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olas VayatisLaboratoire de Probabilités et Modèles AléatoiresUMR CNRS 7599 - Universités Paris VI et Paris VIIMar
h 5, 2006Abstra
tThe problem of ranking/ordering instan
es, instead of simply 
las-sifying them, has re
ently gained mu
h attention in ma
hine learning.In this paper we formulate the ranking problem in a rigorous statisti
alframework. The goal is to learn a ranking rule for de
iding, among twoinstan
es, whi
h one is "better", with minimum ranking risk. Sin
e thenatural estimates of the risk are of the form of a U-statisti
, results ofthe theory of U-pro
esses are required for investigating the 
onsisten
yof empiri
al risk minimizers. We establish in parti
ular a tail inequalityfor degenerate U-pro
esses, and apply it for showing that fast rates of
onvergen
e may be a
hieved under spe
i�
 noise assumptions, just likein 
lassi�
ation. Convex risk minimization methods are also studied.�The se
ond author a
knowledges support by the Spanish Ministry of S
ien
e and Te
h-nology and FEDER, grant BMF2003-03324 and by the PASCAL Network of Ex
ellen
e underEC grant no. 506778.
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1 Introdu
tionMotivated by various appli
ations in
luding problems related to do
ument re-trieval or 
redit-risk s
reening, the ranking problem has re
eived in
reasingattention both in the statisti
al and ma
hine learning literature. In the rank-ing problem one has to 
ompare two di�erent observations and de
ide whi
hone is "better". For example, in do
ument retrieval appli
ations, one maybe 
on
erned with 
omparing do
uments by degree of relevan
e for a parti
u-lar request, rather than simply 
lassifying them as relevant or not. Similarly,
redit establishments 
olle
t and manage large databases 
ontaining the so
io-demographi
 and 
redit-history 
hara
teristi
s of their 
lients to build a rankingrule whi
h aims at indi
ating reliability.In this paper we de�ne a statisti
al framework for studying su
h rankingproblems. The ranking problem de�ned here is 
losely related to Stute's 
ondi-tional U-statisti
s [36, 37℄. Indeed, Stute's results imply that 
ertain non-parametri
 estimates based on lo
al U-statisti
s gives universally 
onsistentranking rules. Our approa
h here is di�erent. Instead of lo
al averages, we
onsider empiri
al minimizers of U-statisti
s, more in the spirit of empiri
alrisk minimization popular in statisti
al learning theory, see, e.g., Vapnik andChervonenkis [40℄, Bartlett and Mendelson [6℄, Bousquet, Bou
heron, Lugosi[8℄, Kolt
hinskii [24℄, Massart [29℄ for surveys and re
ent development. The im-portant feature of the ranking problem is that natural estimates of the rankingrisk involve U-statisti
s. Therefore, the methodology is based on the theory of
U-pro
esses, and the key tools involve maximal and 
on
entration inequalities,symmetrization tri
ks, and a "
ontra
tion prin
iple" for U-pro
esses. For anex
ellent a

ount of the theory of U-statisti
s and U-pro
esses we refer to themonograph of de la Peña and Giné [12℄.Furthermore we provide a theoreti
al analysis of 
ertain nonparametri
 rank-ing methods that are based on an empiri
al minimization of 
onvex 
ost fun
-tionals over 
onvex sets of s
oring fun
tions. The methods are inspired byboosting-, and support ve
tor ma
hine-type algorithms for 
lassi�
ation. Themain results of the paper prove universal 
onsisten
y of properly regularizedversions of these methods, establish a novel tail inequality for degenerate U-pro
esses and, based on the latter result, show that fast rates of 
onvergen
emay be a
hieved for empiri
al risk minimizers under suitable noise 
onditions.We point out that under 
ertain 
onditions, �nding a good ranking ruleamounts to 
onstru
ting a s
oring fun
tion s. An important spe
ial 
ase isthe bipartite ranking problem in whi
h the available instan
es in the data arelabelled by binary labels (good and bad). In this 
ase the ranking 
riterion is
losely related to the so-
alled au
 (area under the "ro
" 
urve) 
riterion (seethe Appendix for more details).The rest of the paper is organized as follows. In Se
tion 2, the basi
 models2



and the two spe
ial 
ases of the ranking problem we 
onsider are introdu
ed.Se
tion 3 provides some basi
 uniform 
onvergen
e and 
onsisten
y results forempiri
al risk minimizers. Se
tion 4 
ontains the main statisti
al results ofthe paper, establishing performan
e bounds for empiri
al risk minimization forranking problems. In Se
tion 5, we des
ribe the noise assumptions whi
h guar-antee fast rates of 
onvergen
e in parti
ular 
ases. In Se
tion 6 a new expo-nential 
on
entration inequality is established for U-pro
esses whi
h serves asa main tool in our analysis. In Se
tion 7 we dis
uss 
onvex risk minimizationfor ranking problems, laying down a theoreti
al framework for studying boost-ing and support ve
tor ma
hine-type ranking methods. In the Appendix wesummarize some basi
 properties of U-statisti
s and highlight some 
onne
tionsof the ranking problem de�ned here to properties of the so-
alled ro
 
urve,appearing in related problems.2 The ranking problemLet (X, Y) be a pair of random variables taking values in X � R where X isa measurable spa
e. The random obje
t X models some observation and Y itsreal-valued label. Let (X 0, Y 0) denote a pair of random variables identi
allydistributed with (X, Y), and independent of it. Denote
Z =

Y − Y 0
2

.In the ranking problem one observes X and X 0 but not their labels Y and Y 0. Wethink about X being "better" than X 0 if Y > Y 0, that is, if Z > 0. (The fa
tor
1/2 in the de�nition of Z is not signi�
ant, it is merely here as a 
onvenientnormalization.) The goal is to rank X and X 0 su
h that the probability that thebetter ranked of them has a smaller label is as small as possible. Formally, aranking rule is a fun
tion r : X � X → {−1, 1}. If r(x, x 0) = 1 then the ruleranks x higher than x 0. The performan
e of a ranking rule is measured by theranking risk

L(r) = P{Z � r(X,X 0) < 0} ,that is, the probability that r ranks two randomly drawn instan
es in
orre
tly.Observe that in this formalization, the ranking problem is equivalent to a binary
lassi�
ation problem in whi
h the sign of the random variable Z is to be guessedbased upon the pair of observations (X,X 0). Now it is easy to determine theranking rule with minimal risk. Introdu
e the notation
ρ+(X,X 0) = P{Z > 0 | X,X 0}
ρ−(X,X 0) = P{Z < 0 | X,X 0} .Then we have the following simple fa
t:3



Proposition 1 De�ne
r�(x, x 0) = 2I[ρ+(x,x 0)�ρ−(x,x 0)] − 1and denote L� = L(r�) = E {min(ρ+(X,X 0), ρ−(X,X 0))}. Then for any rankingrule r,

L� � L(r) .proof. Let r be any ranking rule. Observe that, by 
onditioning �rst on (X,X 0),one may write
L(r) = E �I[r(X,X 0)=1]ρ−(X,X 0) + I[r(X,X 0)=−1]ρ+(X,X 0)� .It is now easy to 
he
k that L(r) is minimal for r = r�.Thus, r� minimizes the ranking risk over all possible ranking rules. In thede�nition of r� ties are broken in favor of ρ+ but obviously if ρ+(x, x 0) =

ρ−(x, x 0), an arbitrary value 
an be 
hosen for r� without altering its risk.The purpose of this paper is to investigate the 
onstru
tion of ranking rulesof low risk based on training data. We assume that n independent, identi
allydistributed 
opies of (X, Y), are available: Dn = (X1, Y1), . . . , (Xn, Yn). Givena ranking rule r, one may use the training data to estimate its risk L(r) =P{Z � r(X,X 0) < 0}. The perhaps most natural estimate is the U-statisti

Ln(r) =

1

n(n − 1)

