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Abstract

The Capture-Recapture method was developed in animal ecology to estimate animal

population parameters. Its applications in epidemiology, developed at the end of the 80’s,

set specific problems and generally lead to over-estimations of the sizes of the popula-

tions, due to the fact that the sampling lists are not independent and do not cover the

same population. In this context, we propose an adaptation of the “Robust Design” to

epidemiology. This method was proposed in zoology to permit a robust estimation of the

population parameters. We obtain a new estimator that allows us to relax the assumption

that the various lists sample the exact same population. We compare it to the classic

estimator in different cases, in terms of bias and asymptotic variance, using simulations

for the latter. The new estimator has various qualities (bias reduction, robustness with re-

spect to lists sizes, efficiency) compared to the classic estimator, in all the considered cases.
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Introduction

The Capture-Recapture method, developed in animal population dynamics, was adaptated

during the 80’s to allow epidemiologists to estimate the prevalence of a disease [1][2]. This

method is an alternative to prevalence studies, expensive and not always feasible. It is

based upon log-linear models for a contingency table crossing the results of several lists,

such as hospital records, health surveys, etc [3][4]. This method relies on two assumptions

: first, the different lists are considered independent (for each patient, his/her enrolled on

a list is a independant process of wheteher he/she is enrolled on another list); second, the

different lists are supposed to sample exactly the same population. Undoubtedly, these two

assumptions are rarely met, and difficult to test. This leads in general to an over-estimation

of the size of the population and to a large variance of the estimator. This estimator is

thus of little use in practice [5][6][7][8].

In this context, we propose a new estimator of the size of the population that allows

the lists to sample different sub-populations within a population. The formal asymptotic

expectation of this new estimator is given, and simulations are used to estimate its variance.

The new estimator is less biased and more efficient than the classic one and it is more robust

to uneven sizes of the sub-populations sampled by the lists.

1 Problem and proposition

1.1 Notations

k Number of lists
N Total size of the population covered by the union of the k lists (to esti-

mate)
Nl Total size of the population covered by the list l (unknown)
N11 Total size of the population covered by the two lists (if k = 2) (unknown)
n Total number of sampled individuals
nl Total number of individuals sampled on the list l
n11 Total number of individuals sampled on the two lists (if k = 2)
ql Probability to sample an individual on list l
q11 Probability to sample an individual on the two lists (if k = 2)
il Status of individual on the list l (il = 1 for the individuals seen on the

list l and il = 0 for the individuals not seen on this list)
ni1...il...ik Total number of individuals with status il on list l, l = 1...k
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1.2 Problem

In order to estimate the prevalence of a disease with Capture-Recapture in epidemiology,

lists like registers, doctors lists, hospitals lists are often used as samples of an underlying

population. Afterwards, a 2k contingency table across all the samples is set up. Each cell of

this table represents a profile of “capture”. This table is, by definition, incomplete because

the number of individuals who are never sampled (n0...0) is unknown. Thus one works with

(2k − 1) profiles [3].

A main assumption is made : all the lists are are supposed to sample exactly the same

population.

The following model is fitted to the data :

log[E(ni1...ik)] = u + u1(i1) + ... + uk(ik) + u12(i1i2) + ... + u1...k(i1...ik),

where the uj(1) j = 1, ...k are the parameters associated to presence on the list j, and the

u1...l(i1...il) are the interaction parameters between the samples caracterised by non-nul

ij’s. Each term u1...l(i1...il) = 0 if at least one element ij = 0 ∀l = 1...k and ∀j = 1...l, and

all the terms u1...k(i1...ik) = 0 (because we assume there is no intercation between all the

lists). This model is saturated since it includes (2k − 1) terms for (2k − 1) profiles.

Hereafter, we shall consider only two lists (k = 2). In this case, we make the as-

sumption that the two lists are independent. The estimator N̂ is n1n2

n11

, and we obtain

asymptotically [4]

E(N̂) =
E(n1)E(n2)

E(n11)
=

N1q1N2q2

N11q11
.

