1A� Eψ0�sup
τ2T

1bn/2 bn/2∑

i=1

qτ(Xi, Xbn/2+i)

1A ,assuming the suprema are measurable and the expeted values exist.proof. The proof uses the same trik Hoe�ding's above-mentioned inequalitiesare based on. Observe thatEψ0�sup
τ2T

1

n(n − 1)

∑

i6=j

qτ(Xi, Xj)

1A
= Eψ0�sup

τ2T

1

n!

∑

π

1bn/2 bn/2∑

i=1

qτ(Xπ(i), Xπ(bn/2+i))

1A� Eψ0� 1

n!

∑

π

sup
τ2T

1bn/2 bn/2∑

i=1

qτ(Xπ(i), Xπ(bn/2+i))

1A(sine ψ is non-dereasing)� 1

n!

∑

π

Eψ0�sup
τ2T

1bn/2 bn/2∑

i=1

qτ(Xπ(i), Xπ(bn/2+i))

1A(by Jensen's inequality)
= Eψ0�sup

τ2T

1bn/2 bn/2∑

i=1

qτ(Xi, Xbn/2+i)

1Aas desired.Hoe�ding's deompositionAnother way to interpret a U-statistis is as an orthogonal expansion knownas Hoe�ding's deomposition.Assuming that q(X1, X2) is square integrable,Un−EUn may be deomposedas a sum Tn of i.i.d. random variables plus a degenerate U-statisti Wn. Inorder to write this deomposition, onsider the following funtion of one variable
h(Xi) = E(q(Xi , X) | Xi) − EUn ,26



and the funtion of two variablesbh(Xi, Xj) = q(Xi, Xj) − EUn − h(Xi) − h(Xj).Then we have the orthogonal expansion
Un = EUn + 2Tn +Wn ,where
Tn =

1

n

n∑

i=1

h(Xi),

Wn =
1

n(n − 1)

∑

i6=j

bh(Xi, Xj) .

Wn is a degenerate U-statisti beause its kernel bh satis�esE �bh(Xi, X) | Xi

�
= 0 .Clearly, the variane of Tn isVar(Tn) =

Var(E (q(X1 , X) | X1))

n
.Note that Var(E (q(X1 , X) | X1)) is less than Var(q(X1, X)) (unless q is alreadydegenerate). Furthermore, the variane of the degenerate U-statisti Wn is ofthe order 1/n2. Tn is thus the leading term in this orthogonal deomposition.Indeed, the limit distribution of pn(Un − EUn ) is the normal distributionN (0, 4Var(E(q(X1 , X) | X1)) (see [20℄). This suggests that inequality (5) maybe quite loose.Indeed, exploiting further Hoe�ding's deomposition (ombined with argu-ments related to deoupling, randomization and hyperontrativity of Radema-her haos) de la Peña and Giné [12℄ established a Bernstein's type inequality ofthe form (5) but with σ2 replaed by the variane of the onditional expetation(see Theorem 4.1.13 in [12℄).Speialized to our setting with q(Xi, Xj) = I[Zi,j�r(Xi,Xj)<0] the inequalityof de la Peña and Giné states thatP{|Ln(r) − L(r)| > t} � 4 exp�−

nt2

8s2 + ct

�
,where s2 = Var(P{Z � r(X,X 0) < 0|X}) is the variane of the onditional expe-tation and c is some onstant. 27



Appendix 2: Connetion with the ro urve andthe au riterionIn the bipartite ranking problem, the ro urve (ro standing for ReeivingOperator Charateristi, see [18℄) and the au riterion are popular measuresfor evaluating the performane of soring funtions in appliations.Let s : X → R be a soring funtion. The ro urve is de�ned by plottingthe true positive rate tprs(x) = P (s(X) � x | Y = 1)against the false positive ratefprs(x) = P (s(X) � x | Y = −1) .By a straightforward hange of parameter, the ro urve may be expressedas the graph of the power of the test de�ned by s(X) as a funtion of its level
α:

βs(α) = tprs(qs,α)where qs,α = inf{x 2 (0, 1) : fprs(x) � α}.Observe that if s(X) and Y are independent (i.e., when tprs = fprs), thero urve is simply the diagonal segment βs(α) = α. This measure of aurayindues a partial order on the set of all soring funtions: for any s1, s2, we saythat s1 is more aurate than s2 if and only if its ro urve is above the one of
s2 for every level α, that is, if and only if βs2

(α) � βs1
(α) for all α 2 (0, 1).Proposition 15 The regression funtion η indues an optimal ordering onX in the sense that its ro urve is not below any other soring funtion

s: 8α 2 [0, 1], βη(α) � βs(α).proof. The result follows from the Neyman-Pearson lemma applied to the testof the null assumption "Y = −1" against the alternative "Y = 1" based onthe observation X: the test based on the likelihood ratio η(X)/(1 − η(X)) isuniformly more powerful than any other test based on X.Remark 7 Note that the ro urve does not haraterize the soring funtion.For any s and any stritly inreasing funtion h : R → R, s and h Æ s learlyyield the same ordering on X : βs = βhÆs.28



Instead of optimizing the ro urve over a lass of soring funtions whihis a di�ult task, a simple idea is to searh for s that maximizes the Area Underthe ro Curve (known as the au riterion) :au(s) =

∫1

0

βs(α)dα .This theoretial quantity may be easily interpreted in a probabilisti fashionas shown by the following proposition.Proposition 16 For any soring funtion s,au(s) = P (s(X) � s(X0) | Y = 1, Y0 = −1) ,where (X, Y) and (X0, Y0) are independent pairs drawn from the binary las-si�ation model.proof. Let U be a uniformly distributed random variable over (0, 1), indepen-dent of (X, Y). Denote by Fs the distribution funtion of s(X) given Y = −1.Then au(s) =

∫1

0

P (s(X) � qs,α | Y = 1) dα

= E(P(s(X) � F−1
s (U) | Y = 1))
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