∑

i6=j

I[Zi,j�r(Xi,Xj)<0].In this paper we 
onsider minimizers of the empiri
al estimate Ln(r) over a
lass R of ranking rules and study the performan
e of su
h empiri
ally sele
tedranking rules. Before dis
ussing empiri
al risk minimization for ranking, a fewremarks are in order.Remark 1 Note that the a
tual values of the Yi's are never used in the rankingrules dis
ussed in this paper. It is su�
ient to know the values of the Zi,j, or,equivalently, the ordering of the Yi's.Remark 2 (a more general framework.) One may 
onsider a generaliza-tion of the setup des
ribed above. Instead of ranking just two observations X,X 0,one may be interested in ranking m independent observations X(1), . . . , X(m).In this 
ase the value of a ranking fun
tion r(X(1), . . . , X(m)) is a permutation
π of {1, . . . ,m} and the goal is that π should 
oin
ide with (or at least resembleto) the permutation π for whi
h Y(π(1)) � � � � � Y(π(m)). Given a loss fun
tion
ℓ that assigns a number in [0, 1] to a pair of permutations, the ranking risk isde�ned as

L(r) = Eℓ(r(X(1) , . . . , X(m)), π) .4



In this general 
ase, natural estimates of L(r) involve m-th order U-statisti
s.Many of the results of this paper may be extended, in a more or less straight-forward manner, to this general setup. In order to lighten the notation andsimplify the arguments, we restri
t the dis
ussion to the 
ase des
ribed above,that is, to the 
ase when m = 2 and the loss fun
tion is ℓ(π, π) = I[π 6=π].Remark 3 (ranking and s
oring.) In many interesting 
ases the rankingproblem may be redu
ed to �nding an appropriate s
oring fun
tion. These arethe 
ases when the joint distribution of X and Y is su
h that there exists afun
tion s� : X → R su
h that
r�(x, x 0) = 1 if and only if s�(x) � s�(x 0) .A fun
tion s� satisfying the assumption is 
alled an optimal s
oring fun
tion.Obviously, any stri
tly in
reasing transformation of an optimal s
oring fun
tionis also an optimal s
oring fun
tion. Below we des
ribe some important spe
ial
ases when the ranking problem may be redu
ed to s
oring.Example 1 (the bipartite ranking problem.) In the bipartite rankingproblem the label Y is binary, it takes values in {−1, 1}. Writing η(x) = P{Y =

1|X = x}, it is easy to see that the Bayes ranking risk equals
L� = E min{η(X)(1− η(X 0)), η(X 0)(1− η(X))}

= E min{η(X), η(X 0)} − (Eη(X))2and also,
L� = Var�Y + 1

2

�
−
1

2
E |η(X) − η(X 0)| .In parti
ular,

L� � Var�Y + 1

2

� � 1/4where the equality L� = Var �Y+1
2

� holds when X and Y are independent and themaximum is attained when η � 1/2. Observe that the di�
ulty of the bipartiteranking problem depends on the 
on
entration properties of the distributionof η(X) = P(Y = 1 | X) through the quantity E(|η(X) − η(X0)|) whi
h is a
lassi
al measure of 
on
entration, known as Gini's mean di�eren
e. For given
p = E(η(X)), Gini's mean di�eren
e ranges from a minimum value of zero, when
η(X) � p, to a maximum value of 1

2
p(1−p) in the 
ase when η(X) = (Y + 1) /2.It is 
lear from the form of the Bayes ranking rule that the optimal ranking rule isgiven by a s
oring fun
tion s� where s� is any stri
tly in
reasing transformationof η. Then one may restri
t the sear
h to ranking rules de�ned by s
oringfun
tions s, that is, ranking rules of form r(x, x 0) = 2I[s(x)�s(x 0)] − 1. Writing

L(s)
def
= L(r), one has

L(s) − L� = E � |η(X 0) − η(X)| I[(s(X)−s(X 0))(η(X)−η(X 0))<0]

�
.5



We point out that the ranking risk in this 
ase is 
losely related to the au

riterion whi
h is a standard performan
e measure in the bipartite setting (see[14℄ and Appendix 2). More pre
isely, we have:au
(s) =P {s(X) � s(X0) | Y = 1, Y0 = −1} = 1−
1

2p(1− p)
L(s),where p = P (Y = 1), so that maximizing the au
 
riterion boils down to mini-mizing the ranking error.Example 2 (a regression model). Assume now that Y is real-valued andthe joint distribution of X and Y is su
h that Y = m(X) + ǫ where m(x) =E(Y|X = x) is the regression fun
tion, ǫ is independent of X and has a sym-metri
 distribution around zero. Then 
learly the optimal ranking rule r� maybe obtained by a s
oring fun
tion s� where s� may be taken as any stri
tlyin
reasing transformation of m.3 Empiri
al risk minimizationBased on the empiri
al estimate Ln(r) of the risk L(r) of a ranking rule de�nedabove, one may 
onsider 
hoosing a ranking rule by minimizing the empiri
alrisk over a 
lass R of ranking rules r : X � X → {−1, 1}. De�ne the empiri
alrisk minimizer, over R, by

rn = argmin
r2R Ln(r) .(Ties are broken in an arbitrary way.) In a "�rst-order" approa
h, we may studythe performan
e L(rn) = P{Z �rn(X,X 0) < 0|Dn} of the empiri
al risk minimizerby the standard bound (see, e.g., [13℄)

L(rn) − inf
r2R L(r) � 2 supr2R |Ln(r) − L(r)| . (1)This inequality points out that bounding the performan
e of an empiri
al min-imizer of the ranking risk boils down to investigating the properties of U-pro
esses, that is, suprema of U-statisti
s indexed by a 
lass of ranking rules.For a detailed and modern a

ount of U-pro
ess theory we refer to the bookof de la Peña and Giné [12℄. In a �rst-order approa
h we basi
ally redu
e theproblem to the study of ordinary empiri
al pro
esses.By using the simple Lemma 14 given in the Appendix, we obtain the fol-lowing:Proposition 2 De�ne the Radema
her average

Rn = sup
r2R 1bn/2
 ������bn/2
∑

i=1

ǫiI[Zi,bn/2
+ir(Xi,Xbn/2
+i)<0]

������6



where ǫ1, ..., ǫn are i.i.d. Radema
her random variables (i.e., random sym-metri
 sign variables). Then for any 
onvex nonde
reasing fun
tion ψ,Eψ�L(rn) − inf
r2RL(r)� � Eψ(4Rn ) .proof. The inequality follows immediately from (1), Lemma 14 (see the Ap-pendix), and a standard symmetrization inequality, see, e.g., Giné and Zinn[17℄.One may easily use this result to derive probabilisti
 performan
e boundsfor the empiri
al risk minimizer. For example, by taking ψ(x) = eλx for some

λ > 0, and using the bounded di�eren
es inequality (see M
Diarmid [31℄), wehave E exp �λ(L(rn) − inf
r2R L(r))�� E exp(4λRn)� exp�4λERn +

4λ2

(n − 1)

�
.By using Markov's inequality and 
hoosing λ to minimize the bound, we readilyobtain:Corollary 3 Let δ > 0. With probability at least 1− δ,