If the samples on the lists are independant (q11 = q1q2) we have the Peterson Index

E(N̂) =
N1N2

N11

,

and if the two lists cover the exact same population, then N1 = N2 = N11 = N and N̂ is

unbiased.

The asymptotic variance of N̂ is

V (N̂) =
E(n1)E(n2)E(n̂00)

[E(n11)]2
=

E(N̂)E(n̂00)

N11q11
,

with E(n̂00) = (N1 − N11)(1 − q1) + (N2 − N11)(1 − q2) + N11(1 − q11).
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This variance very large whan the proportion of individuals seen on the 2 lists is small.

It increases when N11

N
decreases, i.e. when the sub-populations covered by the different

lists are not exactly the same. When N1 = N2 = N11 = N and q11 = q1q2, we have

V (N̂) = N 1−q1q2

q1q2

, i.e. the variance only depend on the size of the population an on the

”capture rates”.

1.3 Proposition

In order to relax the assumption that all the lists cover the same underlying population, we

propose a new experimental design. In this design, the size of the sub-populations covered

by each list is first estimated, then the size of the total population, considered as the union

of the various sub-populations covered by the lists, can be estimated.

To estimate the size of the sub-population covered by one list, we use the replicates

appearing in the lists, as follows : we consider two periods (or more) on the list, and

we consider the individuals sampled at each period as two independent samples for the

underlying sub-population. We use the method described previously to estimate the size

of this sub-population. The second step consists in estimating the size of the intersection

of the underlying sub-population covered by several lists. Finally, we can estimate the

size of the population of interest, considered as the union of the studied sub-populations.

This design was inspired by Pollock’s works on the “Robust Design”[9], proposed in animal

ecology to solve the problem of estimation of the size of the studied population at several

dates.

This new methodology relies on several new assumptions :

• The samples in a given list are independent, and the probability of appearing on a

list at a given period is the same for all the individuals covered by this list.

• The sampling processes on the lists are independent (this assumption is useful to

estimate the size of the intersection of the two sub-populations),

• The population of interest is the union of the different sub-populations,

In part 2.5, we study how violations of these new assumptions affect the results. Indeed,

if an individual is present in a list at a given period, his probability to be present on the
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same list for the same disease at another period may be lower than for another individual

not already present on the list. We are in presence of a process similar to the trap-shyness

in animal ecology [10].

2 Construction and properties of the new estimator

2.1 Complementary notations

Xlj Dichotomic variable representing the fact that one individual is seen at
the date j on the list l

nl(i1i2) Total number of individuals, with status i1 in period 1 and i2 in period
2, on list l

plj Probability to sample an individual during the period j on list l
Υl Degree of “trap-response” between the two periods for list l
δ Degree of dependency between the two lists ( for the N12 individuals

potentially sampled by the two lists)

2.2 Construction of the new estimator

Several samples are made in each sub-population at different dates. Hereafter, we will

consider only two sub-populations and two samples per sub-population (i.e. two periods

of time). Classical Capture-Recapture methods provide estimates of the size of each sub-

population sampled by each list :

Ñl =
nl(1.)nl(.1)

nl(11)

,

where nl(.j2) = nl(0j2) + nl(1j2) and nl(j1.) = nl(j10) + nl(j11).

We estimate the probability of presence of an individual in list l as

q̃l =
nl

Ñl

;

then, we can estimate the probability of presence of an individual in two lists, assuming

independence of the lists as

q̃11 = q̃1q̃2.

We can estimate the size of the sub-population sampled by the two lists as

Ñ11 =
n11

q̃11
.
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Finally, we can estimate the size of the population as

Ñ = Ñ1 + Ñ2 − Ñ11.

2.3 Asymptotic properties of the new estimator in the “classic”

case

In the classic use of capture-recapture method in epidemiology, the lists are supposed

independent. With the new estimator this assumption has still to hold. In a first approach,

we consider that this assumption is fulfilled and that there is no “trap-response” between

the different samples on each list. In parts 2.4 and 2.5, we will consider the general case

when when there is a process of “trap-shyness” between the different samples on each list

and when the assumption of independence is not met.

For each sub-population covered by a list, we realise two independant samples on two

periods. The subpopulation covered by the two samples is exactly the same and thus :

E(Ñl) =
E(nl(1.))E(nl(.1))

E(nl(11))
=

(Nlpl1Nlpl2)

Nlpl1pl2
= Nl,

thus the two estimators Ñl are unbiased.

In the case of independence, it is easily shown that the new estimator is unbiased. In

this case, we also have :

E(n11) = N11q11 = N11q1q2,

and ∀l = {1, 2}

E(q̃l) = E

(

nl

Ñl

)

= E

(

nlnl(11)

nl(1.)nl(.1)

)

= E

(

NlqlNlpl1pl2

Nlpl1Nlpl2

)

= E(ql) = ql,

and

E(q̃11) = E(q̃1q̃2) = E(q̃1)E(q̃2) = q1q2 = q11.

Asymptotically, we obtain :

E(Ñ11) = E

(

n11

q̃11

)

= E

(

N11q11

q̃1q̃2

)
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= E

(

N11q11Ñ1Ñ2

n1n2

)

= E

(

N11q1q2n1(1.)n1(.1)n2(1.)n2(.1)

N1q1N2q2n1(11)n2(11)

)

= E

(

N11N1p11N1p12N2p21N2p22

N1N2N1q1N2q2

)

= E

(

N11p11p12p21p22

p11p12p21p22

)

= E(N11)

= N11,

i.e. the estimator of the size of the intersection is also asymptotically unbiased when the

three assumptions made earlier are fulfilled. Finally, the asymptotic expectation of our

new estimator is :

E(Ñ) = E(Ñ1) + E(Ñ2) − E(Ñ11) = N1 + N2 − N11 = N.

2.4 Properties of the new estimator in the case of“trap-response”

between the samples of a given list

In practice, the probability that an individual is seen at a date on a list may depend on

whether this individual was seen at other dates on the same list (“trap-response”).

We can define Υl, the “Degree of trap-response” within the list, as

P (Xl2 = 1/Xl1 = 1) = ΥlP (Xl2 = 1) = Υlpl2.

We see easily that this “trap-response” is a reciprocal process because

P (Xl1 = 1/Xl2 = 1) =
P (Xl1 = 1, Xl2 = 1)

P (Xl2 = 1)
= P (Xl2 = 1/Xl1 = 1)

P (Xl1 = 1)

P (Xl2 = 1)
= Υlpl2

pl1

pl2
= Υlpl1.

In fact, we think that data coming from lists should often present an apparent ”trap-

shyness”; i.e. if an individual is seen on a list at a date, his probability to be seen at an

other date decreases. In this case, Υl is a real number between 0 and 1, depending on the

strength of the “trap-shyness” (Υl = 1 is the no trap-reponse case for the list l).

We still have

E(Ñl) =
E(nl(1.))E(nl(.1))

E(nl(11))
,
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now we have

E(nl(1.)) = Nlpl1,

E(nl(.1)) = Nlpl2,

and

E(nl(11)) = NlP (Xl1 = 1)P (Xl2 = 1/Xl1 = 1) = Nlpl1Υlpl2,

thus

E(Ñl) = E

(

nl(1.)nl(.1)

nl(11)

)

= E

(

Nlpl1Nlpl2

Nlpl1Υlpl2

)

= E
(

Nl

Υl

)

=
Nl

Υl

;

Asymptotically

E(q̃l) = E

(

nl

Ñl

)

= E

(

Nlqlnl(11)

nl(1.)nl(.1)

)

= E

(

NlqlNlpl1Υlpl2

Nlpl1Nlpl2

)

= E(qlΥl)

= qlΥl,

and

E(q̃11) = E(q̃1)E(q̃2) = q1Υ1q2Υ2 = q11Υ1Υ2.