L(rn) − inf
r2RL(r) � 4ERn + 4

r ln(1/δ)

n − 1
.The expe
ted value of the Radema
her average Rn may now be bounded bystandard methods, see, e.g., Lugosi [27℄, Bou
heron, Bousquet, and Lugosi [8℄.For example, if the 
lass R of indi
ator fun
tions has �nite v
 dimension V ,then ERn � crV

nfor a universal 
onstant c.This result is similar to the one proved in the bipartite ranking 
ase byAgarwal, Graepel, Herbri
h, Har-Peled, and Roth [2℄ with the restri
tion thattheir bound holds 
onditionally on a label sequen
e. The analysis of [2℄ relieson a parti
ular 
omplexity measure 
alled rank-shatter 
oe�
ient but the 
oreof the argument is the same.The proposition above is 
onvenient, simple, and, in a 
ertain sense, not im-provable. However, it is well known from the theory of statisti
al learning andempiri
al risk minimization for 
lassi�
ation that the bound (1) is often quite7



loose. In 
lassi�
ation problems the looseness of su
h a "�rst-order" approa
his due to the fa
t that the varian
e of the estimators of the risk is ignored andbounded uniformly by a 
onstant. Therefore, the main interest in 
onsidering
U-statisti
s pre
isely 
onsists in the fa
t that they have minimal varian
e amongall unbiased estimators. However, the redu
ed-varian
e property of U-statisti
splays no role in the above analysis of the ranking problem. Observe that allupper bounds obtained in this se
tion remain true for an empiri
al risk mini-mizer that, instead of using estimates based on U-statisti
s, estimates the riskof a ranking rule by splitting the data set into two halves and estimates L(r) by

1bn/2
 bn/2
∑

i=1

I[Zi,bn/2
+i�r(Xi,Xbn/2
+i)<0] .Hen
e, in the previous study one loses the advantage of using U-statisti
s. InSe
tion 4 it is shown that under 
ertain, not un
ommon, 
ir
umstan
es sig-ni�
antly smaller risk bounds are a
hievable. There it will have an essentialimportan
e to use sharp exponential bounds for U-pro
esses, involving theirredu
ed varian
e.4 Fast ratesThe main results of this paper show that the bounds obtained in the previousse
tion may be signi�
antly improved under 
ertain 
onditions. It is well known(see, e.g., �5.2 in the survey [8℄ and the referen
es therein) that tighter boundsfor the ex
ess risk in the 
ontext of binary 
lassi�
ation may be obtained if one
an 
ontrol the varian
e of the ex
ess risk by its expe
ted value. In 
lassi�
ationthis 
an be guaranteed under 
ertain "low-noise" 
onditions (see Tsybakov [39℄,Massart and Nédéle
 [30℄, Kolt
hinskii [24℄).Next we examine possibilities of obtaining su
h improved performan
e boundsfor empiri
al ranking risk minimization. The main message is that in the rank-ing problem one also may obtain signi�
antly improved bounds under some
onditions that are analogous to the low-noise 
onditions in the 
lassi�
ationproblem, though quite di�erent in nature.Here we will greatly bene�t from using U-statisti
s (as opposed to splittingthe sample) as the small varian
e of the U-statisti
s used to estimate the rankingrisk gives rise to sharper bounds. The starting point of our analysis is theHoe�ding de
omposition of U-statisti
s (see Appendix 1).Set �rst
qr((x, y), (x

0, y 0)) = I[(y−y 0)�r(x,x 0)<0] − I[(y−y 0)�r�(x,x 0)<0]and 
onsider the following estimate of the ex
ess risk Λ(r) = L(r) − L� =8



Eqr ((X, Y), (X 0, Y 0)):
Λn(r) =

1

n(n − 1)

∑

i6=j

qr((Xi, Yi), (Xj, Yj)),whi
h is a U-statisti
 of degree 2 with symmetri
 kernel qr. Clearly, the mini-mizer rn of the empiri
al ranking risk Ln(r) overR also minimizes the empiri
alex
ess risk Λn(r). To study this minimizer, 
onsider the Hoe�ding de
omposi-tion of Λn(r):
Λn(r) −Λ(r) = 2Tn(r) +Wn(r) ,where

Tn(r) =
1

n

n∑

i=1

hr(Xi, Yi)is a sum of i.i.d. random variables with
hr(x, y) = Eqr ((x, y), (X 0, Y 0)) −Λ(r)and

Wn(r) =
1

n(n − 1)

∑

i6=j

bhr((Xi, Yi), (Xj, Yj))is a degenerate U-statisti
 with symmetri
 kernelbhr((x, y), (x
0, y 0)) = qr((x, y), (x

0, y 0)) −Λ(r) − hr(x, y) − hr(x
0, y 0) .In the analysis we show that the 
ontribution of the degenerate part Wn(r)of the U-statisti
 is negligible 
ompared to that of Tn(r). This means thatminimization of Λn is approximately equivalent to minimizing Tn(r). But sin
e

Tn(r) is an average of i.i.d. random variables, this 
an be studied by knownte
hniques worked out for empiri
al risk minimization.The main tool for handling the degenerate part is a new general momentinequality for U-pro
esses that may be interesting on its own right. This in-equality is presented in Se
tion 6. We mention here that for v
 
lasses one mayuse an inequality of Ar
ones and Giné [4℄.It is well known from the theory of empiri
al risk minimization (see Tsybakov[39℄, Bartlett and Mendelson [6℄, Kolt
hinskii [24℄, Massart [29℄), that, in orderto improve the rates of 
onvergen
e (su
h as the bound O(
p
V/n) obtained forv
 
lasses in Se
tion 3), it is ne
essary to impose some 
onditions on the jointdistribution of (X, Y). In our 
ase the key assumption takes the following form:Assumption 4 There exist 
onstants c > 0 and α 2 [0, 1] su
h that for all

r 2 R, Var(hr(X, Y)) � cΛ(r)α .9



The improved rates of 
onvergen
e will depend on the value of α. We willsee in some examples that this assumption is satis�ed for a surprisingly largefamily of distributions, guaranteeing improved rates of 
onvergen
e. For α = 0the assumption is always satis�ed and the 
orresponding performan
e bounddoes not yield any improvement over those of Se
tion 3. However, we will seethat in many natural examples Assumption 4 is satis�ed with values of α 
loseto one, providing signi�
ant improvements in the rates of 
onvergen
e.Now we are prepared to state and prove the main result of the paper. Inorder to state the result, we need to introdu
e some quantities related to the
lass R. Let ǫ1, . . . , ǫn be i.i.d. Radema
her random variables independent ofthe (Xi, Yi). Let
Zǫ = sup

r2R ������∑i,j ǫiǫj
bhr((Xi, Yi), (Xj, Yj))

������ ,
Uǫ = sup

r2R sup
α:kαk2�1

∑

i,j

ǫiαj
bhr((Xi, Yi), (Xj, Yj)) ,

M = sup
r2R,k=1,...,n

����� n∑

i=1

ǫi
bhr((Xi, Yi), (Xk, Yk))

����� .Introdu
e the "loss fun
tion"
ℓ(r, (x, y)) = 2EI[(y−Y)�r(x,X)<0] − L(r)and de�ne
νn(r) =

1

n

n∑

i=1

ℓ(r, (Xi, Yi)) − L(r) .(Observe that νn(r) has zero mean.) Also, de�ne the pseudo-distan
e
d(r, r 0) =

�E �E [I[r(X,X 0) 6=r 0(X,X 0)]|X]
�2�1/2

.Let φ : [0,∞) → [0,∞) be a nonde
reasing fun
tion su
h that φ(x)/x is nonin-
reasing and φ(1) � 1 su
h that for all r 2 R,p
nE sup

r 02R,d(r,r 0)�σ

|νn(r) − νn(r 0)| � φ(σ) .Theorem 5 Consider a minimizer rn of the empiri
al ranking risk Ln(r)over a 
lass R of ranking rules and assume Assumption 4. Then thereexists a universal 
onstant C su
h that, with probability at least 1− δ, the
10



ranking risk of rn satis�es
L(rn) − L� � 2

� inf
r2R L(r) − L��

+C

 EZǫ

n2
+
EUǫ

plog(1/δ)
n2

+
EM log(1/δ)

n2
+

log(1/δ)
n

+ ρ2 log(1/δ)�where ρ > 0 is the unique solution of the equationp
nρ2 = φ(ρα) .The theorem provides a performan
e bound in terms of expe
ted values of
ertain Radema
her 
haoses indexed by R and lo
al properties of an ordinaryempiri
al pro
ess. These quantities have been thoroughly studied and wellunderstood, and may be easily bounded in many interesting 
ases. Below wewill work out an example when R is a v
 
lass of indi
ator fun
tions.proof.We 
onsider the Hoe�ding de
omposition of theU-statisti
Λn(r) that isminimized over r 2 R. The idea of the proof is to show that the degenerate part

Wn(r) is of a smaller order and be
omes negligible 
ompared to the part Tn(r).Therefore, rn is an approximate minimizer of Tn(r) whi
h 
an be handled byre
ent results on empiri
al risk minimization when the empiri
al risk is de�nedas a simple sample average.Let A be the event on whi
hsup
r2R |Wn(r)| � κwhere

κ = C

 EZǫ

n2
+
EUǫ

plog(1/δ)
n2

+
EM log(1/δ)

n2
+

log(1/δ)
n

!for an appropriate 
onstant C. Then by Theorem 11, P[A] � 1 − δ/2. By theHoe�ding de
omposition of the U-statisti
s Λn(r) it is 
lear that, on A, rn is a
ρ-minimizer of

2

n

n∑

i=1

ℓ(r, (Xi, Yi))over r 2 R in the sense that the value of this latter quantity at its minimum isat most κ smaller than at rn.De�ne �rn as rn on A and an arbitrary minimizer of (2/n)
∑n

i=1 ℓ(r, (Xi, Yi))on Ac. Then 
learly, with probability at least 1− δ/2, L(rn) = L(�rn) and �rn isa κ-minimizer of (2/n)
∑n

i=1 ℓ(r, (Xi, Yi)). But then we may use Theorem 8.3of Massart [29℄ to bound the performan
e of �rn whi
h implies the theorem.11



Observe that the only 
ondition for the distribution is that the varian
e of
hr 
an be bounded in terms of Λ(r). In Se
tion 5 we present examples in whi
hAssumption 4 is satis�ed with α > 0. We will see below that the value of αin this assumption determines the magnitude of the last term whi
h, in turn,dominates the right-hand side (apart from the approximation error term).The fa
tor of 2 in front of the approximation error term infr2R L(r)−L� hasno spe
ial meaning. It 
an be repla
ed by any 
onstant stri
tly greater thanone at the pri
e of in
reasing the value of the 
onstant C. Noti
e that in thebound for L(rn)−L� derived from Corollary 3, the approximation error appearswith a fa
tor of 1. Thus, the improvement of Theorem 5 is only meaningful ifinfr2R L(r) − L� does not dominate the other terms in the bound. Ideally, the
lass R should be 
hosen su
h that the approximation error and the other termsin the bound are balan
ed. If this was the 
ase, the theorem would guaranteefaster rates of 
onvergen
e. Based on the bounds presented here, one may designpenalized empiri
al minimizers of the ranking risk that sele
t the 
lass R froma 
olle
tion of 
lasses a
hieving this obje
tive. We do not give the details here,we just mention that the te
hniques presented in Massart [29℄ and Kolt
hinskii[24℄ may be used in a relatively straightforward manner to derive su
h "ora
leinequalities" for penalized empiri
al risk minimization in the present framework.In order to illustrate Theorem 5, we 
onsider the 
ase when R is a v
 
lass,that is, it has a �nite v
 dimension V .Corollary 6 Consider the minimizer rn of the empiri
al ranking risk Ln(r)over a 
lass R of ranking rules of �nite v
 dimension V and assume As-sumption 4. Then there exists a universal 
onstant C su
h that, with prob-ability at least 1− δ, the ranking risk of rn satis�es

L(rn) − L� � 2� inf
r2R L(r) − L�� + C

�
V log(n/δ)

n

�1/(2−α)proof. In order to apply Theorem 5, we need suitable upper bounds for EZǫ ,EUǫ , EM, and ρ. To bound EZǫ , observe that Zǫ is a Radema
her 
haosindexed by R for whi
h Propositions 2.2 and 2.6 of Ar
ones and Giné [3℄ maybe applied. In parti
ular, by using Haussler's [19℄ metri
 entropy bound for v

lasses, it is easy to see that there exists a 
onstant C su
h thatEZǫ � CnV .Similarly, EǫM is just an expe
ted Radema
her average that may be boundedby CpVn (see, e.g., [8℄).
12



Also, by the Cau
hy-S
hwarz inequality,EU2
ǫ � E sup

r2Rvuuut∑

j

 
∑

i

ǫi
bhr((Xi, Yi), (Xj, Yj))

!2

= E sup
r2R 





∑

j

∑

i

bhr((Xi, Yi), (Xj, Yj))
2

+
∑

j

∑

i,k

ǫiǫk
bhr((Xi, Yi), (Xj, Yj))bhr((Xj, Yj), (Xk, Yk))




� n2 + E sup
r2R ∑

j

∑

i,k

ǫiǫk
bhr((Xi, Yi), (Xj, Yj))bhr((Xj, Yj), (Xk, Yk)) .Observe that the se
ond term on the right-hand side is a Radema
her 
haos oforder 2 that 
an be handled similarly to EZǫ . By repeating the same argument,one obtains EU2

ǫ � n2 + CVn2Thus, E(Uǫ ) �qE(U2
ǫ ) � CnV1/2 .This shows that the value of κ de�ned in the proof of Theorem 5 is of the orderof n−1 (V + log(1/δ)). The main term in the bound of Theorem 5 is ρ2. Bymimi
king the argument of Massart [29, pp. 297�298℄, we get

C

�
V logn
n

�1/(2−α)as desired.5 Examples5.1 The bipartite ranking problemNext we derive a simple su�
ient 
ondition for a
hieving fast rates of 
onver-gen
e for the bipartite ranking problem. Re
all that here it su�
es to 
onsiderranking rules of the form r(x, x 0) = 2I[s(x)�s(x 0)]−1 where s is a s
oring fun
tion.With some abuse of notation we write hs for hr.Noise assumption. There exist 
onstants c > 0 and α 2 [0, 1] su
h that forall x 2 X , EX 0 (|η(x) − η(X0)|−α
) � c . (2)13



Proposition 7 Under (2), we have, for all s 2 FVar(hs(X, Y)) � cΛ(s)α .proof. Var(hs(X, Y))� EX

h�EX 0 (I[(s(X)−s(X0))(η(X)−η(X 0))<0])
�2i� EX

�EX 0 �I[(s(X)−s(X 0))(η(X)−η(X 0))<0] |η(X) − η(X 0)|α�� �EX 0 (|η(X) − η(X 0)|−α
)
�i(by the Cau
hy-S
hwarz inequality)� c

�EXEX 0 �I[(s(X)−s(X 0))(η(X)−η(X 0))<0] |η(X) − η(X 0)|��α(by Jensen's inequality and the noise assumption)
= cΛ(s)α .Condition (2) is satis�ed under quite general 
ir
umstan
es. If α = 0 then
learly the 
ondition poses no restri
tion, but also no improvement is a
hievedin the rates of 
onvergen
e. On the other hand, at the other extreme, when

α = 1, the 
ondition is quite restri
tive as it ex
ludes η to be di�erentiable, forexample, if X has a uniform distribution over [0, 1]. However, interestingly, forany α < 1, it poses quite mild restri
tions as it is highlighted in the followingexample:Corollary 8 Consider the bipartite ranking problem and assume that η(x) =P{Y = 1|X = x} is su
h that the random variable η(X) has an absolutely 
on-tinuous distribution on [0, 1] with a density bounded by B. Then for any
ǫ > 0, 8x 2 X , EX 0 (|η(x) − η(X0)|−1+ǫ

) � 2B

ǫand therefore, by Propositions 4 and 7, there is a 
onstant C su
h that forevery δ, ǫ 2 (0, 1), the ex
ess ranking risk of the empiri
al minimizer rnsatis�es, with probability at least 1− δ,
L(rn) − L� � 2� inf

r2RL(r) − L��+ CBǫ−1

�
V log(n/δ)

n

�1/(1+ǫ)