Thus asymptotically

E(Ñ11) = E

(

n11

q̃11

)

= E

(

N11q11

q̃1q̃2

)

= E

(

N11q1q2Ñ1Ñ2

n1n2

)

= E

(

N11q1q2n1(1.)n1(.1)n2(1.)n(.1)

N1q1N2q2n1(11)n2(11)

)

= E

(

N11N1p11N1p12N2p21N2p22

N1N2N1p11Υ1p12N2p21Υ2p22

)

= E
(

N11

Υ1Υ2

)

=
N11

Υ1Υ2

,
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so

E(Ñ) = E(Ñ1) + E(Ñ2) − E(Ñ11) =
N1

Υ1
+

N2

Υ2
−

N11

Υ1Υ2
=

Υ2N1 + Υ1N2 − N11

Υ1Υ2
.

We note that if the degree of“trap-response” is the same for the two lists (Υ1 = Υ2 = Υ)

then

E(Ñ) =
Υ(N + N11) − N11

Υ2
.

In this case, the bias of the estimator does not depend any longer on the sizes of the

subpopulations N1 and N2 but only of the size of the population and of the size of the

intersection between the two sub-populations.

We can represent the asymptotic relative bias of the new estimator as a function of the

parameters. We will consider that the degree of “trap-response” (Υ) is the same for the

two lists. When the lists are independent (δ = 1), we know that the expectation of the new

estimator only depends on the size of the population (N), on the size of the intersection

between the two lists (N11) and on the degree of trap-response (Υ). Figure 1 represents the

bias of the new estimator in this case in fonction of the degree of trap-response. Different

values are used for the size of the intersection (see table 1), the size of the population

being fixed at N = 2000. We note that the new estimator is unbiased when Υ = 1, it is

positively biased when N11

N
< Υ < 1 (minor trap-shyness) and negatively biased otherwise

(trap-happiness or important trap-shyness). With a fixed degree of trap-response Υ > N11

N
,

the absolute value of the bias decreases as N12 increases.

2.5 Properties of the new estimator in the general case

In practice, the probability that an individual belonging to the intersection of the sampled

populations is seen at a date on a given list certainly depends on whether this individual

was seen at the same date on the other list (dependence between the two lists) : if this

individual is already seen at a date on a given list, his probability to be seen at the same

date on another list decreases.

We can define δ the degree of dependence between the lists as

P (Xlj = 1/Xlj′ = xlj′, Xl′j = 1) = δP (Xlj = 1/Xlj′ = xlj′)

with l′ the complementary of l in {1, 2} and j′ the complementary of j in {1, 2}, ∀ l, j ∈ {1, 2} × {1, 2}.
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We note that this dependance between the two lists only concerns the individuals of

the population covered by the two lists (N11 individuals).

The expectation of the estimators are in this case very hard to compute because each

sample depends on two other samples and this phenomenon is reciprocal. We have prefered

to run simulations to estimate the expectation of the estimator in this case. But the

construction of simulate samples needs full of times because it’s an iterative process.

So we have realised simulations that mimic the phenomenon of dependence, as defined

in part 3.

2.6 Estimating the variance of the new estimator

Formal estimates of the asymptotic variance of Ñ can not be calculated without further

assumptions on the distribution of the estimators. Thus, we chose to run simulations to

estimate the variance of the new estimator in different cases.

3 Simulations

We have realised several series of 1000 simulations, in different cases, using the Monte Carlo

method. The size of the simulated underlying population was 2000 individuals (value to

estimate). Eight cases were taken into account according to whether the sub-populations

covered by the various lists were equal in size, whether they had a large intersection and

whether the lists were independent (table 1).

For each case, we have defined 9 scripts according to the probability of capture on each

sample of the two sub-populations p1 and p2 (table 2).

We then have simulated 9 new scripts in each case, with “trap-response” between the

different samples of a list. These scripts are numbered from 10 to 18 and the probabilities

pi are the same than for the scripts 1 to 9.