.proof. The 
orollary follows simply by 
he
king that (2) is satis�ed for any14



α = 1− ǫ < 1. Denoting the density of η(X) by f, we haveEX 0 (|η(x) − η(X 0)|−α
) =

∫1

0

1

|η(x) − u|α
f(u)du� B

∫1

0

1

|η(x) − u|α
du

= B
η(x)1−α + (1 − η(x))1−α

1− α
� 2B

1− α
.The 
ondition (2) of the 
orollary requires that the distribution of η(X) issu�
iently spread out, for example it 
annot have atoms or in�nite peaks in itsdensity. Under su
h a 
ondition a rate of 
onvergen
e of the order of n−1+ǫ isa
hievable for any ǫ > 0.Remark 4 Note that we 
ru
ially used the redu
ed varian
e of the U-statisti


L(rn) to derive fast rates from the rather weak 
ondition (2). Applying a similarreasoning for the varian
e of qs((X, Y), (X 0, Y 0)) (whi
h would be the 
ase if one
onsidered a risk estimate based on independent pairs by splitting the trainingdata into two halves, see Se
tion 3), would have led to the 
ondition:
|η(x) − η(x0)| � c, (3)for some 
onstant c, and x 6= x0. This 
ondition is satis�ed only when η(X) hasa dis
rete distribution.5.2 Noiseless regression modelNext we 
onsider the noise-free regression model in whi
h Y = m(X) for some(unknown) fun
tion m : X → R. Here obviously L� = 0 and the Bayes rank-ing rule is given by the s
oring fun
tion s� = m (or any stri
tly in
reasingtransformation of it). Clearly, in this 
ase

qr(x, x
0) = I[(m(x)−m(x 0))�r(x,x 0)<0]and therefore Var(hr(X, Y)) � Eq2

r (X,X 0) = L(r) ,and therefore the 
ondition of Proposition 4 is satis�ed with c = 1 and α = 1.Thus, the risk of the empiri
al risk minimizer rn satis�es, with probability atleast 1− δ,
L(rn) � 2 inf

r2R L(r) + C
V log(n/δ)

nprovided R has �nite v
 dimension V .15



5.3 Regression model with noiseNow we turn to the general regression model with heteros
edasti
 errorsin whi
h Y = m(X) + σ(X)ǫ for some (unknown) fun
tions m : X → R and
σ : X → R, where ǫ is a standard gaussian random variable, independent of X.We set

∆(X,X 0) =
m(X) −m(X 0)p
σ2(X) + σ2(X 0) .We have again s� = m (or any stri
tly in
reasing transformation of it) andthe optimal risk is

L� = EΦ (− |∆(X,X 0)|)where Φ is the distribution fun
tion of the standard gaussian random variable.The maximal value of L� is attained when the regression fun
tion m(x) is 
on-stant. Furthermore, we have
L(s) − L� = E � |2Φ (∆(X,X 0)) − 1| � I[(m(x)−m(x 0))�(s(x)−s(x 0))<0]

�
.Noise assumption. There exist 
onstants c > 0 and α 2 [0, 1] su
h that forall x 2 X , EX 0 (|∆(x, X 0)|−α) � c . (4)Proposition 9 Under (4), we have, for all s 2 FVar(hs(X, Y)) � (2Φ(c) − 1)Λ(s)α .proof. By symmetry, we have

|2Φ (∆(X,X 0)) − 1| = 2Φ (|∆(X,X 0)|) − 1 .Then, using the 
on
avity of the distribution fun
tion Φ on R+ , we have,by Jensen's inequality,8x 2 X , EX 0Φ(|∆(x, X 0)|−α) � Φ(EX 0 |∆(x, X 0)|−α) � Φ(c) ,where we have used (4) together with the fa
t that Φ is in
reasing. Now theresult follows following the argument given in the proof of Proposition 7.The pre
eding noise 
ondition is ful�lled in many 
ases, as illustrated by theexample below.Corollary 10 Suppose thatm(X) has a bounded density and the 
onditionalvarian
e σ(x) is bounded over X . Then the noise 
ondition (4) is satis�edfor any α < 1.Remark 5 The argument above still holds if we drop the gaussian noise as-sumption. Indeed we only need the random variable ǫ to have a symmetri
density de
reasing over R+ . 16



6 A moment inequality for U-pro
essesIn this se
tion we establish a general exponential inequality for U-pro
esses.This result is based on moment inequalities obtained for empiri
al pro
essesand Radema
her 
haoses in Bousquet, Bou
heron, Lugosi, and Massart [9℄ andgeneralizes an inequality due to Ar
ones and Giné [4℄. We also refer to the
orresponding results obtained for U-statisti
s by Adam
zak [1℄, Giné, Latala,and Zinn [16℄, and Houdré and Reynaud-Bouret [22℄.Theorem 11 Let X,X1, ..., Xn be i.i.d. random variables and let F be a
lass of kernels. Consider a degenerate U-pro
ess Z of order 2 indexed byF,
Z = sup

f2F ������∑i,j f(Xi, Xj)

������where Ef(X, x) = 0, 8x, f. Assume also f(x, x) = 0, 8x and supf2F kfk∞ =

F. Let ǫ1, ..., ǫn be i.i.d. Radema
her random variables and introdu
e therandom variables
Zǫ = sup

f2F ������∑i,j ǫiǫjf(Xi, Xj)

������ ,
Uǫ = sup

f2F sup
α:kαk2�1

∑

i,j

ǫiαjf(Xi, Xj) ,

M = sup
f2F,k=1...n

����� n∑

i=1

ǫif(Xi, Xk)

����� .Then there exists a universal 
onstant C > 0 su
h that for all n and q � 2,
(EZq )

1/q � C�EZǫ + q1/2EUǫ + q(EM + Fn) + q3/2Fn1/2 + q2F
�
.Also, there exists a universal 
onstant C su
h that for all n and t > 0,P{Z > CEZǫ+t} � exp −

1

C
min � tEUǫ

�2

,
tEM + Fn

,

�
t

F
p
n

�2/3

,

r
t

F

!!
.Remark 6 A generously overestimated value of the 
onstants may be easilydedu
ed from the proof. We are 
onvin
ed that these are far from being thebest possible but do not have a good guess of what the best 
onstants mightbe.proof. The proof of Theorem 11 is based on symmetrization, de
oupling, and
on
entration inequalities for empiri
al pro
esses and Radema
her 
haos.17



Sin
e the f are degenerate kernels, one may relate the moments of Z to thoseof Zǫ by the randomization inequalityEZq � 4qEZq
ǫ ,valid for q � 1, see Chapter 3 of [12℄. Thus, it su�
es to derive momentinequalities for the symmetrized U-pro
ess Zǫ. We do this by 
onditioning.Denote by Eǫ the expe
tation taken with respe
t to the variables ǫi (i.e., 
on-ditional expe
tation given X1, . . . , Xn). Then we write EZq

ǫ = EE ǫZ
q
ǫ and studythe quantity EǫZ

q
ǫ , with the Xi �xed. But then Zǫ is a so-
alled Radema
her
haos whose tail behavior has been studied, see Talagrand [38℄, Ledoux [26℄,Bou
heron, Bousquet, Lugosi, and Massart [9℄. In parti
ular, for any q � 2,�EǫZ

q
ǫ

�1/q � EǫZǫ +
�Eǫ

�
Zǫ − EǫZǫ

�q
+

�1/q (sin
e Z � 0)� EǫZǫ + 3
p
q EǫUǫ + 4qBwith Uǫ de�ned above and

B = sup
f2F sup

α,α 0:kαk2,kα 0k2�1

������∑i,j αiα
0
jf(Xi, Xj)

������where the se
ond inequality follows by Theorem 14 of [9℄. Using the inequality
(a+ b + c)q � 3q−1(aq + bq + cq) valid for q � 2, a, b, c > 0, we haveEǫZ

q
ǫ � 3q−1

��EǫZǫ

�q
+ 3qqq/2

�EǫUǫ

�q
+ 4qqqBq

�
.It remains to derive suitable upper bounds for the expe
tation of the three termson the right-hand side.First term: E�EǫZǫ

�qIn order to handle the moments of EǫZǫ, �rst we note that by a de
ouplinginequality in de la Peña and Giné [12, page 101℄,EǫZǫ � 8EǫZ
0
ǫwhere

Z 0ǫ = sup
f2F ������∑i,j ǫiǫ

0
jf(Xi, Xj)

������Here ǫ 01, . . . , ǫ 0n are i.i.d. Radema
her variables, independent of the Xi and the
ǫi. Nothe that Eǫ now denotes expe
tation taken with respe
t to both the ǫiand the ǫ 0i.Thus, we have E�EǫZǫ

�q � 8qE�EǫZ
0
ǫ

�q18



In order to bound the moments of the random variable A = EǫZ
0
ǫ, we applyCorollary 3 of [9℄. In order to apply this 
orollary, de�ne, for k = 1, . . . , n, therandom variables

Ak = Eǫ sup
f2F ������∑i,j6=k

ǫiǫ
0
jf(Xi, Xj)

������It is easy to see that Ak � A.On the other hand, de�ning
Rk = sup

f2F ����� n∑

i=1

ǫif(Xi, Xk)

����� ,we 
learly have
A−Ak � 2EǫRk .Also, denoting by f� the (random) fun
tion a
hieving the maximum in thede�nition of Z, we have

n∑

k=1

(A− Ak) � Eǫ

0� n∑

k=1

ǫk

n∑

j=1

ǫ 0jf�(Xk, X
0
j) +

n∑

k=1

ǫ 0k n∑

i=1

ǫif
�(Xi, X

0
k)

1A
= 2A ,Therefore,

n∑

k=1

(A −Ak)2 � 4AEǫMwhere M = maxk Rk. Then by Corollary 3 of [9℄, we obtainE�EǫZ
0
ǫ

�q
= EAq � 2q−1

�
2q
�EZ 0ǫ�q + 5qqqE (EǫM)

q
�
.By un-de
oupling (see de la Peña and Giné [12, page 101℄), we have EZ 0ǫ �

4EZǫ .To bound E (EǫM)
q, observe that EǫM is a 
onditional Radema
her aver-age, for whi
h Theorem 13 of of [9℄ may be applied. A

ording to this,E (EǫM)

q � 2q−1
�
2q (EM)

q
+ 5qqqFq

�Colle
ting terms, we haveE�EǫZǫ

�q � 128q (EZǫ )
q

+ 320qqq (EM)
q

+ 800qFqq2q .Se
ond term: EX

�EǫUǫ

�q 19



The moments of EǫUǫ 
an be estimated by the same inequality as the one weused for EǫM sin
e EǫUǫ is also a 
onditional Radema
her average. Observingthat sup
f,i

sup
α:kαk2�1

∑

j6=i

αjf(Xi, Xj) � Fpnby the Cau
hy-S
hwarz inequality, we have, by Theorem 13 from [9℄,E�EǫUǫ

�q � 2q−1
�
2q
�EUǫ

�q
+ 5qqqFqnq/2

�
.Third term: EXB

qFinally, by the Cau
hy-S
hwarz inequality, we have B � nF soEXB
q � nqFq .Now it remains to simply put the pie
es together to obtainEZq � 12q

�
128q

�EZǫ

�q
+ 12qqq/2

�EUǫ

�q
+ 320qqq

�EM�q
+ 4qFqnqqq

+30qFqnq/2q3q/2 + 800qFqq2q
�
,proving the announ
ed moment inequality.In order to derive the exponential inequality, use Markov's inequality P{Z >

t} � t−qEZq and 
hoose
q = Cmin � tEUǫ

�2

,
tEM,

t

Fn
,

�
t

F
p
n

�2/3

,

r
t

F

!for an appropriate 
onstant C.7 Convex risk minimizationSeveral su

essful algorithms for 
lassi�
ation, in
luding various versions ofboosting and support ve
tor ma
hines are based on repla
ing the loss fun
-tion by a 
onvex fun
tion and minimizing the 
orresponding empiri
al 
onvexrisk fun
tionals over a 
ertain 
lass of fun
tions (typi
ally over a ball in an ap-propriately 
hosen Hilbert or Bana
h spa
e of fun
tions). This approa
h hasimportant 
omputational advantages, as the minimization of the empiri
al 
on-vex fun
tional is often 
omputationally feasible by gradient des
ent algorithms.Re
ently signi�
ant theoreti
al advan
e has been made in understanding thestatisti
al behavior of su
h methods, see, e.g., Bartlett, Jordan, and M
Auli�e[5℄, Blan
hard, Lugosi and Vayatis [7℄, Breiman [10℄, Jiang [23℄, Lugosi andVayatis [28℄, Zhang [41℄. 20



The purpose of this se
tion is to extend the prin
iple of 
onvex risk minimiza-tion to the ranking problem studied in this paper. Our analysis also providesa theoreti
al framework for the analysis of some su

essful ranking algorithmssu
h as the RankBoost algorithm of Freund, Iyer, S
hapire, and Singer [14℄.In what follows we adapt the arguments of Lugosi and Vayatis [28℄ (where asimple binary 
lassi�
ation problem was 
onsidered) to the ranking problem.The basi
 idea is to 
onsider ranking rules indu
ed by real-valued fun
tions,that is, ranking rules of the form
r(x, x 0) =

{
1 if f(x, x 0) > 0
−1 otherwisewhere f : X � X → R is some measurable real-valued fun
tion. With a slightabuse of notation, we will denote by L(f) = P{sgn(Z) � f(X,X 0) < 0} = L(r) therisk of the ranking rule indu
ed by f. (Here sgn(x) = 1 if x > 0, sgn(x) = −1if x < 0, and sgn(x) = 0 if x = 0.) Let φ : R → [0,∞) be a 
onvex 
ostfun
tion satisfyingφ(0) = 1 and φ(x) � I[x�0]. Typi
al 
hoi
es of φ in
lude theexponential 
ost fun
tion φ(x) = ex, the "logit" fun
tion φ(x) = log2(1 + ex),or the "hinge loss" φ(x) = (1 + x)+. De�ne the 
ost fun
tional asso
iated tothe 
ost fun
tion φ by

A(f) = Eφ(− sgn(Z) � f(X,X 0)) .Obviously, L(f) � A(f). We denote by A� = inffA(f) the "optimal" value ofthe 
ost fun
tional where the in�mum is taken over all measurable fun
tions
f : X � X → R.The most natural estimate of the 
ost fun
tional A(f), based on the trainingdata Dn, is the empiri
al 
ost fun
tional de�ned by the U-statisti


An(f) =
1

n(n − 1)

∑

i6=j

φ(− sgn(Zi,j) � f(Xi, Xj)) .The ranking rules based on 
onvex risk minimization we 
onsider in this se
-tion minimize, over a set F of real-valued fun
tions f : X�X → R, the empiri
al
ost fun
tional An, that is, we 
hoose fn = argminf2F An(f) and assign the
orresponding ranking rule
rn(x, x 0) =

{
1 if fn(x, x 0) > 0
−1 otherwise.(Here we assume impli
itly that the minimum exists. More pre
isely, one mayde�ne fn as any fun
tion f 2 F satisfying An(fn) � inff2F An(f) + 1/n.)By minimizing 
onvex risk fun
tionals, one hopes to make the ex
ess 
onvexrisk A(fn) − A� small. This is meaningful for ranking if one 
an relate theex
ess 
onvex risk to the ex
ess ranking risk L(fn) − L�. This may be done21



quite generally by re
alling a result of Bartlett, Jordan, and M
Auli�e [5℄. Tothis end, introdu
e the fun
tions
H(ρ) = inf