To simulate trap-response between the different samples of a list, we have chosen Υi =

Υ = 0.8 ∀i = 1, 2. For each list we have simulated N1 and N2 independent Bernoulli

variables with probability p1 and p2 (variables X11 and X21). The variables X12 and X22

have been simulated in function of the result for each individual for the variables X11 and

X21 respectively : if Xl1 = 1 then P (Xl2 = 1/Xl1 = 1) = Υlpl = 0.8pl and if Xl1 = 0 then
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P (Xl2 = 1/Xl1 = 0) = pl(1−Υpl)
1−pl

[to verify that P (Xl2 = 1) = pl].

To simulate dependence between the lists, we chose δ = 0.8. For the sake of com-

putational simplicity, we first simulated the variables X11 and X12 as described above.

The variable X21 was simulated in function of the result of the variable X11 and the

variable X22 was simulated in function of the result of the variables X21 and X12. The

probabilities we used are given in table 3. The probabilities P (X12 = 1/X11 = 0),

P (X21 = 1/X11 = 0) and P (X22 = 1/X12 = 0, X21 = 0) are computed to verify that

∀ l ∈ {1, 2}, ∀ j ∈ {1, 2}, P (Xlj = 1) = pl.

4 Results

In tables 4 and 5, we give the results of the simulations, when the lists are independent

(Cases I to IV). The first table considers the scripts when there is no “trap-response”

(scripts 1 to 9) and the second one, the scripts when there is “trap-shyness” (scripts 10 to

18). In tables 6 and 7, we give the results for the cases when the lists are dependent (cases

V to VIII), distributed in the same way between the two tables. For each case, we only

give the minimum and the maximum of the asymptotic formal results for the expectations

and for the standard error of the classic estimator and the range of the expectation and of

the standard error of the two estimators obtained by the simulations over all the scripts.

The asymptotic results for the expectation of the new estimator was given only when the

two lists are independent.

According to these results, we can consider two main situations : two sub-populations

with a large intersection (cases I, III, V and VII) ; two sub-populations with a small

intersection (cases II, IV, VI, VIII). In the first situation, the bias of the two estimators

are generally positive (except in case I when the two sub-populations largely covered the

population) and relatively small (with a maximum of 25.5% for the classic estimator and

of 20.8% for the new estimator on all the scripts). We note that, in these cases, the new

estimator is unbiased when the lists are independent (cases I and III) and when there is

no “trap-response” between the dates of sampling in a sub-population (scripts 1 to 9). We

also note that the new estimator is unbiased in the case I when there is “trap-shyness”.

This result is due to chance, as it comes from the fact that, when Υi = Υ ∀i, the new
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estimator is unbiased if Υ = 1 (no trap-response) or if Υ = N11

N
. In the case I, we have

N11

N
= 1600

2000
= 0.8 and we have chosen Υ = 0.8, so that, in this case, the new estimator

happens to be unbiased.

In these cases, the variances fall in the same range. The variance of the new estimator

is, in general, slightly higher than the one of the classic estimator when the probabili-

ties of capture at each date on the sub-populations are small and inversely, when these

probabilities are large.

When the sub-populations sampled have a small intersection, the classic estimator is

very biased, due to the unrealistic assumption that all the lists cover the same population.

The bias of the new estimator seem to be always much lower than that of the classic

estimator. As for the variance, that of the new estimator is much lower than that of the

classic estimator. In this case, the new estimator is thus much better than the classic one.

5 Discussion

The new estimator had various advantages compared with the classic one. Indeed, its

properties are similar to those of the classic one when the assumptions of independance

of the lists and of sampling of the same population are respected or not strongly violated.

When this assumptions are strongly violated, the new estimator is better than the classic

one as regards of bias and consistency, because the strong assumption of unicity of the

population sampled by the differents lists is relaxed.

The new estimator could easily be generalised to more than two lists, and more than

two dates per list, although, in practice, its application will certainly be limited to two or

three lists and two or three dates per list.

The main difficulty that remains to routinely use this estimator seems to be the choice

of cut for splitting the different lists at different dates. However, epidemiologists often

make several samples on the lists and delete the replicates to use the classic estimator.

These deletions of information prevented us from testing our estimator on published data.