α2R(ρφ(−α) + (1 − ρ)φ(α))and
H−(ρ) = inf

α:α(2ρ−1)�0
(ρφ(−α) + (1− ρ)φ(α)) .De�ning ψ over R by

ψ(x) = H−

�
1+ x

2

�
−H−

�
1− x

2

�
,Theorem 3 of [5℄ implies that for all fun
tions f : X �X → R,

L(f) − L� � ψ−1 (A(f) − A�)where ψ−1 denotes the inverse of ψ. Bartlett, Jordan, and M
Auli�e showthat, whenever φ is 
onvex, limx→0ψ
−1(x) = 0, so 
onvergen
e of the ex
ess
onvex risk to zero implies that the ex
ess ranking risk also 
onverges to zero.Moreover, in most interesting 
ases ψ−1(x) may be bounded, for x > 0, bya 
onstant multiple of px (su
h as in the 
ase of exponential or logit 
ostfun
tions) or even by x (e.g., if φ(x) = (1+ x)+ is the so-
alled hinge loss).Thus, to analyze the ex
ess ranking risk L(f) − L� for 
onvex risk mini-mization, it su�
es to bound the ex
ess 
onvex risk. This may be done byde
omposing it into "estimation" and "approximation" errors as follows:

A(fn) −A�(f) � �A(fn) − inf
f2FA(f)

�
+

� inf
f2FA(f) −A�� .Clearly, just like in Se
tion 3, we may (loosely) bound the ex
ess 
onvex riskover the 
lass F as

A(fn) − inf
f2FA(f) � 2 sup

f2F |An(f) −A(f)| .To bound the right-hand side, assume, for simpli
ity, that the 
lass F of fun
-tions is uniformly bounded, say supf2F,x2X |f(x)| � B. Then on
e again, we mayappeal to Lemma 14 (see the Appendix) and the bounded di�eren
es inequalitywhi
h imply that for any λ > 0,E exp �λ sup
f2F |An(f) −A(f)|

�� E exp0�λ sup
f2F0� 1bn/2
 bn/2
∑

i=1

φ
�
− sgn(Zi,bn/2
+i) � f(Xi, Xbn/2
+i)

�
−A(f)

1A1A� exp0�λE sup
f2F 0� 1bn/2
 bn/2
∑

i=1

φ
�
− sgn(Zi,bn/2
+i) � f(Xi, Xbn/2
+i)

�
− A(f)

1A+
λ2B2

2n

1A .22



Now it su�
es to derive an upper bound for the expe
ted supremum appearingin the exponent. This may be done by standard symmetrization and 
ontra
tioninequalities. In fa
t, by mimi
king Kolt
hinskii and Pan
henko [25℄ (see alsothe proof of Lemma 2 in Lugosi and Vayatis [28℄), we obtainE sup
f2F 0� 1bn/2
 bn/2
∑

i=1

φ
�
− sgn(Zi,bn/2
+i) � f(Xi, Xbn/2
+i)

�
−A(f)

1A� 4Bφ 0(B)E sup
f2F 0� 1bn/2
 bn/2
∑

i=1

σi � f(Xi, Xbn/2
+i)

1Awhere σ1, . . . , σbn/2
 i.i.d. Radema
her random variables independent of Dn,that is, symmetri
 sign variables with P{σi = 1} = P{σi = −1} = 1/2.We summarize our �ndings:Proposition 12 Let fn be the ranking rule minimizing the empiri
al 
onvexrisk fun
tional An(f) over a 
lass of fun
tions f uniformly bounded by −Band B. Then, with probability at least 1− δ,
A(fn) − inf

f2FA(f) � 8Bφ 0(B)Rn(F) +

r
2B2 log(1/δ)

nwhere Rn denotes the Radema
her average
Rn(F) = E sup

f2F 0� 1bn/2
 bn/2
∑

i=1

σi � f(Xi, Xbn/2
+i)

1A .Many interesting bounds are available for the Radema
her average of various
lasses of fun
tions. For example, in analogy of boosting-type 
lassi�
ationproblems, one may 
onsider a 
lass FB of fun
tions de�ned byFB =





f(x, x 0) =

N∑

j=1

wjgj(x, x
0) : N 2 N, , N∑

j=1

|wj| = B, gj 2 R


where R is a 
lass of ranking rules as de�ned in Se
tion 3. In this 
ase it is easyto see that
Rn(FB) � BRn(R) � 
onst.BVp

nwhere V is the v
 dimension of the "base" 
lass R.Summarizing, we have shown that a ranking rule based on the empiri
alminimization An(f) over a 
lass of ranking fun
tions FB of the form de�nedabove, the ex
ess ranking risk satis�es, with probability at least 1− δ,
L(fn) − L� � ψ−1

 
8Bφ 0(B)c

BVp
n

+

r
2B2 log(1/δ)

n
+

� inf
f2FB

A(f) − A��! .23



This inequality may be used to derive the universal 
onsisten
y of su
h rankingrules. For example, the following 
orollary is immediate.Corollary 13 Let R be a 
lass of ranking rules of �nite v
 dimension Vsu
h that the asso
iated 
lass of fun
tions FB is ri
h in the sense thatlim
B→∞

inf
f2FB

A(f) = A�for all distributions of (X, Y). Then if fn is de�ned as the empiri
al min-imizer of An(f) over FBn
where the sequen
e Bn satis�es Bn → ∞ and

B2
nφ

0(Bn)/
p
n → 0, thenlim

n→∞
L(fn) = L� almost surely.Classes R satisfying the 
onditions of the 
orollary exist, we refer the readerto Lugosi and Vayatis [28℄ for several examples.Proposition 12 
an also be used for establishing performan
e bounds forkernel methods su
h as support ve
tor ma
hines. A prototypi
al kernel-basedranking method may be de�ned as follows. To lighten notation, we write W =X �X .Let k : W �W → R be a symmetri
 positive de�nite fun
tion, that is,
n∑

i,j=1

αiαjk(wi, wj) � 0 ,for all 
hoi
es of n, α1, . . . , αn 2 R and w1, . . . , wn 2 W .A kernel-type ranking algorithm may be de�ned as one that performs min-imization of the empiri
al 
onvex risk An(f) (typi
ally based on the hinge loss
φ(x) = (1+x)+) over the 
lass FB of fun
tions de�ned by a ball of the asso
iatedreprodu
ing kernel Hilbert spa
e of the form (where w = (x, x 0))FB =





f(w) =

N∑

j=1

cjk(wj, w) : N 2 N, N∑

i,j=1

cicjk(wi, wj) � B2, w1, . . . , wN 2 W



.In this 
ase we have

Rn(FB) � 2B

n
Evuutbn/2
∑

i=1

k((Xi, Xbn/2
+i), (Xi, Xbn/2
+i)) ,see, for example, Bou
heron, Bousquet, and Lugosi [8℄. On
e again, universal
onsisten
y of su
h kernel-based ranking rules may be derived in a straightfor-ward way if the approximation error inff2FB
A(f)−A� 
an be guaranteed to goto zero as B → ∞. For the approximation properties of su
h kernel 
lasses werefer the reader to Cu
ker and Smale [11℄, S
ovel and Steinwart [32℄, Smale andZhou [34℄, Steinwart [35℄, et
. 24



Appendix 1: Basi
 fa
ts about U-statisti
sHere we re
all some basi
 fa
ts about U-statisti
s. Consider the i.i.d. randomvariables X,X1, ..., Xn and denote by
Un =

1

n(n − 1)

∑

i6=j

q(Xi, Xj)a U-statisti
 of order 2 where the kernel q is a symmetri
 real-valued fun
tion.
U-statisti
s have been studied in depth and their behavior is well understood.One of the 
lassi
al inequalities 
on
erning U-statisti
s is due to Hoe�ding [21℄whi
h implies that, for all t > 0,P{|Un − EUn | > t} � 2e−2b(n/2)
t2 � 2e−(n−1)t2

.Hoe�ding also shows that, if σ2 = Var(q(X1, X2)), thenP{|Un − EUn | > t} � 2 exp�−
b(n/2)
t2
2σ2 + 2t/3

�
. (5)It is important noti
ing here that the latter inequality may be improvedby repla
ing σ2 by a smaller term. This is based on the so-
alled Hoe�ding'sde
omposition as des
ribed below.The U-statisti
 Un is said degenerate if its kernel q satis�es8x, E (q(x, X)) = 0 .There are two basi
 representations of U-statisti
s whi
h we re
all next (seeSer�ing [33℄ for more details).Average of 'sums-of-i.i.d.' blo
ksThis representation is the key for obtaining '�rst-order' results for non-degenerate U-statisti
s. The U-statisti
 Un 
an be expressed as

Un =
1

n!