Thus, the pratical use of this design should not pose any problem because it does not

impose additional work. Furthermore, the computation of the new estimator permits to

estimate the size of each sub-population, a piece of information that was never obtained
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with the former method.
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Table 1: Simulated cases

Case I II III IV V VI VII VIII
same sub-population sizes X X X X

large intersection X X X X
independence X X X X

N1 1800 1100 1800 1800 1800 1100 1800 1800
N2 1800 1100 1100 400 1800 1100 1100 400

N11 1600 200 900 200 1600 200 900 200

Table 2: Probabilities used in simulations

scripts without scripts with p1 p2

“trap-response” “trap-shyness”
1 10 0.5 0.5
2 11 0.5 0.3
3 12 0.5 0.1
4 13 0.3 0.3
5 14 0.3 0.1
6 15 0.1 0.1
7 16 0.3 0.5
8 17 0.1 0.5
9 18 0.1 0.3

Table 3: Probabilities used in simulations with dependance between the two lists

Probability population covered population covered population covered
only by list 1 only by list 2 by the two lists

Size N1 − N11 N2 − N11 N11

P (X11 = 1) p1 0 p1

P (X12 = 1/X11 = 1) Υ1p1 − Υ1p1

P (X21 = 1/X11 = 1) − − δp2

P (X22 = 1/X11 = 1, X21 = 1) − − δΥ2p2

P (X22 = 1/X11 = 0, X21 = 1) − Υ2p2 Υ2p2

P (X22 = 1/X11 = 1, X21 = 0) − − δp2
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Table 4: Results of the simulations : N=2000, independent lists, no “trap-response”

cases range of ranges of range of
asymptotic asymptotic simulations simulations

expectations standard errors expectations standard errors
I classic 2025 21-219 2023-2054 21-235

new 2000 1999-2013 18-237
II classic 6050 157-1153 6068-7046 360-3662

new 2000 2001-2170 40-474
III classic 2200 37-316 2201-2244 43-260

new 2000 2000-2049 27-279
IV classic 3600 121-890 3613-4266 196-2443

new 2000 2000-2135 40-440

Table 5: Results of the simulations : N=2000, independent lists, “trap-shyness”

cases range of ranges of range of
asymptotic asymptotic simulations simulations

expectations standard errors expectations standard errors
I classic 2025 16-216 2023-2049 16-236

new 2000 1979-1999 23-361
II classic 6050 131-1140 6068-7231 296-3749

new 2437 2442-2651 59-813
III classic 2200 31-312 2198-2256 35-352

new 2218 2214-2258 27-384
IV classic 3600 101-879 3608-4311 167-2548

new 2437 2441-2506 60-605
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Table 6: Results of the simulations : N=2000, dependent lists, no “trap-response”

cases range of range of ranges of range of
asymptotic asymptotic simulations simulations

expectations standard errors expectations standard errors
V classic 2145-2228 18-240 2145-2274 22-270

new 2115-2192 17-248
VI classic 6504-6882 170-1279 6615-7692 420-4043

new 2026-2167 41-484
VII classic 2345-2422 37-348 2343-2511 45-452

new 2072-2159 27-305
VIII classic 3862-4028 129-983 3911-4808 234-2643

new 2023-2156 41-521

Table 7: Results of the simulations : N=2000, dependent lists, “trap-shyness”

cases range of range of ranges of range of
asymptotic asymptotic simulations simulations

expectations standard errors expectations standard errors
V classic 2137-2234 13-238 2137-2269 17-269

new 2118-2230 25-381
VI classic 6651-6780 144-1268 6777-7930 387-4345

new 2492-2737 64-779
VII classic 2343-2430 30-345 2343-2498 38-438

new 2309-2415 31-401
VIII classic 3944-3997 131-987 3907-4777 238-2688

new 2477-2629 42-440
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Captions for figures

Figure 1 Bias of Ñ as a function of N11 and of the degree of “trap-response”
Υ when the lists are independent (δ = 1)

17



Figure 1:
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