∑

π

1bn/2
 bn/2
∑

i=1

q
�
Xπ(i), Xπ(bn/2
+i)

�where the sum is taken over all permutationsπ of {1, . . . , n}. The idea underlyingthis representation is to redu
e the analysis to the 
ase of sums of i.i.d. randomvariables. The next simple lemma is based on this representation.Lemma 14 Let qτ : X � X → R be real-valued fun
tions indexed by τ 2 Twhere T is some set. If X1, . . . , Xn are i.i.d. then for any 
onvex nonde-25




reasing fun
tion ψ,Eψ0�sup
τ2T

1

n(n − 1)

∑

i6=j

qτ(Xi, Xj)

1A� Eψ0�sup
τ2T

1bn/2
 bn/2
∑

i=1

qτ(Xi, Xbn/2
+i)

1A ,assuming the suprema are measurable and the expe
ted values exist.proof. The proof uses the same tri
k Hoe�ding's above-mentioned inequalitiesare based on. Observe thatEψ0�sup
τ2T

1

n(n − 1)

∑

i6=j

qτ(Xi, Xj)

1A
= Eψ0�sup

τ2T

1

n!

∑

π

1bn/2
 bn/2
∑

i=1

qτ(Xπ(i), Xπ(bn/2
+i))

1A� Eψ0� 1

n!

∑

π

sup
τ2T

1bn/2
 bn/2
∑

i=1

qτ(Xπ(i), Xπ(bn/2
+i))

1A(sin
e ψ is non-de
reasing)� 1

n!

∑

π

Eψ0�sup
τ2T

1bn/2
 bn/2
∑

i=1

qτ(Xπ(i), Xπ(bn/2
+i))

1A(by Jensen's inequality)
= Eψ0�sup

τ2T

1bn/2
 bn/2
∑

i=1

qτ(Xi, Xbn/2
+i)

1Aas desired.Hoe�ding's de
ompositionAnother way to interpret a U-statisti
s is as an orthogonal expansion knownas Hoe�ding's de
omposition.Assuming that q(X1, X2) is square integrable,Un−EUn may be de
omposedas a sum Tn of i.i.d. random variables plus a degenerate U-statisti
 Wn. Inorder to write this de
omposition, 
onsider the following fun
tion of one variable
h(Xi) = E(q(Xi , X) | Xi) − EUn ,26



and the fun
tion of two variablesbh(Xi, Xj) = q(Xi, Xj) − EUn − h(Xi) − h(Xj).Then we have the orthogonal expansion
Un = EUn + 2Tn +Wn ,where
Tn =

1

n

n∑

i=1

h(Xi),

Wn =
1

n(n − 1)

∑

i6=j

bh(Xi, Xj) .

Wn is a degenerate U-statisti
 be
ause its kernel bh satis�esE �bh(Xi, X) | Xi

�
= 0 .Clearly, the varian
e of Tn isVar(Tn) =

Var(E (q(X1 , X) | X1))

n
.Note that Var(E (q(X1 , X) | X1)) is less than Var(q(X1, X)) (unless q is alreadydegenerate). Furthermore, the varian
e of the degenerate U-statisti
 Wn is ofthe order 1/n2. Tn is thus the leading term in this orthogonal de
omposition.Indeed, the limit distribution of pn(Un − EUn ) is the normal distributionN (0, 4Var(E(q(X1 , X) | X1)) (see [20℄). This suggests that inequality (5) maybe quite loose.Indeed, exploiting further Hoe�ding's de
omposition (
ombined with argu-ments related to de
oupling, randomization and hyper
ontra
tivity of Radema-
her 
haos) de la Peña and Giné [12℄ established a Bernstein's type inequality ofthe form (5) but with σ2 repla
ed by the varian
e of the 
onditional expe
tation(see Theorem 4.1.13 in [12℄).Spe
ialized to our setting with q(Xi, Xj) = I[Zi,j�r(Xi,Xj)<0] the inequalityof de la Peña and Giné states thatP{|Ln(r) − L(r)| > t} � 4 exp�−

nt2

8s2 + ct

�
,where s2 = Var(P{Z � r(X,X 0) < 0|X}) is the varian
e of the 
onditional expe
-tation and c is some 
onstant. 27



Appendix 2: Conne
tion with the ro
 
urve andthe au
 
riterionIn the bipartite ranking problem, the ro
 
urve (ro
 standing for Re
eivingOperator Chara
teristi
, see [18℄) and the au
 
riterion are popular measuresfor evaluating the performan
e of s
oring fun
tions in appli
ations.Let s : X → R be a s
oring fun
tion. The ro
 
urve is de�ned by plottingthe true positive rate tprs(x) = P (s(X) � x | Y = 1)against the false positive ratefprs(x) = P (s(X) � x | Y = −1) .By a straightforward 
hange of parameter, the ro
 
urve may be expressedas the graph of the power of the test de�ned by s(X) as a fun
tion of its level
α:

βs(α) = tprs(qs,α)where qs,α = inf{x 2 (0, 1) : fprs(x) � α}.Observe that if s(X) and Y are independent (i.e., when tprs = fprs), thero
 
urve is simply the diagonal segment βs(α) = α. This measure of a

ura
yindu
es a partial order on the set of all s
oring fun
tions: for any s1, s2, we saythat s1 is more a

urate than s2 if and only if its ro
 
urve is above the one of
s2 for every level α, that is, if and only if βs2

(α) � βs1
(α) for all α 2 (0, 1).Proposition 15 The regression fun
tion η indu
es an optimal ordering onX in the sense that its ro
 
urve is not below any other s
oring fun
tion

s: 8α 2 [0, 1], βη(α) � βs(α).proof. The result follows from the Neyman-Pearson lemma applied to the testof the null assumption "Y = −1" against the alternative "Y = 1" based onthe observation X: the test based on the likelihood ratio η(X)/(1 − η(X)) isuniformly more powerful than any other test based on X.Remark 7 Note that the ro
 
urve does not 
hara
terize the s
oring fun
tion.For any s and any stri
tly in
reasing fun
tion h : R → R, s and h Æ s 
learlyyield the same ordering on X : βs = βhÆs.28



Instead of optimizing the ro
 
urve over a 
lass of s
oring fun
tions whi
his a di�
ult task, a simple idea is to sear
h for s that maximizes the Area Underthe ro
 Curve (known as the au
 
riterion) :au
(s) =

∫1

0

βs(α)dα .This theoreti
al quantity may be easily interpreted in a probabilisti
 fashionas shown by the following proposition.Proposition 16 For any s
oring fun
tion s,au
(s) = P (s(X) � s(X0) | Y = 1, Y0 = −1) ,where (X, Y) and (X0, Y0) are independent pairs drawn from the binary 
las-si�
ation model.proof. Let U be a uniformly distributed random variable over (0, 1), indepen-dent of (X, Y). Denote by Fs the distribution fun
tion of s(X) given Y = −1.Then au
(s) =

∫1

0

P (s(X) � qs,α | Y = 1) dα

= E(P(s(X) � F−1
s (U) | Y = 1))

= P (s(X) � s(X0) | Y = 1, Y0 = −1) .A
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